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Abstract

In this paper, we prove some new fixed point theorems for a mixed monotone mapping under more generalized
nonlinear contractive conditions in a metric space endowed with partial order. Our results generalize and improve
several results due to the work of Gnana Bhaskar and Lakshmikantham.
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Introduction and preliminaries
The study of mixed monotone operators has been a
matter of discussion since it was introduced in 1987,
because it has not only important theoretical meaning but
also wide applications in nonlinear differential and inte-
gral equations (see [1-14]). Recently, Gnana Bhaskar and
Lakshmikantham investigated the existence of coupled
fixed points and fixed points for a mixed monotone map-
ping under a weak linear contractive condition on par-
tially ordered metric space (see [15]). The purpose of this
paper is to study the existence of coupled fixed points
and fixed points for a mixed monotone mapping on par-
tially ordered metric space which satisfy the nonlinear
contractive condition (�i)(i = 1, 2) below. The results
obtained in this paper generalize and improve the results
corresponding to those obtained by Gnana Bhaskar and
Lakshmikantham in [15].
Next, let us give some notations and definitions:
Let (X, ≤) be a partially ordered set, (X, d) be a metric

space, and R+ = [0, + ∞).
Definition 1 ([15]). Let (X, ≤) be a partially ordered
set and F : X × X −→ X. We say that F has the mixed
monotone property if F(x, y) is monotone nondecreasing
in x and is monotone nonincreasing in y, that is, for any
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x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F(x1, y) ≤ F(x2, y)

and

y1, y2 ∈ X, y1 ≤ y2 ⇒ F(x, y2) ≤ F(x, y1).

Definition 2 ([15]). We call an element (x, y) ∈ X × X a
coupled fixed point of F if

F(x, y) = x, F(y, x) = y.

An element x ∈ X is called fixed point of the F if
F(x, x) = x.
Definition 3. A function ϕ : R+ × R+ −→ R+ is
said to have the property (�1) if it satisfies the following
conditions:

(C1). ϕ(t1, t2)≥ϕ(t1, t2) for t1≥ t1≥0, t2≥ t2≥0.
(C2). lim

t→+∞[t − ϕ(t, t)]= +∞.
(C3). lim

n→+∞ ϕn(t, t) = 0 for all t > 0, where ϕn(t, t)
is the nth iteration of ϕ(t, t).

A function ϕ : R+ × R+ −→ R+ is said to have the
property (�2) if it satisfies the condition (�1)(C1) and
+∞∑
n=1

ϕn(t, t) < +∞ for all t > 0, where ϕn(t, t) is the nth

iteration of ϕ(t, t).

Lemma 1. Let ϕ : R+ × R+ −→ R+ satisfies the
condition (�1). Then, the following conclusions hold:
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(i). ϕ(t, t)< t for all t>0, (ii). lim
t→0+ ϕ(t, t)=0, and

ϕ(0, 0)=0.

Proof. (i). If the conclusion is not true, then
there exists a t0 > 0 such that

ϕ(t0, t0) ≥ t0.

By (�1) and induction, it is easy to verify that

ϕn(t0, t0) ≥ t0 (n = 0, 1, 2, . . .).

From the above and (�1)(C3), we have

0 = lim
n→+∞ ϕn(t0, t0) ≥ t0 > 0,

which is a contradiction. Thus, (i) holds.
(ii). By (i), it is easy to see that

lim
t→0+ ϕ(t, t) = 0 and ϕ(0, 0) = 0.

This completes the proof.

Lemma 2. Let ϕ : R+ ×R+ −→ R+ satisfy the condition
(�2). Then, the conclusions of Lemma 1 hold.

Proof. By the condition
+∞∑
n=1

ϕn(t, t) < +∞ for all t > 0,

we have

lim
n→+∞ ϕn(t, t) = 0 for all t > 0.

Thus, function ϕ satisfies (�1)(C1) and (�1)(C3).
By the same way as stated in Lemma 1, the rest can be

proved.
This completes the proof.

Definition 4. The triple (X, d, ≤) is called a partially
ordered metric space if (X, ≤) is a partially ordered set
and (X, d) is a metric space.
The (X, d, ≤) is said to be complete partially ordered

metric space if (X, d) is a complete metric space.
The (X, d, ≤) is said to have the property (I − D) if it

has the following properties:

(i). If a nondecreasing sequence {xn} → x, then
xn ≤ x, ∀n.

(ii). If a nonincreasing sequence {yn} → y, then
yn ≥ y, ∀n.

Definition 5. Let (X, d, ≤) be a partially ordered metric
space, the mapping F : X × X −→ X is called a nonlinear
contraction mapping of type (�i)(i = 1, 2) if there exists a
function ϕ : R+ × R+ −→ R+ with the property (�i)(i =
1, 2) such that

d(F(x, y), F(u, v))≤ϕ(d(x, u), d(y, v))), ∀x≥u, y≤v.

Throughout this paper, assume that (X, d, ≤) is a com-
plete partially ordered metric space.

Main results
Theorem 1. Let x0 , y0 ∈ X and F : X × X −→ X be a

continuous mixed monotone mapping such that

x0 ≤ F(x0, y0), F(y0, x0) ≤ y0.

Assume that the following conditions hold:

(H1).Suppose that one of the following two
conditions is satisfied:

(a). F is a nonlinear contraction mapping of
type (�1).
(b). F is a nonlinear contraction mapping of
type (�2).

(H2). Suppose that one of the following two
conditions is satisfied:

(c). x0, y0 in X are comparable.
(d). Every pair elements of X has an upper
bound or a lower bound in X.

Then, there exists x∗ ∈ X such that x∗ = F(x∗, x∗), i.e.,
x∗ is a fixed point of mapping F. Moreover, the iterative
sequences {xn} and {yn} given by

xn =F(xn−1, yn−1) and yn = F(yn−1, xn−1)

× (n = 1, 2, 3, . . .)
(1)

converge to x∗, i.e.,
lim
n→∞ xn = lim

n→∞ yn = x∗,

and
x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . ;
y0 ≥ y1 ≥ y2 ≥ . . . ≥ yn ≥ . . . .

(2)

Further, if x0, y0 ∈ X are comparable, then{
x0≤x1≤ . . .≤xn≤ . . .≤x∗≤ . . .≤yn≤ . . .≤y1≤y0, if x0≤y0;
y0≤y1≤ . . .≤yn≤ . . .≤x∗≤ . . .≤xn≤ . . .≤x1≤x0, if y0≤x0.

Proof. Using the same reasoning as in ([15], Theorem
2.1), we can obtain that (2), i.e., the sequences {xn} and
{yn} are monotone. In the following, we will prove that
{xn} and {yn} are Cauchy sequences.
If (H1)(a) holds, let
un = d(x0, xn+1) = d(x0, F(xn, yn)),
vn = d(y0, yn+1) = d(y0, F(yn, xn))(n = 0, 1, 2, . . .),

h=max{u0, v0}=max{d(x0, F(x0, y0)), d(y0, F(y0, x0))}.
First, by the condition (�1)(C2), we know that there

exists a positive number c > h such that

t − ϕ(t, t) > h for all t ≥ c. (3)

Now, we show that un < c, vn < c (n = 0, 1, 2, . . .). If
this is false, then there exists a nonnegative integer j such
that

j = min{i : max{ui, vi} ≥ c}.
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By max{u0, v0} = h < c, we know that j is a positive
integer and max{ui, vi} < c (i = 0, 1, 2, . . . , j − 1).
There are several possible cases which we need to

consider.

Case 1. uj ≥ c and vj < c. If F is a nonlinear contraction
mapping of type (�1), we have

uj = d(x0, F(xj, yj)) ≤ d(x0, F(x0, y0)) + d(F(x0, y0),
F(xj, yj)) ≤ h + d(F(xj, yj), F(x0, y0))

≤ h + ϕ(d(xj, x0), d(yj, y0))
= h + ϕ(d(x0, F(xj−1, yj−1)),

d(y0, F(yj−1, xj−1)) = h + ϕ(uj−1, vj−1)

≤ h + ϕ(uj, uj),

i.e., uj ≥ c and uj − ϕ(uj, uj) ≤ h, which contradicts (3).

Case 2. uj < c and vj ≥ c. Using the same reasoning as
in Case 1, we can obtain that

vj ≤ h + ϕ(vj, vj),

i.e., vj ≥ c and vj − ϕ(vj, vj) ≤ h, which contradicts (3).

Case 3. uj ≥ c and vj ≥ c. Without loss of generality, we
can assume that uj ≥ vj ≥ c.
Thus, by Case 1, we know that

uj ≤ h + ϕ(uj−1, vj−1) ≤ h + ϕ(uj, uj),

i.e., uj ≥ c and uj−ϕ(uj, uj) ≤ h, which is in contradiction
with (3).

From the above, it is easy to know that both sequences
{un} and {vn} are bounded. Now, we show that {xn} and
{yn} are Cauchy sequences.
By (2), for any positive integer number p, we have

d(xn+p, xn) = d(F(xn+p−1, yn+p−1), F(xn−1, yn−1))
≤ ϕ(d(xn+p−1, xn−1), d(yn+p−1, yn−1))
= ϕ(d(xn+p−1, xn−1), d(yn−1, yn+p−1)).

(4)

In the same way, we can get that

d(yn, yn+p) ≤ ϕ(d(yn−1, yn+p−1), d(xn+p−1, xn−1)).
(5)

Set d(zn+p−1, zn−1) = max{d(xn+p−1, xn−1), d(yn−1,
yn+p−1)}(n=1, 2, . . .).
Thus, by (4), (5), and (�1)(C1), we have

d(xn+p, xn) ≤ ϕ(d(zn+p−1, zn−1), d(zn−1, zn+p−1))
≤ . . .

≤ ϕn(d(zp, z0), d(z0, zp)).

In the same way, we can get that

d(yn, yn+p) ≤ ϕn(d(zp, z0), d(z0, zp)).

Obviously, d(z0, zp) ≤ max{d(x0, xp), d(y0, yp)} =
max{up−1, vp−1}.
Since {un}, {vn} are bounded sequences, there exists a

real constant M > 0 such that un ≤ M, vn ≤ M (n =
0, 1, 2, . . .).
From the above and (�1), we have

d(xn+p, xn) ≤ ϕn(M, M) → 0, d(yn, yn+p)

≤ ϕn(M, M) → 0(n → +∞).

Therefore, {xn} and {yn} are Cauchy sequences in X.
If, on the other hand, (H1)(b) is satisfied, by (2) and

(�2), we have

d(xn+1, xn) = d(F(xn, yn) , F(xn−1, yn−1))
≤ ϕ(d(xn, xn−1), d(yn, yn−1))
= ϕ(d(xn, xn−1), d(yn−1, yn)).

(6)

In the same way, we can get that

d(yn, yn+1) ≤ ϕ(d(yn−1, yn), d(xn, xn−1)). (7)

For each integer n ≥ 0, define

an = d(xn+1, xn), bn = d(yn, yn+1), cn = max{an, bn}.
(8)

There are two possible cases which we need to consider.

Case 4. c0 = 0. Note that max{a0, b0} = c0 = 0 implies
that

d(F(x0, y0), x0) = d(x1, x0) = a0 = 0,
d(y0, F(y0, x0)) = d(y0, y1) = b0 = 0.

Thus, we have that x0 = F(x0, y0) and y0 = F(y0, x0). It
is easy to know by (1) that

xn = x0, yn = y0(n = 1, 2, 3, . . .).

Obviously, {xn} and {yn} are Cauchy sequences in X.

Case 5. c0 > 0. From (6), (8), and (�2), for any positive
integer n, we have

an = d(xn+1, xn) ≤ ϕ(d(xn, xn−1), d(yn−1, yn))
= ϕ(an−1, bn−1) ≤ ϕ(cn−1, cn−1).

In the same way, we can get that bn ≤ ϕ(cn−1, cn−1).

From the above and (8), we have

cn ≤ ϕ(cn−1, cn−1) ≤ . . . ≤ ϕn(c0, c0)(n = 1, 2, . . .)
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Thus, by (�2), we know that

d(xn+p, xn) ≤
n+p−1∑
i=n

d(xi+1, xi)

≤
n+p−1∑
i=n

ci

≤
n+p−1∑
i=n

ϕi(c0, c0)

≤
+∞∑
i=n

ϕi(c0, c0) → 0 (n → +∞).

In the same way, we can get that

d(yn, yn+p) ≤
+∞∑
i=n

ϕi(c0, c0) → 0 (n → +∞).

From the above, we know that {xn} and {yn} are Cauchy
sequences in X.
Since X is a complete metric space, there exist x∗, y∗ ∈

X such that

lim
n→∞ xn = x∗, lim

n→∞ yn = y∗. (9)

Thus, letting n −→ ∞ in (1) and by (9) and continuity
of the mapping F, we have

x∗ = F(x∗, y∗), y∗ = F(y∗, x∗).

Next, we prove that x∗ = y∗, i.e., x∗ = F(x∗, x∗).
If (H2)(c) holds, without loss of generality, we assume

that x0 ≤ y0.
There are two possible cases which we need to consider.

Case 6. x0 = y0, set x∗ = x0 = y0 and xn = yn = x∗(n =
1, 2, 3, . . .), it is easy to verify that the conclusions of
Theorem 1 hold.

Case 7. x0 < y0, then d(x0, y0) > 0. It is easy to know
from the proof of Theorem 2.6 in [15] that

xn ≤ yn(n = 1, 2, 3, . . .). (10)

Thus, by (10) and (�i)(i = 1, 2), we have

d(yn, xn) = (F(yn−1, xn−1), F(xn−1, yn−1))
≤ ϕ(d(yn−1, xn−1), d(xn−1, yn−1))
= ϕ(d(yn−1, xn−1), d(yn−1, xn−1))
≤ ϕ2(d(yn−2, xn−2), d(yn−2, xn−2))
≤ . . . . . .

≤ ϕn(d(y0, x0), d(y0, x0)) → 0(n → ∞),

i.e., lim
n→∞ d(yn, xn) = 0.

From the above and lim
n→∞ xn = x∗, lim

n→∞ yn = y∗, we
have

d(x∗, y∗) ≤ d(x∗, xn) + d(xn, yn)
+ d(yn, y∗) → 0(n → ∞).

Therefore, d(x∗, y∗) = 0, i.e., y∗ = x∗. Thus, x∗ =
F(x∗, x∗). Similarly, if x0 > y0, then it is possible to show
xn ≥ yn for all n and that y∗ = x∗ and x∗ = F(x∗, x∗). If, on
the other hand, (H2)(d) is satisfied, there are two possible
cases which we need to consider.

Case 8. If x∗ is comparable to y∗, then

d(x∗, y∗) = d(F(x∗, y∗), F(y∗, x∗)) ≤ ϕ(d(x∗, y∗), d(x∗, y∗)).

From the above and Lemma 1 or Lemma 2, it is easy to
know that d(x∗, y∗) = 0, i.e., y∗ = x∗, and the conclusions
of Theorem 1 hold.

Case 9. If x∗ is not comparable to y∗, then there exists
an upper bound or a lower bound of x∗ and y∗. Without
loss of generality, we assume that there exists a z ∈ X such
that

x∗ ≤ z, y∗ ≤ z. (11)

From the proof of Theorem 2.5 in [15], we know that

⎧⎨
⎩
Fn(x∗, y∗) ≤ Fn(z, y∗), Fn(y∗, x∗) ≤ Fn(z, x∗),
Fn(x∗, y∗) ≥ Fn(x∗, z), Fn(y∗, x∗) ≥ Fn(y∗, z),
(n = 1, 2, 3, . . .),

(12)

and

d(x∗, y∗)≤ d(F(Fn(x∗, y∗), Fn(y∗, x∗)), F(Fn(x∗, z), Fn(z, x∗)))
+ d(F(Fn(z, x∗), Fn(x∗, z)), F(Fn(x∗, z), Fn(z, x∗)))
+ d(F(Fn(z, x∗), Fn(x∗, z)), F(Fn(y∗, x∗), Fn(x∗,y∗))).

(13)

By induction, it is easy to show from (11) and mixed
monotone property of F that

Fn(z, x∗) ≥ Fn(x∗, z)(n = 1, 2, 3, . . .). (14)

Set an = max{d(Fn(x∗, y∗), (Fn(x∗, z), d(Fn(y∗, x∗),
(Fn(z, x∗))(n = 1, 2, 3, . . .);

M = max{d(x∗, F(x∗, z)), d(z, x∗), d(z, y∗)}.

Obviously,M > 0.
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Thus, by (11), (12), (13), and (14) and Lemma 1
(with respect to Lemma 2), we have

d(F(Fn(z, x∗), Fn(x∗, z)), F(Fn(x∗, z), Fn(z, x∗)))
≤ ϕ(d(Fn(z, x∗), Fn(x∗, z)), d(Fn(x∗, z), Fn(z, x∗)))
≤ ϕ(d(F(Fn−1(z, x∗), Fn−1(x∗, z)), d(F(Fn−1(x∗, z),
Fn−1(z, x∗)), d(F(Fn−1(x∗, z), Fn−1(z, x∗)),
F(Fn−1(x∗, z)))

≤ ϕ2(d(Fn−1(z, x∗), Fn−1(x∗, z)), d(Fn−1(z, x∗),
Fn−1(x∗, z)))

≤ . . . . . .

≤ ϕn+1(d(z, x∗), d(z, x∗))
≤ ϕn+1(M, M) → 0(n → ∞);

(15)

d(F(Fn(x∗,y∗), Fn(y∗, x∗)), F(Fn(x∗, z), Fn(z, x∗)))
≤ ϕ(d(Fn(x∗, y∗), Fn(x∗, z)), d(Fn(y∗, x∗),
Fn(z, x∗)))

≤ ϕ(an, an)
≤ . . . . . .

≤ ϕn(a1, a1)
≤ ϕn+1(M, M) → 0(n → ∞).

(16)

In the same way, we can get that

d(F(Fn(z, x∗), Fn(x∗, z)), F(Fn(y∗, x∗), Fn(x∗, y∗)))
≤ ϕn+1(M, M) → 0(n → ∞).

(17)

Thus, by (15), (16), (17), and (13), we have that
d(x∗, y∗) = 0, i.e., y∗ = x∗.
Therefore, the conclusions of Theorem 1 hold. The

proof of the Theorem 1 is complete. �

Remark 1. In Theorem 1, if function ϕ : R+ × R+ −→ R+
is given by

ϕ(t1, t2) = k
2
(t1 + t2), t1, t2 ∈ R+,

where k ∈ [0, 1) is a real constant.
It is easy to verify that the function ϕ has the property

(�i)(i = 1, 2), and mapping F satisfies all conditions of
Theorem 2.5 and Theorem 2.6 in [15]. Thus, the conclu-
sions of Theorem 2.5 and Theorem 2.6 in [15] hold.
Therefore, our Theorem 1 improves and generalizes the

Theorem 2.5 and Theorem 2.6 in [15].
From the proof of Theorem 1, it is easy to see that the

following two theorems hold.

Theorem 2. Let (X, d, ≤) be a complete partially
ordered metric space, x0 , y0 ∈ X and F : X × X −→ X be
a mixed monotone mapping such that

x0 ≤ F(x0, y0), F(y0, x0) ≤ y0

and condition (H1) is fulfilled; then, there exist x∗, y∗ ∈ X
such that

x∗ = F(x∗, y∗) and y∗ = F(y∗, x∗).

Moreover, the iterative sequences {xn} and {yn} given by
(1) converge, respectively, to x∗ and y∗, and (2) holds.

Remark 2. Obviously, our Theorem 2 improves and gen-
eralizes the Theorem 2.1 in [15].

Theorem 3. Let (X, d, ≤) be a complete partially
ordered metric space having the property (I − D), x0 , y0 ∈
X and F : X × X −→ X be a mixed monotone mapping
such that

x0 ≤ F(x0, y0), F(y0, x0) ≤ y0.

and condition (H2) is fulfilled; then, the conclusions of
Theorem 2 hold.

Remark 3. Obviously, our Theorem 3 improves and gen-
eralizes the Theorem 2.2 in [15].

Example
In this final section, we give an example to support our
result.
Let X = [− π

12 ,
π
12 ]×[− π

12 ,
π
12 ] be the metric space

endowed with the metric

d(x, y) = |x1 − y1| + |x2 − y2|, for x = (x1, x2),
y = (y1, y2) ∈ X.

Further, we endow the set X with the following partial
order:

for x = (x1, x2), y = (y1, y2) ∈ X,
x ≤ y ⇐⇒ x1 ≤ y1, x2 ≥ y2.

Obviously, (X, d, ≤ ) is a complete partial ordered
metric space.
Example 1. Suppose that the mapping F : X × X −→ X
is defined by

F(x, y) = 1
4
(
1
24

+ sin 2(x1 − x2),
1
16

+ sin 2(y1 − y2)),

where x = (x1, x2), y = (y1, y2) ∈ X.
Then, there exists x∗ ∈ X such that x∗ = F(x∗, x∗).

Moreover, the iterative sequences {xn} and {yn} defined by

xn = F(xn−1, yn−1) and yn = F(yn−1, xn−1)

× (n = 1, 2, 3, . . .)
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converge to x∗, and

x0≤x1≤ . . .≤xn≤ . . .≤x∗ ≤ . . .≤yn≤ . . .≤y1≤y0,

where x0 = (− π
12 ,

π
12 ), y0 = ( π

12 , − π
12 ) ∈ X.

Proof. Obviously, F : X×X −→ X is a continuousmixed
monotone mapping .
It is easy to compute that

F(x0, y0) = 1
4
(
1
24

− sin
π

3
,

1
16

+ sin
π

3
)

= (
1 − 12

√
3

96
,
1 + 8

√
3

64
)

> (− π

12
,

π

12
) = x0,

F(y0, x0) = 1
4
(
1
24

+ sin
π

3
,

1
16

+ sin
π

3
)

= (
1 + 12

√
3

96
,
1 − 8

√
3

64
)

< (
π

12
, − π

12
) = y0.

For x = (x1, x2), y = (y1, y2), u = (u1, u2), v =
(v1, v2) ∈ X satisfying x ≥ u, y ≤ v, i.e., x1 ≥ u1, x2 ≤
u2, y1 ≤ v1, y2 ≥ v2, we have

d(F(x, y), F(u, v)) = 1
4
[| sin 2(x1 − x2) − sin 2(u1 − u2)|

+ | sin 2(y1 − y2) − sin 2(v1 − v2)|]
= 1

2
[| cos(x1 − x2 + u1 − u2)

× sin(x1 − x2 − u1 + u2)|
+ | cos(y1 − y2 + v1 − v2)
× sin(y1 − y2 − v1 + v2)|]

≤ 1
2
[sin(x1 − u1 + u2 − x2)

+ sin(v1 − y1 + y2 − v2)]

≤ sin
x1−u1+u2−x2+v1−y1+y2−v2

2

= sin
1
2
[d(x, u) + d(y, v)]

≡ ϕ(d(x, u) , d(y, v)),

where

ϕ(t1 , t2) =

⎧⎪⎪⎨
⎪⎪⎩

sin t1+t2
2 , t1 , t2 ∈[0 , π

3 ] ,
sin(π

6 + t2
2 ), t1 > π

3 , t2 ∈[0 , π
3 ] ,

sin(π
6 + t1

2 ), t2 > π
3 , t1 ∈[0 , π

3 ] ,√
3
2 , t1 > π

3 , t2 > π
3 .

Obviously,

ϕ(t , t) =
{
sin t, t ∈[ 0 , π

3 ] ,√
3
2 , t > π

3 .

It is easy to know that, ϕn(t, t) = sin sin . . . sin︸ ︷︷ ︸
n

t, and

lim
n→∞ ϕn(t, t) = 0, ∀t ∈ R+.
From the above, we know that the mapping F satisfies

all conditions of Theorem 1, it follows by Theorem 1 that
our conclusion holds. The proof is complete.
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13. Harjani, J, López, B, Sadarangani, K: Fixed point theorems for mixed
monotone operators and applications to integral equations. Nonlinear
Anal. 74, 1749–1760 (2011)



Zhang et al. Mathematical Sciences 2013, 7:31 Page 7 of 7
http://www.iaumath.com/content/7/1/31

14. Nashine, H, Samet, B, Vetro, C: Monotone generalized nonlinear
contractions and fixed point theorems in ordered metric spaces. Math.
Comput. Model. 54, 712–720 (2011)

15. Gnana Bhaskar, T, Lakshmikantham, V: Fixed point theorems in partially
ordered metric spaces and applications. Nonlinear Anal. 65, 1379–1393
(2006)

doi:10.1186/2251-7456-7-31
Cite this article as: Zhang et al.: Some new fixed point theorems for amixed
monotone maps in partially ordered metric spaces. Mathematical Sciences
2013 7:31.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords
	MSC 2010

	Introduction and preliminaries
	Main results
	Example
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

