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1 Introduction

String theory offers a different perspective on the geometry of the target space than an

ordinary quantum field theory does. The reason is that strings can wind around compact

dimensions and thus probe the target space with both Kaluza-Klein and winding modes

whereas point particles only have the former at their disposal. Therefore, strings can be

sensitive to so-called non-geometric backgrounds [1–4], which do not admit any standard

geometric interpretation and could never be detected by point particles alone.

In particular, this stringy perspective on geometry is reflected by the existence of T-

duality in string theory [5, 6] which relates string theories on different compact backgrounds
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to each other. In the simplest eponymous case, T-duality relates strings on a circle of radius

R with one on a circle of radius α′/R by exchanging Kaluza-Klein and winding modes.

T-duality has been generalized to more general backgrounds and superstring theory, see

e.g. [7]. Because of T-duality’s continued success in relating different string theories, there

has been a large effort to make this duality a manifest symmetry both on the level of the

effective field theory as well as on the worldsheet.

On the level of the effective theory this has been accomplished by the framework of

double field theory [8–11], for a recent review see [12], in which the standard target space

coordinates are accompanied by dual coordinates whose Kaluza-Klein modes represent the

winding modes of string theory. In this process the number of target space dimensions is

doubled unless a suitable constraint is imposed. Usually, one imposes the so-called strong

constraint which requires all objects of the theory (and products thereof) to be elements

of the kernel of a particular non-linear differential operator.

On the level of the worldsheet theory there have been various attempts to make

T-duality manifest. (For an overview see e.g. ref. [13].) The earliest ones go back to

Tseytlin [14, 15] based on refs. [16, 17], Siegel [8] and Hull [18]. In these worldsheet the-

ories the number of coordinate fields has been doubled. (Also conjugate momenta have

been included in an associated membrane action to describe non-geometry backgrounds on

the worldsheet, see e.g. [19, 20].) In particular, this has led to so-called T-folds [21, 22].

In Hull’s approach [21, 23] a constraint to half the number of degrees of freedom is im-

plemented by hand. In Tseytlin’s construction [14, 15, 24] the reduction is implemented

by interpreting the coordinate fields and their duals as each others conjugate momenta.

Unfortunately, in the course of Tseytlin’s construction manifest Lorentz invariance is lost

unless additional constraints are enforced. Typically these constraints are stronger than

those necessary to ensure on-shell Lorentz invariance [25] and are motivated to get the

number of degrees of freedom correct [26]. This complicates the derivation of the corre-

sponding target space equations of motion, see e.g. [25, 27–29] and [30]. Another interesting

approach can be found in [31].

Recently, two of us suggested a sigma model for a doubled geometry1 [32] that incor-

porates the necessary constraints on the level of the worldsheet but contrary to Tseytlin’s

approach is nevertheless manifestly Lorentz invariant. This theory was motivated as fol-

lows: as was observed in [33] for constant metric and Kalb-Ramond backgrounds Buscher’s

Lorentz invariant gauge theory [5, 6] leads to Tseytlin’s description by employing a non-

Lorentz invariant gauge fixing. However, it is also possible to implement a Lorentz invariant

one. This constraint in principle leads to problematic chiral bosons, see e.g. refs. [34, 35],

however, we argued that these are canceled by the ghost fields in a proper BRST quantiza-

tion of the theory. When the Lorentz invariant gauge fixing is implemented, the remaining

gauge field component only appears linearly in the action, which allows to reinterpret this

gauge field component as a Lagrange multiplier which itself fixes a gauge symmetry. This

gauge symmetry shows that half of the doubled coordinates are redundant and remain

1Doubled geometry here means a 2D-dimensional manifold equipped with a metric and an anti-

symmetric field.
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Object #(comp.) Worldsheet interpretation Target space interpretation

Y 2D Doubled coordinate fields Doubled geometry coordinates

X D Worldsheet coordinate fields Target space manifold coordinates

K D Gauge transformations Doubled geometry Killing vectors

and projectors

E 4D2 Kinetic and WZ terms of the Doubled geometry metric G and

doubled worldsheet theory antisymmetric tensor field C

Ẽ ∼= E D2 Projected version of the doubled Target space metric g and

kinetic and WZ terms antisymmetric tensor field b

Z D2 Gauge fixing parameters

 Non-physical parts of E(modulo ρ-transformations)

Q 2D2 BRST ghost transformation

parameters

Table 1. The central objects of the doubled worldsheet theory with a brief description of both

their worldsheet and target space interpretation are collected in this table. In addition it gives the

number of components of these objects.

present even for non-constant metric and Kalb-Ramond backgrounds as well. In table 1 we

give an overview of the various objects that play important roles within this doubled world-

sheet theory and briefly describe both their worldsheet and target space interpretation.

In this paper we investigate the renormalization of this theory exploiting similar meth-

ods that were used for the standard sigma model, see e.g. refs. [36, 37]. To this end we

describe how the suggested gauge fixing procedure is implemented at the quantum level

via the BRST quantization procedure involving Faddeev-Popov ghosts. Furthermore, we

show that it reduces the theory to the correct number of degrees of freedom both on the

worldsheet and in the target space. Furthermore, we show how it is possible to rewrite

the theory in different guises that implement O(D,D) transformations either invariantly

or covariantly. T-duality then appears as manifest feature of the doubled geometry within

this worldsheet theory. However, the field equations we derive are not identical to those of

double field theory. There is a good reason for this: by construction, our doubled theory

realizes the doubling off-shell on the worldsheet, as a consequence it is invariant under 2D

dimensional diffeomorphisms. This is not the same gauge symmetry as is realized in double

field theory.

Paper summary. In section 2 we describe the Lorentz invariant doubled worldsheet

theory introduced in ref. [32]. We review the construction of the model identifying the

gauge symmetry which reduces the number of degrees of freedom. The symmetries that

this model exhibits are discussed. In addition to multiplicative redefinitions of the Lagrange

multiplier, that implements the gauge fixing, we focus on the special transformation that

allows to cast the model into different forms. In the final subsection 2.3 we investigate the
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general consequences of enforcing BRST invariance. In particular, we show that the gauge

symmetries are encoded by Killing vectors which have particular projection properties. In

the final subsection 2.4 we describe some special forms of the worldsheet theory making

various symmetries manifest.

Section 3 develops the covariant Feynman rules for the Lorentz invariant doubled

worldsheet theory. The background field method applied to non-linear σ models and the

normal coordinate expansion are adapted to our doubled theory. Covariant derivatives

of the gauge fixing Lagrange multiplier which are needed for the covariant expansion are

determined by requiring covariance w.r.t. its multiplicative redefinitions. In subsection 3.4

the propagators of the doubled theory are determined.

Section 4 is devoted to the study of the renormalization of the Lorentz invariant world-

sheet with doubled coordinate fields and the derivation of the resulting target space dy-

namics. To this end we determine the divergent contributions to the effective action using

the Feynman rules derived in the previous section. By demanding Weyl invariance on the

quantum level in subsection 4.4 we determine the target space equations of motion for the

Lorentz invariant doubled worldsheet theory.

In section 5 we discuss the target space interpretation of our worldsheet theory with

doubled coordinate fields both at the classical and the quantum level. Section 6 concludes

this paper with an outlook on open questions.

In appendix A we have collected some details of the covariant expansion employed

in section 3. Appendix B contains brief computations of the relevant divergent one-loop

integrals within dimensional regularization.

Acknowledgments

We would like to thank Andreas Deser, Falk Hassler, Olaf Hohm and Dieter Lüst for very

helpful discussions. This work has been supported by the LMUExcellent Programme.

2 Worldsheet description with doubled target space coordinates

In this section we introduce the doubled worldsheet theory that is under investigation in

this paper. The main players of this theory have been collected in table 1. To facilitate the

comparison with the standard sigma model description, we recall its basic properties first.

2.1 Standard sigma model

The standard sigma model for coordinate fields Xµ, µ = 0, . . . D − 1 of the bosonic string

is given by

S =

∫
d2σ ∂LX

TE ∂RX , (2.1)

where ∂a = ∂L/R = (∂0± ∂1)/
√

2 denote derivatives w.r.t. the light-cone coordinates, σa =

σL/R = (σ0 ± σ1)/
√

2, on the string worldsheet. In addition, Eµν(X) = gµν(X) + bµν(X),
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where gµν and bµν represent the metric on a D-dimensional target space M and anti-

symmetric Kalb-Ramond field with field strength Hµνκ = 3 ∂[µbνκ].
2

This action is invariant under conformal transformations which in this representation

take the form

σL → σ′L = hL(σL) , σR → σ′R = hR(σR) , (2.2)

where hL and hR are two in principle independent holomorphic functions of σL and σR,

respectively. Field redefinitions of the coordinate fields induce diffeomorphism transforma-

tions of the metric and b-field:

Xµ → fµ(X) , g → (∂f)T g (∂f) , b→ (∂f)T b (∂f) , (2.3)

for general functions fµ(X) and (∂f)µν = ∂νf
µ.

2.2 Doubled worldsheet theories

In [32] it was shown that the standard sigma model can be related to a theory with twice

the number of coordinates which we refer to as Y m with m = 0, . . . , 2D − 1. Given that

half of the coordinates are redundant, a gauge transformation was proposed there. The

most general form of this gauge transformation is given by

δξY = K(Y ) ξ , (2.4)

where ξα(σ) are D independent local, i.e. worldsheet coordinate dependent, gauge param-

eters labeled by α = 0, . . . D− 1. Since the composition of two such gauge transformations

should itself be a gauge transformation, the so-called Killing vectors Kα(Y ) need to satisfy

Kmα,pKpβ −Kmβ,pKpα = fαβγ(Y )Kmγ . (2.5)

The structure coefficients fαβγ(Y ) of their algebra may in general vary over the doubled

manifold M.

In view of this gauge symmetry (2.4) the most general action for the doubled coordi-

nates has to involve some gauge fixing

S =

∫
d2σ

(
1

2
∂LY

T E ∂RY +WL VR

)
, (2.6)

with Emn = Gmn + Cmn. The matrix function Gmn can be thought of as the metric on

a 2D-dimensional manifold M. Hpmn = 3 ∂[pCmn] denotes the field strength of the anti-

symmetric tensor field Cmn. To define a proper quantum theory the C term is subject to a

quantization condition. In addition, V µ
R , µ = 0, . . . , D − 1, act as the Lagrange multiplier

fields, since their equations of motion require that

WL = ∂LY
T Z(Y ) , (2.7)

2The symmetrization and anti-symmetrization of indices denoted by (µ1 . . . µn) and [µ1 . . . µn], respec-

tively, include a symmetrization factor 1/n!.
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is set to zero identically, thereby classically enforcing the gauge fixing. These equations fix

all gauge invariances provided that the 2D ×D matrix, Zmµ, is chosen such that

N = KTZ (2.8)

is an invertible D × D-matrix. In principle, one could consider more involved gauge fix-

ing conditions, but this is the most general choice that is compatible with the conformal

symmetries (2.2). As observed in [32] this is not a complete gauge fixing, hence the corre-

sponding ghost sector cannot be ignored (and is discussed below in subsection 2.3.)

The representation of this doubled worldsheet action is far from being unique because

one can perform various redefinitions of the fields on the worldsheet, namely:

1. Doubled diffeomorphisms: on the doubled coordinates Y m we can perform generic

field redefinitions Y → F(Y ) of the doubled coordinates which induce doubled dif-

feomorphisms (with (∂F)mn = ∂nFm):

G → (∂F)−T G (∂F)−1 , C → (∂F)−T C (∂F)−1 , Z → (∂F)−T Z , K → (∂F)K ,
(2.9)

2. Redefinitions of the Lagrange multiplier : the Lagrange multiplier VR can be redefined

by arbitrary matrix multiplications:

VR → ρ(Y )VR : Z → Z ρ−1 , (2.10)

where ρµν(Y ) is a D ×D-matrix function of Y .

3. Shifts of the Lagrange multiplier : the conformal transformations also allow that the

Lagrange multiplier VR is shifted as:

VR → VR + U(Y ) ∂RY : E → E − 2Z U , (2.11)

where Uµm(Y ) is a D × 2D-matrix function of Y .

4. Redefinitions of the Killing vectors: we can allow for transformations ξ → ω(Y ) ξ

that redefine the gauge parameters, consequently:

K → Kω−1 , fαβγ → (ω)γ
ν fκλν (ω−1)κ

α (ω−1)λ
β + (ω)γ

ν (ω−1)ν
[α
,p (ω−1)ε

β]Kpε ,
(2.12)

where ωα
β(Y ) is a D ×D-matrix function of Y .

2.3 General BRST transformation

The transformations identified above all stem from possible redefinitions of the field vari-

ables and the gauge parameters. The gauge transformation (2.4) was not included, because

by means of the gauge fixing term it is not a symmetry of the action (2.6) anymore. More

importantly, depending on the detailed form of the matrix E , the kinetic terms in (2.6)
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are not even gauge invariant by themselves, but only invariant upon using the gauge fix-

ing constraint.

In a full-fledged off-shell quantum description of the gauge symmetries within the path

integral formalism after Faddeev-Popov (FP) gauge fixing, these are reincarnated as BRST

transformations δε: the gauge parameters ξα are replaced by ε cα where ε is a constant

fermionic variable and cα ghost fields. In addition, to each gauge fixing condition WLα a

bαR ghost is associated. The various fields and parameters in the FP gauge fixed theory can

be classified according to their ghost charge Q and their right-moving conformal weight R:

Field Y VR c bR ∂RY ∂Rc ε

Q 0 0 1 −1 0 1 −1

R 0 1 0 1 1 1 0

(2.13)

There are two fundamental properties of the BRST transformations: i) they are nilpotent

and ii) they leave the full quantum action, including the ghost term, invariant:

S =

∫
d2σ

(
1

2
∂LY

TE ∂RY +WL VR + δcWL bR

)
, (2.14)

where WL is given in (2.7).

In the following we analyze the structure of the most general BRST transformations

compatible with the ghost charges and conformal weights as given in the table (2.13). The

most general transformation of the coordinates Y m reads

δεY
m = εKmα(Y )cα . (2.15)

which is precisely the classical gauge transformation (2.4) with the gauge parameters re-

placed by ε times the c-ghost. The nilpotency of δε applied onto Y fixes how the ghost

cα transforms:

δε′δεY
m !

= 0 ⇒ δεcγ =
1

2
ε fαβγ cαcβ , (2.16)

where we used the algebra of the Killing vectors (2.5). Using the nilpotency on c determines

an extra condition:

fκ[αλf
βγ]

κ +Kp[αfβγ]λ,p = 0 , (2.17)

which is precisely the Jacobi identity for non-constant structure functions fαβγ . In partic-

ular, (2.17) reduces to the known Jacobi identity for constant structure coefficients. The

reason why we allow for non-constant structure coefficients in the first place is that it is

possible to perform local redefinitions of the gauge parameters (2.12), and consequently

of the c-ghosts as c → ω(Y )c, which would turn constant structure coefficients into field

dependent ones.

To determine the transformation rule of the ghost field bµR we consider the most gen-

eral ansatz

δεb
µ
R = εAµν(Y )V ν

R + εBµβ
ν(Y ) cβb

ν
R + εQµm(Y ) ∂RY

m , (2.18)

– 7 –
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which contains all possible terms with a ghost charge Q = −1 and a Lorentz charge R = 1

according to the table given in equation (2.13). We can make two simplifications: 1) The

matrix function Aµν can be absorbed in the definition of bνR. 2) Since the second term

only involves the ghost fields, it can never affect the structure of the kinetic terms of the

coordinate fields, therefore, we can set Bµβ
ν = 0 without restricting the double target

space properties encoded in this theory. The BRST transformation of the bR-ghost field

then reduces to

δεb
α
R = ε V α

R + εQαm ∂RY m . (2.19)

Finally, from δε′δεb
α
R

!
= 0 we read off the general transformation behavior of V α

R :

δεV
α
R = −ε

(
Qαm,pKpβ +QαpKpβ,m

)
cβ∂RY

m − εQαpKpβ ∂Rcβ . (2.20)

This transformation of VR appears to be much more complex than the standard BRST-

transformation of a Lagrange multiplier field enforcing the gauge fixing conditions, which

simply reads δεṼR = 0. However, it is easy to confirm that by the U-transformation (2.11),

setting U = Q, we precisely obtain the Lagrange multiplier field ṼR which is BRST inert.

Having determined the complete set of nilpotent BRST transformations, we are now

in the position to explore the consequences of the requirement of BRST invariance of the

quantum action (2.14). Using the above relations, we find

δεS = ε

∫
d2σ

{
∂LY

m∂Rcβ Kpβ
(

1

2
Emp −ZmµQµp

)
+ ∂Lcβ∂RY

mKpβ
(

1

2
Epm −ZpµQµm

)
+ ∂LY

m∂RY
ncβ

(
1

2
Kpβ,mEpn +

1

2
Kpβ,nEmp +

1

2
KpβEmn,p (2.21)

−ZmµQµn,pKpβ −Zmµ,pQµnRpβ −ZmµQµpKpβ,n −ZpµQµnKpβ,m
)}

.

The conditions for the BRST invariance of the quantum action can be cast in the following

simple form

Kpα,m Ẽpn +Kpα,n Ẽmp +Kpα Ẽmn,p =0 , (2.22a)

Ẽ K = KT Ẽ =0 . (2.22b)

Since the former is of the form of standard Killing equations while the latter can be viewed

as projection equations we will often refer to them collectively as the projective Killing

equations. Here we have introduced the matrix Ẽ , defined by

E = Ẽ + 2Z Q . (2.23)

Notice that the relation between Ẽ and E is precisely a U-transformation (2.11) with U = Q.

Hence, precisely when E takes its simplest form, the BRST-transformation of VR is trivial.

The first equation in (2.22) is the Killing equation for the vectors Kα w.r.t. Ẽ . This

justifies calling the Kα Killing vectors. The remaining two equations in (2.22) imply that
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E describes the same number of target space degrees of freedom as the matrix E of the

standard sigma model (2.1). Indeed, these equations tell us that Ẽ is perpendicular to

all Killing vectors from both sides. This means that only D2 of the components of the

2D × 2D-matrix Ẽ are independent. Even though this shows that the matrix E of the

standard sigma model and the matrix E of the doubled theory have the same number of

independent components, in general the relation between these two objects might be very

complicated. (A more detailed account on the reduction of the degrees of freedom can be

found in section 5.)

In the light of the projective Killing equations (2.22) it might seem disturbing that

the structure coeficients were allowed to be non-constant, because in general the Killing

equations (2.22a) are not satisfied by fKα when f is a generic target space function.

Indeed, inserting this expression into the equation (2.22a) one finds that additional terms

like (∂mf)Kpβ Ẽpn arise, because the derivative may also hit the function f . However,

because of the additional perpendicularity conditions (2.22b), these terms vanish. Thus,

contrary to the generic case, one can here allow for non-constant coefficients in the algebra

of Killing vectors. This ensures that the theory is compatible with the transformation (2.12)

in which the Kα may turn into non-constant linear combinations of the old Killing vectors.

2.4 Special forms of the doubled worldsheet theory

The formalism developed so far takes the idea of a doubled worldsheet to the ex-

treme in the sense that invariance under 2D-dimensional diffeomorphisms (2.9) and ρ-

transformations (2.10) is manifest. However, to see the physical content more clearly,

it is useful to choose particular representations of the theory. In this section we

discuss some of such forms that make either O(D,D) symmetry or D-dimensional

diffeomorphisms manifest.

Manifest global O(D,D) cov/invariance. As the Killing vectors Kα are associated

to the gauge transformations that leave the doubled worldsheet theory inert, they locally

point into the D redundant directions. Hence by a change of doubled coordinates one can

ensure that these directions correspond to the dual coordinates. This is possible because

the algebra (2.5) of the Killing vectors Kα closes, so that they span a so-called involutive

distribution. Then by Frobenius’ theorem [38], around every point one can find a coordinate

chart such that, locally, K is of the form

K =

(
0

K

)
; and set Z =

(
E

11D

)
(2.24)

where K is a D × D matrix function. Moreover, the fact that the Killing vectors are

linearly independent at every point ensures that K is invertible and thus the consistency

condition (2.8) is satisfied.

Now redefining the Killing vectors as in (2.12), with the special choice ω = K, we can

even bring K into the simple form

K =

(
0

11D

)
, (2.25)
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Form G C U

Standard sigma model

(
2 g 0

0 0

) (
2 b 0

0 0

)
0

O(D,D) invariant −η = −

(
0 11D

11D 0

) (
0 11D
−11D 0

) (
11 0

)

O(D,D) covariant H =

(
g − bg−1b bg−1

−g−1b g−1

) (
0 11D
−11D 0

)
1

2

(
11D + g−1b −g−1

)

Table 2. Three different standard forms for the doubled worldsheet theory are indicated and the

required U-transformation (2.11) to reach that realization from the form (2.26).

as considered in [32]. This form of the Killing vectors identifies the physical coordinates

Xµ of the sigma model with the upper half of the coordinates of Y m, while the lower half

is identified with the (redundant) dual coordinates X̃µ.

Moreover, in the standard form (2.25) of the Killing vectors, the matrix Ẽ is forced to

be of the form

Ẽ =

(
2E 0

0 0

)
, (2.26)

in order to satisfy the projection conditions (2.22b). Using particular U-

transformations (2.11), we can represent the metric of the doubled worldsheet in various

forms as indicated in table 2. (The anti-symmetric matrices C that arise in the O(D,D)

in– and covariant forms in table 2 correspond to a mere total derivative on the worldsheet

and are therefore non-physical.) This shows in a background independent way that we can

locally bring the kinetic terms of the doubled theory into an O(D,D) invariant form, since

these arguments did not rely on any specific form of this matrix E.

In the O(D,D) invariant form and for constant backgrounds, the kinetic term of the

doubled coordinate fields Y is invariant under global M∈ O(D,D) transformations

Y →M−T Y , M ηMT = η , (2.27)

while the so-called generalized metric H transforms covariantly, i.e. H → MHMT . If

one insists on preserving the standard form (2.24) for the constraint matrix Z, one needs

to perform a compensating ρ-transformation (2.10) with ρ = γ E + δ.3 Consequently, the

matrix E transforms as

E → (αE + β)(γ E + δ)−1 , M =

(
α β

γ δ

)
. (2.28)

3This form of ρ-matrix is quite reminiscent of the anchor map discussed in e.g. [39, 40].
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Even though this formulation makes the global O(D,D) transformations manifest,

it is not covariant w.r.t. 2D-diffeomorphisms. This means that in general the specific

form (2.24) only holds within one particular coordinate patch at best. In particular, the

renormalization of the constraint does not preserve this choice. This we have verified by

applying the one-loop renormalization formulae to be derived in the next sections.

As a side remark, the following should be noted: it is possible to encode H-flux in the

generalized antisymmetric field C such that consequent O(D,D) transformations reveal the

whole chain of fluxes [4],

Habc → fabc → Qc
ab → Rabc . (2.29)

This has been worked out in [32], where also the special case of a three-torus with H-

flux [41, 42] is discussed. Non-trivial monodromies, that turn the backgrounds withQ- orR-

flux into non-geometric ones, appear precisely through the non-linear transformation (2.28).

Embeddings of D-dimensional diffeomorphisms in doubled diffeomorphisms. If

one comes from or wants to compare with a standard sigma model description, only the

D-dimensional diffeomorphisms of the coordinates,

Xµ → fµ(X) , (2.30)

need to be realized explicitly. In principle the D-dimensional diffeomorphisms form a

subgroup of the 2D-diffeomorphisms, since we can simply write

F(Y ) =

(
F (Y )

F̃ (Y )

)
, with F (Y ) = f(X) ; F̃ (Y ) = X̃ , so that ∂F =

(
∂f 0

0 11

)
. (2.31)

However, this does not lead to the expected transformation of the generalized metric

H →

(
∂f 0

0 (∂f)−1

)T
H

(
∂f 0

0 (∂f)−1

)
. (2.32)

This form is expected because the generalized metric is only defined in terms of covariant

tensors g, b and g−1 under D-dimensional diffeomorphisms. But such a transformation can-

not be obtained from the transformation (2.31) because the dual coordinates and therefore

the dual indices do not transform under it.

One might try to modify the embedding of the D-dimensional diffeomorphisms in their

2D analogues to recover the transformation property (2.32) for the generalized metric H,

but it turns out that this is impossible. To see that, let us consider a general ansatz

in (2.31) and enforce the required form of ∂F :(
∂XF ∂

X̃
F

∂X F̃ ∂
X̃
F̃

)
!

=

(
∂f 0

0 ∂f−1

)
. (2.33)

Integrating the off-diagonal equations gives F (Y ) = F (X) and F̃ (Y ) = F̃ (X̃). Plugging

these results back into the diagonal equations leads to

∂
X̃
F̃ (X̃) = (∂f)−1(X) =

(
∂XF (X)

)−1
. (2.34)
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Since the left-hand-side is a function of X̃, while the right-hand-side depends on X, this

can only be solved for constant ∂
X̃
F̃ = (∂XF )−1 matrices.

The same issue can also be seen directly within the worldsheet theory: if one fixes a

ρ-gauge such that the constraint matrix Z takes the form (2.24), then this gauge is only

preserved if X̃µ and V µ
R redefinitions are correlated. If one in addition wants to require

that E transforms as a rank-two tensor under D-dimensional diffeomorphisms, then the ρ-

transformation needs to take the form ρµν = fµ,ν . This in turn requires that X̃µ transforms

contravariantly, but that cannot be embedded in a 2D-dimensional diffeomorphism.

Manifest D-dimensional diffeomorphism invariance. However, it is possible to

rewrite the theory in such a way that D-dimensional diffeomorphisms (2.30) appear to

be manifestly realized, which are unrelated to 2D-diffeomorphisms. To this end, we re-

quire that the dual coordinate X̃µ and the Lagrange multiplier V µ
R transform contra– and

covariantly, i.e.:

X̃µ → X̃ν (∂f−1)νµ , V µ
R → (∂f)µν V

ν
R , (∂f)µν = fµ,ν , (2.35)

respectively, and we introduce D-dimensional diffeomorphism covariant worldsheet

derivatives,

DaY
m = (A ∂aY )m = Da

(
Xµ

X̃ν

)
=

(
δµκ 0

−γρνκ X̃ρ δν
λ

)(
∂aX

κ

∂aX̃λ

)
, (2.36)

where γρλκ(X) defines the connection in D dimensions, e.g. the Levi-Civita connection

w.r.t. the metric gµν(X). The doubled worldsheet theory can then be written in terms of

D-dimensional diffeomorphisms as

S =

∫
d2σ

{
1

2
DLY

T EDDRY +DLY
T ZD VR

}
, (2.37)

where

E = AT EDA , Z = AT ZD . (2.38)

This comment should be rather taken as a side remark; we will not use the above rewrit-

ing (2.37) of the theory in the following.

3 Covariant Feynman rules

In this section we set up the quantization of the doubled worldsheet theory described in

the previous section. In particular we are interested in the one-loop renormalization of

the kinetic terms of the doubled coordinate fields Y and the constraint term involving

VR. To this end, we employ a covariant quantum/background splitting of the coordinate

fields Y and the Lagrange multiplier. We do not consider the renormalization of the ghost

action as we treat the ghost fields as pure quantum objects. Since we are only interested

in the one-loop renormalization, it suffices to only determine the two-point vertices for the

quantum fields.
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As discussed in subsection 2.2 the worldsheet theory on the doubled manifoldM pos-

sesses various symmetries. In the following we set up a background/quantum splitting that

is covariant w.r.t. doubled diffeomorphisms (2.9) and ρ-transformations (2.10). However,

we deliberately do not aim to set up a covariant background/quantum splitting w.r.t. the

U-transformation (2.11).

To employ a covariant formalism w.r.t. doubled diffeomorphisms we need to have an

invertible metric G on the doubled manifoldM. However, as can be seen explicitly in (2.26)

when the Killing vectors are taken to be as in (2.24), the metric G on the doubled space

may not be invertible. However, by a suitably chosen U-transformation given in (2.11)

we can turn the non-invertible G̃ into an invertible G. Which form this metric G takes

is far from unique, since it strongly depends on which U one chooses. It may therefore

appear that there are huge ambiguities how quantum corrections manifest themselves. To

summarize we need to use the U-transformation to ensure that G is invertible so as to set

up a doubled diffeomorphism covariant formalism.

3.1 Covariant derivatives

For the background covariant formalism we need to introduce various appropriate covariant

derivatives. We denote by Da and Dm the covariant derivatives w.r.t. doubled diffeomor-

phisms alone on the worldsheet and the doubled target space, respectively. In other words,

Dm represents the standard Levi-Civita connection onM. Furthermore, the derivatives ∇a
and ∇m are covariant both w.r.t. doubled diffeomorphisms as well as ρ-transformations.

(For objects that do not transform under the ρ-transformations at all, of course these

derivatives simply coincide.) Concretely, we have

∇aY m = DaY m = ∂aY
m , ∇b∇aY m = DbDaY m =

(
δmn ∂b + Γmkn ∂bY

k)∂aY
n . (3.1)

where Γmkn are the Christoffel symbols associated to the metric G. On doubled target space

tensors Tm, Tmn, . . ., we similarly have

∇pTm = DpTm = ∂pT
m + Γmpk T

k , ∇pTmn = DpTmn = ∂pTmn − Γkpm Tkn − Γlpn Tml ,

(3.2)

etc. In particular, as the Levi-Civita connection Dm is metric compatible, one has

DpGmn = 0 , (3.3)

and the classical equation of motion corresponding to (2.6) can be cast in the form

∇L∇RY n = −1

2
GnmHmpq ∂LY p∂RY

q + Gnm
(
D[mZp]ν∂LY pV ν

R + Zmν∂LV ν
R

)
. (3.4)

The curvature of the doubled geometry is measured by the Riemann tensor

[Dm,Dn]T p = Rpqmn T q , Rpqmn = ∂mΓpnq − ∂nΓpmq + Γrnq Γpmr − Γrmq Γpnr ; (3.5)

and the corresponding Ricci tensor is defined in the standard way Rmn = Rpmpn.
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To define ρ-transformation covariant derivatives we first introduce 2D × 2D-matrices

P‖ = Z (ZTG−1Z)−1ZTG−1 , P⊥ = 112D − P‖ , (3.6)

which have the following properties

P2
A = PA , G PTA G−1 = PA , Tr[PA] = D , (3.7)

for A =‖,⊥ and

P‖ + P⊥ = 11 , P‖ P⊥ = P⊥ P‖ = 0 ; P‖Z = Z , P⊥Z = 0 , (3.8)

These properties signify that the operators P‖ and P⊥ are Hermitean w.r.t. the metric

G as well as projecting on two complimentary D-dimensional subspaces that are locally

parallel/perpendicular to the components of the matrix Z, respectively. For later use we

also introduce the notation

G⊥ = P⊥G = G − Z
(
ZTG−1Z

)−1ZT , Z‖ = G−1Z
(
ZTG−1Z

)−1
, (3.9)

G−1⊥ = G−1 P⊥ = G−1 − G−1Z
(
ZTG−1Z

)−1ZTG−1 ,
inspired by the definition of the projection operators P‖ and P⊥ in (3.7). Implicitly we

assume the notation G−1⊥ to mean that one first computes the inverse of G and after that

projects with P⊥. (The other way around is meaningless since the projector P⊥ is not

invertible.) These operators satisfy

ZT G−1⊥ = G−1⊥ Z = 0 , ZT Z‖ = 11D , Z‖ZT = G−1 P‖ G . (3.10)

Using the doubled diffeomorphism covariant derivatives, we can construct a derivative,

∇aVR = ∂aVR + ZT‖ DmZ ∂aY
m VR , DmZnα = ∂mZnα − ΓkmnZkα , (3.11)

which is covariant under ρ-transformations (2.10) as well. It might appear that because

of the inversion the factors ZTG−1 simply drop out here. This is not the case since Z
is a rectangular 2D × D-matrix and not a square matrix. Given this definition, we can

determine how the fully covariant derivative ∇m acts on Z itself: using that (ZVR)m
transforms as a tensor Tm, we infer that the derivatives ∇m and Dm on Z are not the same

but closely related

∇mZ = P⊥DmZ , ZT‖ ∇mZ = 0 , (3.12)

where the matrices P⊥ and Z‖ are given in (3.6) and (3.9), respectively. Further fully

covariant derivatives can be determined in a similar fashion, e.g.

∇m∇nZ = P⊥DmDnZ − 2P⊥D(mZ ZT‖ Dn)Z − G Z‖DmZ
T G−1⊥ DnZ , (3.13)

using the definitions (3.9).
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3.2 Covariant background/quantum splitting

Using the above derivatives we can set up a fully covariant background/quantum splitting

following [43]. To this end, we define Y (σ; s) depending on the affine parameter s ∈ [0, 1]

to be a finite geodesic curve on M with respect to the Levi-Civita connection ∇, i.e.

∇2
s Y

m(s) =

(
δml

∂

∂s
+ Γmkl

(
Y (σ; s)

)
Ẏ k(σ; s)

)
Ẏ l(σ; s) = 0 , (3.14)

where Ẏ (σ; s) = ∂
∂sY (σ; s) = ∇sY (σ; s), subject to the initial conditions

Y (σ; 0) = Y (σ) , ∇sY (σ; 0) = y(σ) . (3.15)

Here we interpret Y as the background field and y as the covariant quantum field, which

transforms as y → (∂F) y under doubled diffeomorphisms. Similarly, we can define a

covariant background/quantum splitting for the Lagrange multiplier field VR: we require

that VR(σ; s) satisfies the equation

∇2
s VR(σ; s) = 0 , ∇s VR =

(
∂

∂s
+ ZT‖ DmZ Ẏ

m

)
VR . (3.16)

In this covariant derivative ∇s we have omitted the Y (σ; s) dependence in order to keep

the notation readable. Again, the background and the covariant quantum fields, VR and

vR are encoded via the initial conditions

VR(σ; 0) = VR(σ) , ∇sVR(σ; 0) = vR(σ) , (3.17)

respectively. In principle the full quantum fields, Yfull and VR full, can be expanded as

Yfull(σ) = Y (σ; 1) = Y (σ) + y(σ) +
∑
n≥2

1

n!

∂nY

∂sn
(σ; 0) ,

VR full(σ) = VR(σ; 1) = VR(σ) + vR(σ) +
∑
n≥2

1

n!

∂nVR
∂sn

(σ; 0) ,
(3.18)

in terms of the background and covariant quantum fields only, by putting further co-

variant derivatives on the equations (3.14) and (3.16) we can find expressions for the

higher s-derivatives.

Next, we want to obtain the expansion of the action (2.6) in terms of the the quantum

fields y and vR. In principle this could be obtained by inserting the expansions (3.18)

into the action. But this is rather cumbersome since one then has to package things

in covariant objects by hand. A more comfortable procedure to obtain this expansion

has been developed by ref. [44]: apply the same method that was used to obtain the

background/quantum splittings of the full quantum fields to the action itself. To this end

we first promote the action to be dependent on the affine parameter s as well:

S(s) =

∫
d2σ

{
1

2

(
Gmn(s) + Cmn(s)

)
∂LY

m(s)∂RY
n(s) + ∂LY

m(s)Zmν(s)V ν
R(s)

}
,

(3.19)
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writing Gmn(s) = Gmn(Y (s)), etc. Note that the original action (2.6) is recovered for s = 1.

Therefore, the expansion of this action in terms of the covariant quantum fields is obtained

by making a Taylor expansion of S(s) in s around zero and subsequently setting s = 1:

S = S(1) =
∑
n≥0

1

n!

dnS

dsn
(0) . (3.20)

Since the action is a scalar quantity, the repeated ordinary s differentiations can be replaced

by fully covariant derivatives ∇s on the s-dependent fields Y (s) and VR(s). The geodesic

equations (3.14) and (3.16) imply that squares of∇s on these vanish; while single derivatives

on Y (s) and VR(s) give the fully covariant quantum fields y and vR once s is set to zero.

Hence, the main advantage of this procedure is that it directly gives an expansion in terms

of covariant objects only.

Applying this procedure gives back the original action at zeroth order in terms of the

background fields Y and VR. By definition of the 1PI effective action the first order terms

can be ignored, hence, the first relevant order is the second. Since we are only interested

in one-loop results in this work, this second order is, in fact, all we need. After some

calculations, for details see appendix A, we obtain

S2 =

∫
d2σ

{
1

2
Gkl∇Lyk∇Ryl +

1

2
Zmµ

(
∇LymvµR − y

m∇LvµR
)

+
1

2

[(
Rmkln +

1

2
∇(kHl)mn

)
∂LY

m∂RY
n

+
(
∇(k∇l)Zmµ +RpklmZpµ

)
∂LY

mV µ
R

]
ykyl

+
1

4
Hklm

(
∂RY

m yk∇Lyl − ∂LY m yk∇Ryl
)

+∇kZlµ V µ
R y

k∇Lyl

+

(
∇kZmµ −

1

2
∇mZkµ

)
∂LY

m ykvµR

}
. (3.21)

3.3 Two-point quantum vertices

As should be clear from our background/quantum splitting described above, to represent

the quantum corrections to the effective action we need to distinguish between quantum

fields that can run around in loops and the background field insertions at the vertices.

Therefore, we employ the following conventions to draw the Feynman diagrams:

A single solid or dashed line ending at a vertex represents that at this vertex a quantum

coordinate field y, or quantum Lagrange multiplier field vR couples, respectively. When on

a solid line there is a box with L or R this means that on this field a left– or right-moving

covariant derivative, ∇L or ∇R, acts, respectively. A solid line with an arrow pointing

towards or away from the vertex denotes the insertion of an bR– or c-ghost, respectively.

A double dashed line ending at a vertex denotes the insertion of a background Lagrange

multiplier VR. Similarly, a double solid line with a boxed L or R terminating at a vertex

indicates that there a derivative of the background coordinate field, ∂LY or ∂RY , is inserted,

respectively. Finally, it should be stressed that each vertex is not a mere constant but rather

a specific function of the background fields.
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l

k

L

R

l

k

L

i
2

(
Rmkln + 1

2∇(kHl)mn
)
∂LY

m∂RY
n ykyl i

2

(
∇(k∇l)Zmµ +RpklmZpµ

)
∂LY

mV µ
R y

kyl

l

k

L/R

R/L

l

k

L

i
4 Hklm

(
∂RY

m yk∇Lyl − ∂LY m yk∇Ryl
)

i∇kZlµ V µ
R y

k∇Lyl

µ

k

L

i
(
∇kZmµ − 1

2 ∇mZkµ
)
∂LY

m ykvµR

Figure 1. This table gives an overview of the vertices involving two quantum fields corresponding

to the second and third lines of equation (3.21).

Employing these conventions, the relevant vertices to construct all possible divergent

one-loop diagrams are given in table 1 ordered in the same way as the terms of the second

and third lines of the expansion of the action to second order in the quantum fields (3.21).

3.4 Progagators

The first line of (3.21) encodes the kinetic terms of the quantum coordinate fields y which

partially mix with the quantum Lagrange multiplier vR. In d-worldsheet dimensions with

an IR-regulator m2 these terms are given by

Skin = µd−2
∫

ddσ

{
1

4
η̂ab∇ayT G ∇by +

1

4
m2 yT G y +

1

2
vTR ZT ∇Ly −

1

2
yT Z ∇LvR

}
,

(3.22)

where now a, b = 0, 1, . . . d − 1 and η̂ = diag(1,−1, . . . ,−1). Here we have introduced an

arbitrary regularization scale µ to keep the mass dimensions as in two dimensions. We
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define the Fourier transform of covariant derivatives in d-worldsheet dimensions as

φ(σ) =

∫
ddp

(2π)dµd−2
ei pσφ(p) , ∇aφ(σ) =

∫
ddp

(2π)dµd−2
ei pσ(ip)aφ(p) , (3.23)

for any covariant field φ such as y or vR. (This definition is compatible with the covariant

Leibniz rule: ∂a[φ
T
1 (σ)Gφ2(σ)] = ∇aφT1 (σ)Gφ2(σ) + φT1 (σ)G∇aφ2(σ).) Using this we can

identify the inverse of the propagator ∆ for y and vR:

Skin =
1

2

∫
ddp

(2π)dµd−2

(
yT vTR

)
(−p) ∆−1

(
y

vR

)
(p) , ∆−1 =

(
1
2 G (p2 +m2) −iZ pL
iZT pL 0

)
.

(3.24)

Here we made the assumption that we are only interested in loop-momenta pa much larger

than any momentum scale corresponding to the external background fields contained e.g.

in G and Z. By computing the inverse of (3.24) under the assumption that the metric G
is invertible, we can determine the propagator:

∆ =

G−1⊥ 2
p2+m2 Z‖ 1

ipL

−ZT‖
1
ipL

−
(
ZTG−1Z

)−1 p2+m2

2 p2L

 , (3.25)

where we have made use of the notation defined in (3.9). The different components of this

combined propagator for y and vR are visualized as follows:

〈ymyn〉 =
m n

= −i (G−1⊥ )mn
2

p2 +m2
, (3.26a)

〈ymvνR〉 =
m ν

= −(Z‖)
mν 1

pL
, (3.26b)

〈vµRv
ν
R〉 =

µ ν
= i

(
(ZTG−1Z)−1

)µν p2 +m2

2 p2L
. (3.26c)

The appearance of the propagator 〈vµRvνR〉 is somewhat surprising since the kinetic

operator (3.24) has a zero for its µν-components. Moreover, the form of this propagator

is rather non-standard. Fortunately, it turns out that it never contributes to any of the

divergent diagrams of interest in this paper.

3.5 Ghost sector

The Feynman rules discussed so far ignored the ghosts present in the action (2.14). Con-

trary to the coordinate fields, the ghosts only appear quadratically in the action, hence we

do not need to set up a covariant expansion for them; their path integral simply gives a

formal fermionic determinant. To be able to evaluate this determinant perturbatively, we

first cast the ghost action in a symmetric form,

Sgh =

∫
d2σ

{
∇LcαBα

R + cα (AL)αβ B
β
R

}
, (3.27)
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Figure 2. Ghost propagator and its fundamental vertex are displayed.

involving a ω-covariant derivative ∇a which can be defined in a similar way as the ρ-

derivative in (3.11). Since the c– and the bR-ghosts carry different types of indices trans-

forming under the ω– and ρ-transformations, respectively, we have defined

Bα
R = Nα

µ b
µ
R . (3.28)

Here we have used the matrix N introduced in (2.8) which is invertible provided that the

constraint (2.7) fixes all the gauge symmetries. This then allows to introduce a “connection”

AL for the ghost sector

(AL)αβ =
(
Kpα∇pZmµ +∇mKpαZpµ

)
(N−1)µβ . (3.29)

Notice that the connection reflects the fact that the ghost sector is chiral, i.e. AL exists

but AR does not.

The extension of chirality to d-dimensions in dimensional regularization is a bit subtle.

As far as the underlying gamma algebra is concerned, following [45] we take the chirality

operator to be defined as in two dimensions, i.e. γ̃ = γ0γ1. In addition, we extend the

fermions by (unphysical) components of the opposite chirality as the ghost sector actually

possesses; in two dimensions the physical components are identified as

1− γ̃
2

ψ =
1√
2

(
0

b− i c

)
. (3.30)

However, like the chirality operator, the connection Aa = (êL)aAL is taken to be a strictly

two-dimensional object, since it depends on the background fields only, by introducing the

unit vectors

êL/R =
1√
2

(
1,±1, 0, . . . , 0

)
, êTL/R η̂ êL/R = 0 , êTL/R η̂ êR/L = 1 , (3.31)

pointing in the left– or right-directions, respectively. The ghost action extended to d

dimensions then takes the form:

Sgh =
µd−2√

2

∫
ddσ ψ̄

(
γa∇a +m+ γaAa

1− γ̃
2

)
ψ . (3.32)

The corresponding propagator and vertex are depicted in figure 2.
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Figure 3. Diagrams for the renormalization of the kinetic term.

4 One loop renormalization

4.1 Renormalization of the kinetic term

To obtain the divergent contribution of the kinetic terms to the effective action, all possible

diagrams that can be composed of the propagators (3.26) and the vertices given in figure 1

that include background contributions proportional to ∂LY
m∂RY

n have to be considered.

Collectively, these diagrams, which are displayed schematically in figure 3, lead to

Γkin = I1

∫
d2σ

{(
Rijkl +

1

2
∇iHljk

)
(G−1⊥ )il − 1

4
HpmjHnqk (G−1⊥ )mn(G−1⊥ )pq

+Hpmk
(
∇qZjν −

1

2
∇jZqν

)
(G−1⊥ )pq (Z‖)mν

}
∂LY

j∂RY
k , (4.1)

where I1 is the divergent integral (B.2) defined in appendix B. Let us briefly explain how

the various contributions arise.

The first contribution corresponds to the first diagram shown in figure 3. Given that

this diagram has the topology of a tadpole graph, it is proportional to the integral I1. The

(non-standard) normalization of the propagator (3.26a) is compensated by the factor of

1/2 in front of the ∂LY ∂RY yy-vertex, see figure 1. Similarly, the detailed tensor structure

can be verified.

The next divergent contribution to the effective action corresponds to the second di-

agram in figure 3. In fact this diagram corresponds to four contributions depending on

which of the two internal lines the left– and right-derivatives, indicated by a boxed L/R,

act. These derivatives can be written ∇L/R = êaL/R · ipa where the unit vectors êL,R were

introduced in (3.31). The divergent part of each of these contributions turns out to be pro-

portional to the tensor integral Jab(k), given in (B.5), contracted with êaLê
b
R. The tensor

structure can be directly read off from the corresponding vertex in figure 1 and the propa-

gator (3.26a). The normalization of this contribution arises as follows: as observed above,

this diagram really corresponds to four contributions each of which involves two identical

vertices each equipped with a factor of 1/4 and two propagators with a non-standard factor

2, therefore, we have: 4 · 12 · (
1
4)2 · 22 = 1

2 . As explained in appendix B the divergent part

of Jab(k) equals 1
2 η̂ab I1. Hence, the contraction with êaLê

b
R gives êTL η̂êR = 1 (see (3.31)),

so that the overall factor equals 1/4 for the second contribution.

The last divergent contribution is due to the third diagram of figure 3. Here the effect

of vR becomes manifest as this diagram involves the propagator (3.26b) that mixes the

coordinate fields and vR. In this diagram there are two options to place the left-derivative

on the internal lines. In momentum space this derivative gives an internal momentum
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Figure 4. Diagrams for the renormalization of the constraint.

factor pL (up to finite contributions) which is cancelled by the 1/pL factor in the mixed

propagator (3.26b). Consequently, these two options give opposite contributions, but given

that H is totally anti-symmetric they add up. Hence, the normalization factor of 1/4 of

the H-vertex is compensated by a factor of two due to the two possible placements of the

∇L derivative and the non-standard normalization of the propagator (3.26a).

4.2 Renormalization of the constraint

To determine the divergent contribution to the effective action corresponding to the con-

straint one considers all diagrams proportional to ∂LY VR; these are depicted in figure 4.

The total divergent contribution to the constraint term in (2.6) at one loop level is given by

Γcon = I1

∫
d2σ

{(
∇(i∇j)Zkν +RmijkZmν

)
(G−1⊥ )ij +Hpmk∇nZqν (G−1⊥ )pq(G−1⊥ )mn

− 4∇[pZm]ν

(
∇qZkµ −

1

2
∇kZqµ

)
(G−1⊥ )pq(Z‖)mµ

}
∂LY

k V ν
R . (4.2)

The constraint renormalization diagrams in figure 4 are evaluated in a similar fashion as

the diagrams in figure 3 for the kinetic renormalization using the vertices given in figure 1

and the propagators (3.26). Therefore we only focus here on the fundamental difference

compared to the kinetic renormalization discussion in the previous subsection. The only

true difference appears in the third diagram of figure 4: as in the expression corresponding

to the third diagram in figure 3 for the kinetic renormalization one finds two contributions

with opposite sign. But in the present case, the vertex is not anti-symmetric itself, since it

contains ∇pZmν . Therefore, the opposite sign contributions lead to an anti-symmetrization

of the indices p and m as indicated in the third contribution in (4.2).

4.3 Absence of renormalization due to ghosts

Even though the ghosts are very important for the internal consistency of the doubled

worldsheet theory considered in this work, as we argue in this subsection that they do not

contribute to the renormalization of the constraint and kinetic terms at one loop. That

they cannot renormalize the gauge fixing constraint term is obvious since there is simply

no direct coupling of the ghosts to the Lagrange multiplier field VR.

To understand that there is also no renormalization induced by the ghost fields to

the kinetic terms of the doubled coordinate fields Y is a bit more involved: as there

is just one vertex involving ghost fields, see figure 2, all one-loop diagrams that arise

from expanding the formal fermionic ghost determinant have the same structure. The

diagrams corresponding to this expansion are depicted in figure 5. Since the ghost vertex
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Figure 5. The diagrammatic expansion of the fermionic ghost determinant (to the third order).

involves the connection AL only and our regularization procedure preserves two dimensional

Lorentz invariance at least, the diagram with n background insertions will be proportional

to (∂RAL)n.

Furthermore, for the renormalization only the first two diagrams are relevant, since

all other diagrams are finite. For the second diagram in figure 5 this would mean that

the theory should have a divergence proportional to (∂RAL)2. However, by conformal

invariance such a term cannot be present in the bare action, hence the divergence has

to be absent. This can be verified explicitly: the second diagram is proportional to the

integral Jab defined in (B.5) of appendix B, its divergent part being proportional to η̂ab.

Contracting this with the Aa gives zero by (3.31). Hence either by formal arguments or by

an explicit computation we conclude that the second diagram of figure 5 does not give a

divergent contribution.

Therefore, only the first graph in figure 5 can potentially lead to a renormalization

of the theory. By the same argument as above, we conclude that this tadpole graph is

proportional to ∂RAL. But this then just gives a total derivative in the effective quantum

action and hence is irrelevant.

4.4 Weyl invariance at the one-loop level

Having determined all divergent contributions to the effective action we are now in the po-

sition to determine the target space equations of motion by requiring that the renormalized

theory is invariant under Weyl transformations. To this end, we now consider the theory in

conformal gauge instead of Minkowski gauge as before, i.e. we take the worldsheet metric

γ′(σ) to be

γ′(σ) = e2ϕ(σ) γ (4.3)

with a conformal factor ϕ(σ) and γ = diag(1,−1) denoting the flat Minkowski metric. As

this worldsheet metric is related to the one used before by a Weyl transformation, this

allows us to derive conditions for conformal invariance.

For a non-Minkowski metric γ′ one needs to include the Einstein-Hilbert action,

SEH =

∫
d2σ

√
γ′R(γ′) Φ(Y ) , (4.4)
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on the worldsheet involving the dilaton Φ. Using how the Ricci scalar transforms under a

conformal transformation γ → γ′ = e2ϕγ,√
γ′R(γ′) =

√
γ
[
R(γ)− 2(d− 1) γab∇a∇bϕ− (d− 2)(d− 1) γab∇aϕ∇bϕ

]
, (4.5)

we find √
γ′R(γ′) = −4∂L∂Rϕ , (4.6)

since γ is in Minkowski gauge. Thus the full action in conformal gauge is given by

Sϕ =
1

α′

∫
d2σ

(1

2
∂LY

T E ∂RY +WL VR − 4α′ ϕ∂L∂RΦ
)

(4.7)

after integrating by parts twice in the dilaton Φ(Y ) term.

Now considering (4.7) in d = 2− 2ε dimensions to employ dimensional regularization,

because of √
γ′ = e(2−2ε)ϕ

√
γ and γ′

ab
= e−2ϕγab , (4.8)

one finds that the factors multiplying
√
γ′ and γ′ab do not cancel exactly but a factor e−2εϕ

remains in front of the Lagrangian density. Thus in conformal gauge all vertices carry

a factor of e−2εϕ and all propagators are multiplied by e2εϕ. However, as for all planar

diagrams with V vertices, F faces (including the outer one) and P propagators one has

V + F − P = 2. It follows that in particular every one loop graph satisifies V = P . Thus

these factors cancel for all diagrams that contribute to the divergent contribution.

So for infinitesimal ϕ the renormalized effective action in conformal gauge is given by

Γϕ =
1

α′

∫
d2σ

[
e−2εϕ

(
L − α′4ϕ∂L∂RΦ− 1

4πε
Lct
)

+ α′Ldiv
]

=
1

2πα′

∫
d2σ

[
2πL − ϕ

(
Lct + 2α′∂L∂RΦ

)
+

1

2ε

(
Lct + α′Ldiv

)]
(4.9)

where L, Lct = α′Ldiv and Ldiv denotes the Lagrangian, counterterm Lagrangian and

divergent contribution in Mikowski gauge. Thus, finiteness of the theory requires Lct +

α′Ldiv = 0. This may now be used to turn the condition Lct − 2α′∂L∂RΦ = 0 that ensures

conformal invariance into the form

Ldiv − 2∂L∂RΦ = 0 . (4.10)

By the classical field equation (3.4) one obtains

∂L∂RΦ = ∇m∇nΦ ∂LY
m∂RY

n +∇m Φ∇L∇RY m (4.11)

= ∇n∇mΦ ∂LY
m∂RY

n − 1

2
∇mΦGmnHnab ∂LY a∂RY

b

+ ∂mΦGmn
(
Znν ∂LV ν

R + 2D[nZp]ν ∂LY pV ν
R

)
.

– 23 –



J
H
E
P
1
0
(
2
0
1
4
)
1
1
4

This gives us three conditions for conformal invariance corresponding to three target

space equations of motion. The first terms have the background field structure of the

divergent contribution corresponding to the kinetic term, i.e. ∂LY
j∂RY

k, and can thus be

combined with this divergent contribution to give(
Rijkl +

1

2
∇iHljk

)
(G−1⊥ )il − 1

4
HpmjHnqk (G−1⊥ )mn(G−1⊥ )pq

+Hpmk
(
∇qZjν −

1

2
∇jZqν

)
(G−1⊥ )pq (Z‖)mν − 2∇j∇kΦ +∇mΦGmnHnjk = 0 .

(4.12)

The background field structure of the third term matches the one of the constraint’s diver-

gent contribution proportional to ∂LY
k V ν

R . Thus they can be combined into the condition(
∇(i∇j)Zkν +RmijkZmν

)
(G−1⊥ )ij +Hpmk∇nZqν (G−1⊥ )pq(G−1⊥ )mn

− 4∇[pZm]ν

(
∇qZkµ −

1

2
∇kZqµ

)
(G−1⊥ )pq(Z‖)mµ − 4 ∂mΦGmn ∂[nZk]ν = 0 .

(4.13)

The final term is covariant even though an ordinary derivative appears here because of

anti-symmetry. Lastly, the fourth term’s background field structure ∂LV
ν
R does not appear

in Lct. Therefore, it has to vanish by itself:

∂mΦ (G−1)mnZnν = 0 . (4.14)

As a cross check we confirmed that the equation (4.12) reduces to the standard equations

of motions of the metric and B-field when we use the standard sigma model form.

5 Target space interpretation

In the entire paper we have primarily considered the worldsheet perspective of the doubled

sigma model. In this section we interpret various aspects of our doubled worldsheet theory

from the target space point of view. A summary of both worldsheet and target space

interpretations of the building blocks of the doubled worldsheet theory has been collected

in table 1 of the introduction.

The starting point of our doubled sigma model were the 2D coordinate fields Y subject

to the gauge transformations (2.4). In target space descriptions with doubled coordinates

one formulates the whole theory as if it had 2D coordinates, though at some point one

enforces that only D of them are physical. For example, in double field theory [9] one has to

enforce the so-called strong constraint at various stages. Hence, as schematically indicated

in figure 6, one can view the gauge transformations (2.4) as the worldsheet manifestation

of this reduction of the number of target space coordinates.

In double field theory the solution to the strong constraint is far from being unique:

one can define various so-called polarizations to solve it. In our worldsheet description
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things are quite similar: the gauge transformations (2.4) are part of the very definition of

the theory, while the choice of the gauge fixing condition (2.7) and, in particular, of the the

matrix Z, is essentially be chosen at will as long as ZTK is invertible. As we have seen,

the appearance of many objects within our theory depends on the choice of Z. The form

of the propagators for the quantum perturbations of the coordinate fields shows that this

extends to the quantum theory as well: they involve the matrix G−1⊥ which is the inverse of

the doubled metric G projected in the directions perpendicular to Z, hence, the quantum

theory “knows” that only D of the 2D coordinate fields propagate.

As usual, the functions in the worldsheet action are interpreted as target space fields.

E.g. G and C are interpreted as the metric and anti-symmetric tensor field on the doubled

target space, respectively. Given that Z parameterizes the gauge fixing and hence is not

part of the physical definition of the theory, it should not be interpreted as a dynamical

target space field.

On the other hand, in the doubling process from E = g + b to E = G + C many

– in principle — arbitrary choices are made. As we showed in table 2, we can bring G
e.g. in the form of the O(D,D) invariant metric η or the O(D,D) covariant generalized

metric H. The U-transformation defined in (2.11) that relates these different descriptions

is a local (i.e. Y dependent) transformation in target space. In other words, in the target

space one considers a theory defined modulo a constraint, that enforces the reduction of

the number of coordinates, consequently, this theory can be represented in many different

guises. The U-transformations precisely allow one to go back and forth between these

different representations of the theory by using the constraint.

Our worldsheet gauge theory provides a deeper insight in the origin of this target space

gauge symmetry: when we want to describe the redundancy of the doubling of the coor-

dinate fields at the level of the path integral we need to extend the gauge symmetry (2.4)

to full-fledged BRST transformations involving ghost fields. As we saw in subsection 2.3,

the precise form of the BRST transformation is not uniquely determined. The ambiguities

that are visible even for the bosonic worldsheet fields are measured by the matrix Q in the

BRST transformations (2.19) and (2.20). As usual, ambiguities in the worldsheet descrip-

tion lead to target space gauge symmetries. (Recall e.g. the fact that there is no preferred

choice for the field basis leads to target space diffeomorphisms.) In the present case the

ambiguities in the BRST symmetry on the worldsheet induce U-gauge transformations in

target space.

The analysis of the BRST transformations in subsection 2.3 showed that the worldsheet

theory only possesses the gauge symmetry (2.4) in the path integral provided that the

functions K, that parameterize these gauge transformations, fulfill the projective Killing

equations (2.22). As discussed in subsection 2.4, the conditions (2.22b) imply that we

can bring E to the standard sigma model form (in the U-transformation gauge Q = 0).

In other words, these projection conditions reduce the number of physical independent

components of Ẽ from 4D2 to the number D2 of the standard sigma model. Moreover,

the remaining terms in the Killing equation (2.22a) then imply that these D2 components

are not a function of the dual coordinates. In this sense, the Killing equations and the

strong constraint of double field theory seem to be closely related. In figure 6 both this
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Y m(σ)
Gauging (2.4) // Xµ(σ)

Emn(Y )
Projection (2.22b) // Ẽmn(Y )

Killing equation (2.22a) // Ẽmn(X) ∼= Eµν(X)

Figure 6. This figures indicates the reduction of the number of degrees of freedom of the doubled

coordinate fields Y m on the worldsheet and the double metric and anti-symmetric tensor field

contained in Emn of the doubled geometry.

reduction of the number of components of E and the restriction of its coordinate dependence

are displayed.

In light of this fact, the target space meaning of equation (2.23) becomes clear: it simply

tells us that apart from the D2 physical components in Ẽ the other 3D2 components of

E are redundant. Indeed, the matrix functions Q and Z together have 3D2 independent

components since both of them are 2D×D matrices, but D2 components can be removed

from Z using the ρ-transformation (2.10). In other words, the matrices Q and Z simply

parameterize the non-physical components of the doubled metric G and anti-symmetric

tensor C.
The above discussion shows that our worldsheet theory is in the spirit of double field

theory in quite a few respects. However, there are also some fundamental differences.

For example, double field theory is invariant under so-called double field theory gauge

transformations [11]

δDFTHmn = ξpHmn,p +Hmp (ξp,n − ξn,p) + (ξp,m − ξm,p)Hpn , (5.1)

where the indices are raised/lowered using the O(D,D) invariant metric η. This transfor-

mation can be understood as the 2D-Lie derivative, acting on the generalized metric H,

made compatible with the condition that the generalized metric is itself an O(D,D) ele-

ment. If it acted as just the ordinary 2D-dimensional generalization of the Lie-derivative,

this transformation would be induced within the worldsheet theory as infinitesimal doubled

diffeormorphisms (2.9), because the worldsheet derivatives of the coordinate fields, ∂aY ,

naturally transform as covariant vectors in 2D dimensions. However, contrary to what

is sometimes claimed in the literature4 [30], the additional contributions in the brackets

in (5.1) can not be reproduced from a doubled worldsheet theory. Since this argument

only relies on how worldsheet derivatives of coordinate fields transform, it applies to any

doubled sigma model formulation on the worldsheet, including the non-Lorentz invariant

worldsheet description of Tseytlin [14, 15].

So far we only discussed the interpretation of the worldsheet theory in target space at

the classical level. In section 4 we have derived the conditions ensuring that the worldsheet

theory is Weyl invariant at the one-loop level. For the conventional sigma model, the

4To be precise: the respective part of [30] rests on eq. (3.24), which itself relies on ∂k∂0X
i = 0. This is

not true in general, because ∂0 is an ordinary worldsheet derivative while ∂k is a functional target space

field derivative, and thus the whole claim cannot be proven.
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conditions of Weyl invariance on the worldsheet translate into the target space equations of

motion in leading order in the α′-expansion. As the results, (4.12)–(4.14), in subsection 4.4

show, the interpretation of the Weyl invariance conditions for the doubled theory is a bit

more subtle because one finds three rather than one equation. (We did not compute the

renormalization of the Einstein-Hilbert term on the worldsheet itself, so we do not have

access to the Dilaton equation of motion.) The first equation (4.12) can be understood

as a direct generalization of the standard beta function of the conventional sigma model.

However, there are two crucial differences: i) There are additional terms due to the gauge

fixing constraint. ii) Where in the standard case the inverse metric is contracted, giving

e.g. the Ricci-tensor, now the projected inverse of the doubled metric, G−1⊥ , appears. As we

observed above, this is due to the fact that only D quantum coordinate fields effectively

propagate on the worldsheet and therefore contribute in loops.

As we explained above, the projective Killing equations (2.22) encode that the target

space fields are effectively only functions of the original coordinates X. The constraint

equation (4.14) for the dilaton on the doubled target space leads to a similar conclusion.

It tells us that D combinations of doubled derivatives vanish on the dilaton. However,

contrary to the Killing equation (2.22), in this equation not the Killing vectors K but

rather the gauge fixing function Z appears.

While equations (4.12) and (4.14) therefore might be familiar or at least not fully

unexpected from a target space point of view, equation (4.13) is really novel. We think

that this equation tells us that halving of the number of target space coordinates is not so

arbitrary as one might have thought, but is also controlled by some dynamics. How these

dynamics arise in target space is unclear to us since this reduction (like the strong constraint

in double field theory) is always performed by hand. On the worldsheet the situation is

clearer: at tree level on the worldsheet one may write down an arbitrary function Z to

preserve the classical symmetries of the theory. In order that Weyl-invariance is present at

one loop as well, one obtains an condition just like the metric and B-fields are arbitrary at

tree level, but are constraint to satisfy the target space equations of motion after quantum

corrections are taken into account.

The target space equations of motion we derived are not identical those of double field

theory even when we bring the worldsheet theory to the form in which the kinetic term

involves the generalized metric. There seems to be a good reason for this discrepancy: as

we explained above, the doubled worldsheet theory is incompatible with the double field

theory gauge transformations. Given that these are a symmetry of the double field theory

equations of motion, it is not to be expected that they are identical to the effective target

space equation of motion derived from the doubled worldsheet theory. The reason, that

our worldsheet formalism automatically has 2D diffeomorphisms build in, is that it is a

complete off-shell realization; i.e. we do not distinguish between the zero modes and the

full quantum fields.

6 Outlook

To conclude, we discuss some questions which our work has left open and thereby give

some suggestions for possible future research work.
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For the determination of the covariant Feynman rules we have tactically assumed that

the doubled metric G is invertible. In section 3 we argued that we can always use a specific

U-transformation (2.11) to turn a non-invertible doubled metric, like the one naturally

provided by the standard sigma model, into an invertible one. This leads to at least two

questions: i) What happens if one decides not to use the U-transformations? ii) Since the

precise form of the U-transformation is quite arbitrary, how does one see that the physical

results do not depend on the U-gauge choice?

As to the first question: even though we prefer to refrain from giving details here,

we have directly determined the propagators for the non-invertible doubled metric associ-

ated with the standard sigma model description. While G−1 does not exist, one can still

determine the propagators: there is an independent one for the quantum version of the

coordinate fields X and there are mixed propagators for the dual coordinates X̃ and VR.

Moreover, one could parameterize a U-transformation such that the original non-invertible

metric is recovered in an specific limit. For many results one can confirm that this limit

can be taken without any problems.

To the second question: in fact, the dependence on the U-gauge is less severe than one

would naively expect. For example, we have seen that the propagators (3.26a) are propor-

tional to G−1⊥ defined in (3.9) which turns out to be inert under U-transformations. This is

particularly helpful when applying the limiting procedure for non-invertible G as described

above. On the other hand, the conditions that guarantee Weyl invariance (4.12)–(4.14) are

not represented in terms of U-inert objects only. We have tried to construct combinations

of these equations that are invariant under U-transformations, but unfortunately did not

recover such rewritings.

One of the main results of this paper are the equations of motion in the doubled

theory. An interesting but potentially complicated question is whether they can be derived

from an action. Presumably, this will be an action formulated on the doubled target

space. Although one could expect similarity to the formulation of double field theory,

there are some indications that this theory and ours will not be identical: by working in

the form where the worldsheet kinetic term is given by the generalized metric, we have

tried to recover the double field theory equations of motion. However, even though we

find many similar terms, it seems impossible to have a complete matching. This could be

simply due to the fact that one compares the theories in 2D rather than D dimensions,

i.e. before additional constraints, like the strong constraint of double field theory or the

dilaton equation (4.14) and the Killing equation (2.22a), have been imposed. In other

words, on the level of the doubled theories, our results and double field theory do not

seem to be identical. Furthermore, as mentioned in section 5, the doubled worldsheet

theory considered here is naturally invariant under 2D-diffeomorphisms whereas double

field theory is invariant under double field theory gauge transformations. Even though

these are related, they are not the same.

Let us close with some rather general considerations about doubled worldsheet theories.

The doubling discussed here is similar to the approaches of Tseytlin [14, 15] and Hull [21, 23]

in that it is off-shell on the worldsheet. However, one may wonder whether an off-shell

doubling is necessary at all. In a sense, the standard sigma model offers an on-shell variant:
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the left– and right-moving coordinates are treated independently, both possessing zero

modes from which target space coordinates X and dual coordinates can be constructed.

For example, the elaborate asymmetric orbifold constructions [46, 47] use the conventional

worldsheet theory in the fermionic formulation without any off-shell doubling. Eventually,

one could suspect that double field theory is more closely related to the on-shell left– and

right-moving zero modes of the standard sigma model coordinate fields than to the fully

off-shell doubled coordinate fields Y . This might offer an alternative approach to realize

double field theory within a worldsheet formalism.

A Details of the covariant expansion

In this appendix we briefly explain some of the computational steps involved in the method

outlined in subsection (3.2) to obtain the expansion of the action (2.6) to second order in

the covariant quantum fields y and vR given in (3.21).

When working out the s-differentiation on the various terms in the action, one can

replace all partial derivatives with the corresponding fully covariant ones introduced in sub-

section 3.1. This is possible because the action itself is a scalar, hence all connection terms

in the various covariant derivatives will cancel among each other. Concretely, for exam-

ple, for the s-derivatives of the kinetic terms one obtains K(s) = Gmn(s) ∂LY
m(s)∂RY

n(s)

we find:

∂

∂s

[
Gmn(s) ∂LY

m(s)∂RY
n(s)

]
= Gmn(s)

(
∇LẎ m(s)∂RY

n(s) + ∂LY
m(s)∇RẎ n(s)

)
;

(A.1)

where the additional term involving a covariant derivative on the metric vanishes using

metric compatibility (3.3). Applying a second s-derivative gives

∂2

∂s2

[
Gmn(s) ∂LY

m(s)∂RY
n(s)

]
= 2Gmn(s)∇LẎ m(s)∇RẎ n(s)

+ Gmn(s) [∇s,∇L]Ẏ m(s)∂RY
n(s) + Gmn(s) ∂LY

m(s)[∇s,∇R]Ẏ n(s)

= 2Gmn(s)∇LẎ m(s)∇RẎ n(s) + 2Rijkl(s) Ẏ i(s)Ẏ l(s) ∂LY
j(s)∂RY

k(s) . (A.2)

The commutators can be introduced because the geodesic equation (3.14) gives: ∇sẎ (s) =

∇2
sY (s) = 0. The commutators of the covariant derivatives can then be replaced by

curvature tensors (3.5).

For the terms in the action involving the anti-symmetric tensor field C in the doubled

space, we first notice that after integrating by parts we have

∇LẎ (s) C(s) ∂RY (s) + ∂LY (s) C(s)∇RẎ (s)

= −Ẏ (s)∇LC(s) ∂RY (s)− ∂LY (s)∇RC(s) Ẏ (s)

− Ẏ (s) C(s)∇L∂RY (s)−∇R∂LY (s) C(s) Ẏ (s) . (A.3)
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The terms on the second line cancel because ∇L∂RY (s) = ∇R∂LY (s) and CT = −C is

anti-symmetric. Using that ∇aCmn(s) = ∂aY
p(s)∇pCmn(s) the first s-derivative of the

C-terms in the action can be rewritten as

∂

∂s

[
∂LY (s) C(s) ∂RY (s)

]
= ∂LY (s)∇sC(s) ∂RY (s) +∇LẎ (s) C(s) ∂RY (s) + ∂LY (s) C(s)∇RẎ (s)

= ∂LY (s)∇sC(s) ∂RY (s)− Ẏ (s)∇LC(s) ∂RY (s)− ∂LY (s)∇RC(s) Ẏ (s) (A.4)

=
[
∇kCmn −∇mCkn −∇nCmk

]
(s) Ẏ k(s)∂LY

m(s)∂RY
n(s)

= Hkmn(s) ∂LY
m(s)∂RY

n(s) Ẏ k(s) .

using the definition of the field strength below (2.6). By applying another s-derivative we

then obtain

∂2

∂s2

[
∂LY (s) C(s) ∂RY (s)

]
= ∇lHkmn(s) ∂LY

m(s)∂RY
n(s) Ẏ k(s)Ẏ l(s) (A.5)

+Hkmn(s)∇LẎ m(s)∂RY
n(s) Ẏ k(s) +Hkmn(s) ∂LY

m(s)∇RẎ n(s) Ẏ k(s) .

In a similar fashion also the constraint terms can be expanded.

B Aspects of dimensional regularization

We use dimensional regularization to regularize the divergent integrals encounted in this

work. For a detailed introduction to dimensional regularization see e.g. [45, 48, 49]. As

usual we have introduced the regularization scale, µ, for the integrals to have the same

mass dimension as in two worldsheet dimensions when extending to d = 2− 2 ε.

Define the set of basic integrals

In(m2) =

∫
ddp

(2π)dµd−2
1

(p2 +m2)n
=

1

4π

1

m2(n−1)
Γ
(
n− d

2

)
Γ(n)

(
4π

µ2

m2

)1− d
2

, (B.1)

depending on some mass parameter m. For n > 1 these are finite in two dimensions; the

fundamental logarithmically divergent integral in two dimensions is:

I1(m
2) =

1

4π
Γ(ε)

(
4π

µ2

m2

)ε
=

1

4π

[
1

ε
+ ln

(
µ̄2

m2

)]
, (B.2)

with µ̄2 = 4πe−γEµ2 where γE is the Euler-Mascheroni constant. After the last equality

we only kept divergent and finite terms. All other divergent integrals can be expressed in

terms of I1, for example:

J(m2) =

∫
ddp

(2π)dµd−2
p2

(p2 +m2)2
= I1(m

2)− I2(m2) . (B.3)
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Consequently, we have for the tensor valued integral

Jab(m
2) =

∫
ddp

(2π)dµd−2
papb

(p2 +m2)2
(B.4)

=
1

d
ηab

∫
ddp

(2π)dµd−2
p2

(p2 +m2)2

=
1

d

(
I1(m

2)− I2(m2)
)
η̂ab

=
1

2
I1(m

2) η̂ab + finite ,

by rotational invariance in d dimensions. Here the generalized worldsheet metric η̂, that

was introduced below (3.22), is used.

Next we consider integrals that arise in one-loop self-energy diagrams. These integrals

depend on an external momentum k, e.g.

Jab(k,m
2) =

∫
ddp

(2π)dµd−2
papb

[(p+ 1
2k)2 +m2][(p− 1

2k)2 +m2]
(B.5)

=

∫ 1

0
dx

∫
ddp

(2π)dµd−2
papb + 1

4(2x− 1)2kakb

(p2 +M2(x))2
=

1

2
I1(m

2) η̂ab + finite .

Here we have introduced a Feynman variable x and set M2(x) = m2 + x(1 − x) k2. The

integral proportional to kakb is convergent; the momentum integral beeing of the form

of (B.4). Up to finite contributions the remaining integral over the Feynman parameter

is trivial.
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