
Cho and Chou  BMC Res Notes  (2016) 9:305 
DOI 10.1186/s13104-016-2113-4

TECHNICAL NOTE

Thermodynamically optimal 
whole-genome tiling microarray design 
and validation
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Abstract 

Background: Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray 
can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel 
transcripts and this design method is not applicable to unannotated species. Alternatively, a whole‑genome tiling 
microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect 
novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between 
probe‑specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software 
are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic com‑
petition between probe targets and partially matched probe nontargets during hybridizations.

Findings: Using the whole‑genome thermodynamic analysis software PICKY to design tiling microarrays, we can 
achieve maximum whole‑genome coverage allowable under the thermodynamic constraints of each target genome. 
The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same 
melting temperature separation range between their targets and closest nontargets, and no additional probes can be 
added without violating the specificity of the microarray to the target genome.

Conclusions: This new design method was used to create two whole‑genome tiling microarrays for Escherichia coli 
MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.

Keywords: Tiling microarray design, Prokaryote transcriptome, Thermodynamics, Hybridization, PICKY software, 
Microarray validation
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Findings
Background
Different types of microarray exist, and they all have 
DNA probes on the microarray surface to hybrid-
ize, or capture, targeted sequences in the samples that 
are poured over them. Microarrays differ on how their 
probes are designed and what are their intended targets. 
The most common microarrays are designed to detect 
gene expressions; their probes are designed according 
to annotated gene sets and are used to detect individual 
gene expressions. Although gene expression microarrays 

have been in use for more than a decade and have pro-
duced a large volume of biological data, they are gradu-
ally being replaced by next-generation sequencing (NGS) 
techniques because NGS techniques can detect novel 
RNA transcripts and provide a better dynamic range of 
measured gene expression values [1].

Nevertheless, microarrays are still being used in some 
other applications. For example, sequence fragment cap-
turing microarrays work by grabbing specific genome 
fragments or RNA transcripts of interest to research-
ers, hence enriching the targeted samples; the captured 
fragments can then be sequenced and analyzed using 
NGS techniques [2, 3]. In this work, we focus on another 
application where microarrays are still viable—the 
whole-genome tiling microarrays. A tiling microarray 
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is designed against a genome, not a gene set, and can 
be used to detect all transcription activities from either 
annotated genes or novel transcripts; the latter may 
include short regulatory RNAs that are the interest of 
recent studies [4–6].

We have developed a new tiling microarray design 
method based on the whole-genome thermodynamic 
analysis software Picky that was previously developed to 
design traditional microarrays [7–9]. We then used our 
new method to design two whole-genome tiling micro-
arrays for Escherichia coli (E. coli) MG1655 and Agro-
bacterium tumefaciens (A. tumefaciens) C58. Picky can 
analyze a whole genome to identify thermodynamically 
unique probes. The melting temperatures of each probe 
candidate with its intended target and with its closest 
nontargets anywhere in the genome are calculated by 
Picky according to the thermodynamic nearest-neighbor 
models of prefect matches [10], mismatches [11–14], 
bulges [15], and dangling-ends [16]. The equations used 
by Picky are deterministic according to thermodynamic 
principles, and Picky exhaustively applies these equa-
tions to all potential probe-target as well as probe-non-
target hybridizations. Picky design qualities have been 
quantitatively validated [17].

The main advantage of Picky over sequence-level 
comparison software such as BLAST [18] is its preci-
sion. Although BLAST is often used to estimate probe 
specificity by calculating its identity and match length 
to nontargets [19, 20], these estimates are less precise 
than thermodynamics. For example, we screened a pre-
vious tiling microarray probe set containing 409,807 
probes for a bacterial species using Picky [21], and 
found 21,773 (5.3 %) of its probes have the potential to 
hybridize to nontargets (output W83.picky in Additional 
file 1). In Table 1, sample data from this probe set shows 
that probes of the same length (50  bp), the same iden-
tity to nontarget [24 bp (base-pair); <50 %] and the same 
match stretch to nontarget (14 bp; <30 %) can still have 
a wide estimated melting temperatures range from 28 to 
68  °C. Furthermore, the lowest probe-to-target melting 
temperature at 54.33 °C is much lower than the highest 
probe-to-nontarget melting temperature at 68.56  °C. 
Essentially, it is impossible to set a single microar-
ray hybridization temperature that allows all probes to 
function effectively. This probe set was designed using 
a sophisticated pipeline involving BLAST to screen for 
cross-hybridizations and was considered optimal by 
that standard [22]. Nevertheless, thermodynamic equa-
tions are inherently nonlinear, thus a wide range of melt-
ing temperatures can still be calculated from the same 
sequence-level identities.

Our goal in this work is to adapt Picky, which was 
originally developed to take annotated gene sets as input 

and design traditional microarrays, for the design of tiling 
microarrays. We hope to achieve maximum probe cover-
age of the genome while maintaining the same thermo-
dynamic specificity of Picky designed probes. After the 
tiling microarrays for E. coli MG1655 and A. tumefaciens 
C58 were designed using our new method and manufac-
tured, the two bacteria were grown under 10 different 
treatment conditions to trigger gene expression changes. 
Subsequently, samples extracted from them were applied 
to the two tiling microarrays to validate their design qual-
ity and also to uncover novel transcripts.

Methods
Sample procurement and genome confirmation
The E. coli MG1655 strain was obtained from CGSC E. 
coli genetics resources at Yale University (CGSC #6300) 
[23]. The A. tumefaciens C58 strain was obtained from 
Dr. Kan Wang’s lab at Iowa State University [24]. Bac-
teria were recovered from the delivery medium and 
grown under standard conditions (37 °C in Luria–Bertani 
medium for MG1655 and 28 °C in YEP medium for C58). 
The QIAGEN DNeasy blood & Tissue kit (#69504) was 
used to extract total DNA from both bacteria. The Qubit 
2.0 Flurometer was used to precisely quantify DNA con-
centration in the samples and the Experion DNA 12  K 
Analysis Kit was used to check the DNA quality. The total 
DNA was eluted in 100 uL buffer and 50 uL of that was 
sent for sequencing confirmation.

The genomes of the two bacteria MG1655 and C58 
were resequenced using the Illumina HiSeq 2000 instru-
ment and de novo assembled using the Velvet software 
[25]. Minimus2, which is part of the AMOS software 
package, was used to merge Velvet contigs to form longer 
scaffolds [26]. BLAT was then used to align merged 
contigs to the reference genomes [27]. The alignment is 
important to correctly orient some contigs, find repeated 
contigs and fill in the gaps among aligned contigs. The 
reference genomes were used to guide the assembly of 
the contigs, but not the individual reads. The AT plas-
mid of C58 was not successfully assembled due to lack of 
matched contigs, thus the reference sequence was used in 
subsequent design.

We have found hundreds of single nucleotide polymor-
phisms between the assembled genomes and the refer-
ence genomes, which support our initial concern that 
the bacteria we obtained might not match the reference 
genome sequences exactly. These polymorphisms, which 
are summarized in Table 2, might cause slightly less pre-
cise tiling microarray design if left unidentified. The rese-
quencing confirmation step is entirely optional but it 
helps improve the tiling microarray design quality. The 
resequencing data can be obtained from NCBI short read 
archive database with accession numbers SRX806374 and 
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SRX806654 and the assembled new genomic sequences 
are provided in Additional file 2.

Tiling microarray design
Based on the assembled genome sequences, we designed 
the two whole-genome tiling microarrays for E. coli 
MG1655 and A. tumefaciens C58 using PICKY [9, 28]. 
The design process is summarized as follows. The genome 
sequences were broken up into 100 bp fragments without 
overlaps—these were treated as gene targets for probe 
design to ensure even distribution of the tiling probes. 
Separately, 50  bp fragments centered on the boundaries 
between the target fragments (25  bp on either side of a 
boundary) were extracted and treated as unintended tar-
gets for probe design (i.e., fragments to avoid) to ensure 
that tiling microarray probes will not inadvertently target 
the boundaries between fragments. PICKY was run using 
both the targets and unintended fragments as input. The 
benefit of this approach is that we can take full advantage 
of the probe specificity calculation offered by PICKY while 
making it design tiling microarrays with evenly distrib-
uted probes. The following parameters specific to tiling 
microarray design were given to PICKY: maximum match 
length 18, minimum match length 8, minimum sequence 

similarity 66 %, and minimum melting temperature differ-
ence 5 °C. Any probe candidate with the maximum match 
to any off-targets are automatically ruled out for further 
consideration. Probe candidates with the minimum match 
to any off-targets are thermodynamically screened by 
extending around the matched region up to the minimum 
sequence similarity level to estimate its melting tempera-
ture with potential cross-hybridization off-targets; probe 
candidates with less than the minimum melting tempera-
ture difference between its target and its closest off-target 
will not be selected. All other PICKY parameters were 
taken at their default values, including the screening of 
both strands of each input sequence to ensure probe speci-
ficity in either direction. The minimum and maximum 
match length parameters and the minimum sequence 
similarity parameter ensure that a wide range of nontarget 
matches will be screened thermodynamically by PICKY. 
The minimum melting temperature difference ensures that 
only probes unique to the target fragments will be selected.

After running PICKY the first time, it turned out that 
some target fragments did not have matching probes 
under the stringent design parameters. To increase the 
number of useful probes, we ran PICKY again with the 
following new input. The target fragments were separated 
into two different sets: one containing fragments without 
probes as a new target set, and the other containing frag-
ments that had probes designed for them during the first 
PICKY run. The second set was combined with a modi-
fied boundary fragment set to form the new unintended 
fragment set. The modified boundary fragments were 
shortened to 40 bp centered on the boundaries between 
the target fragments. The second PICKY run used the 
same parameters as in the first run, but it produced 

Table 1 Sequence-level comparisons cannot faithfully predict thermodynamic properties

Probe (top strand) and nontarget (lower strand) match  
(complementary bases in uppercase; mismatched  
bases in lowercase)

Nontarget 
match  
identity (bp)

Nontarget  
match  
stretch (bp)

Probe to  
nontarget  
melting temp. (°C)

Probe to  
target melting 
temp. (°C)

tagagtagAAaaaCAAataAaAGAcattaaAGAAAATGATTTTTgattTttgtgttag 
TTaccGTTacgTgTCTcacgccTCTTTTACTAAAAAaagtAt

24 14 28.39 55.14

CTtgAaaTtgaaTacAaattctaTaaaTCAATGATATGAATacaataACAGAtgTgg 
AtagaAgcTacctcgaAgggAGTTACTATACTTActcaccTGT

24 14 29.92 54.33

TcaAAgtctAtgatAttcgacAtAtaaTctTGAATCGAAAAAACaGCctcAagTT 
tctcTtaccTgtctgaTgTtgaAatACTTAGCTTTTTTGaCGcct

24 14 38.04 61.27

cGGTGCTCGATACGAttGCcCtgatgcTGacaaggCttctaTcgAaTCtca 
CCACGAGCTATGCTctCGaGggccacACaagcggGttccgAagTaAGga

24 14 48.01 72.36

agcagTcgCtAcCGcttgcCGGACGAATTGCCGgTCGctccTgtttGggcctaaa 
AaaGcTcGCattttGCCTGCTTAACGGCaAGCacaaAaggcCttt

24 14 58.02 80.75

AacGgAGAaggaGagTgCcgggcGGAAGCCGGCGGCGaaaaCgTccaccg 
TgcCgTCTaggaCatAgGcttacCCTTCGGCCGCCGCacggGtActgcta

24 14 64.30 82.65

gGCCGGTGGCGGCCGtGagatgtcgctctCggcGAatgGCatTctgAt 
CTaCGGCCACCGCCGGCtCaaatgttatctcGgaaCTacaCGctAcggTgGA

24 14 68.56 80.10

Table 2 Polymorphisms between  lab bacteria genomes 
and official GenBank reference genomes

Bacteria Genome size 
(bp)

Single nucleo-
tide polymor-
phisms

Identity to Gen-
Bank reference 
genome (%)

E. coli MG1655 4,639,675 191 100.00

A. tumefaciens 
C58

5,746,078 203 100.00
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additional probes because the shortened boundary frag-
ments allow more borderline probes to be selected.

Microarray manufacturing
Microarray probes obtained from both PICKY runs were 
merged to obtain the final design output. When design-
ing tiling microarray for the C58 bacterium, the pTi 
plasmid of C58 was also added to the design data set to 
increase the versatility of the C58 tiling microarray. We 
have chosen the NimbleGen Custom Microarray Service 
to manufacture the tiling microarrays. The NimbleGen 
microarray platform has a synthesis cycle limitation of 
148 on custom designed microarray probes [29]. There-
fore, 19 MG1655 and 20 C58 probes were removed 
because they exceeded the limit.

Probes for the exogenous gene hygromycin to E. coli and 
A. tumefaciens were added: 1000 hygromycin probes were 
added to the C58 probe set and 2000 hygromycin probes 
were added to the MG1655 probe set. These probes can be 
used as quality controls if the hygromycin gene is added to 
each bacteria sample during the microarray hybridization 
protocol to help detect any technical bias. The manufac-
turer also added other control probes to the final probe set 
for proprietary quality control and microarray image align-
ment. All probes are synthesized in situ on the NimbleGen 
microarray surface using the 4 × 72 K microarray layout, 
meaning that there are four independent microarrays per 
each NimbleGen glass chip and each microarray contains 
up to 72 K probes. Final results of the microarray design 
are summarized in Table  3. Complete microarray design 
information and experiment data were deposited into the 
NCBI gene expression omnibus (GEO) database with the 
Series Access Number GSE61738, which is a super series 
combining both microarray series for MG1655 and C58.

Although NimbleGen has exited the custom microar-
ray manufacturing business, the tiling microarrays can 
still be manufactured by other manufacturers given the 
original microarray design information. Naturally, some 
array-specific protocols such as labeling and image quan-
tification may need to be modified accordingly if different 
microarray platforms are used.

Results and discussion
Microarray validations
Experiment protocol
E. coli MG1655 and A. tumefaciens C58 cells were grown 
under 10 different treatments listed in Table 4 (1 stand-
ard and 9 stressed conditions). The significantly varied 
growth conditions help induce large-scale gene expres-
sion changes that ideally should cover most of the tran-
scriptome landscape of the two species. Cells were 
harvested after treatment at the harvest point given in 
Table 4.

To control noise and bias, samples were pooled, rand-
omized, blocked and replicated. We treated each micro-
array as a statistical ‘block’ and randomly placed samples 
onto microarrays to balance variances from batch pro-
cesses and positional effects [30]. Two biological rep-
licates were produced for each bacterium under each 
treatment condition. The biological replicates were pre-
pared by pooling samples according Fig. 1; each biologi-
cal replicate eventually was made from 4 different cell 
cultures grown at 2 different days [31].

Two biological replicates were performed for each spe-
cies under each treatment condition. The Qiagen RNe-
asy Mini Kit (#74104) was used to purify total RNA after 
on-column DNase digestion to remove DNA contamina-
tions (#79254). The total RNA were revere-transcribed 
to cDNA using Life Technologies Superscript double 
stranded cDNA synthesis kit (#11917-020) with a ran-
dom primer set (#48190-011). Residue RNA were then 
removed using RNase H (NEB #M0297). The cDNA sam-
ples were labeled using the NimbleGen One-Color Labe-
ling Kit (#06370411001) and quantified using a Nanodrop 
ND-1000 spectrophotometer.

Microarray hybridizations were carried out on a Nim-
blemGen Hybridization Workstation 4 (#05223652001) 
after dissolving labeled cDNA samples in the Hybridi-
zation Kit (#05583683001) with appropriate Sample 
Tracking Controls added (#05223512001). After the 
manufacturer recommended overnight hybridization 
(about 16 h), microarrays were washed with the Nimble-
Gen Wash Buffer Kit (#05584507001) and scanned using 
a GenePix 4100A Microarray Scanner at the maximum 
resolution of 5 µm for the Cy3 channel.

Scanned microarray images, which contained 4 micro-
arrays on each chip, were processed using the Nim-
bleGen DEVA 1.2.1 software [32]. The DEVA software 
aligned and anchored the microarray images using spe-
cial alignment probes on the microarray surface and then 
split the images into 4 subarrays for the 4 × 72 K Nimble-
Gen layout before quantifying them into individual probe 
values. Although manual alignments can be performed, 
we found it unnecessary for all the microarray images 
processed. The DEVA software also provided automatic 
RMA normalizations (robust multi-array analysis) across 
each set of microarray data for MG1655 and C58 to 

Table 3 Results of tiling microarray design

MG1655 C58

Microarray unique probe count 67,435 71,498

Avg. probe length (bp) 41 40

% of 100‑bp fragments without useful probes 6.13 4.48

% of genome covered by probes 93.87 95.52

Hygromycin control probes 2000 1000
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reduce outliers and make data comparisons more mean-
ingful. Two microarray samples were removed from the 
final data sets due to large bubbles on the microarray sur-
face. In all, 38 microarray samples (18 for MG1655 and 
20 for C58) were used for the following validation analy-
ses. The data can be obtained from NCBI GEO database 
using the Super Series Access Number GSE61738.

Probe level consistency validations
For each strain and treatment condition that has two 
successful biological replicates, we calculated Spear-
man’s correlation and concordance correlation coeffi-
cient (CCC) between them to validate the consistency of 
the microarrays under biological replicates. Spearman’s 
correlation was used to measure the reproducibility of 
two replicates [33]. Concordance correlation coefficient 
(CCC) provided a better indicator of the accuracy and 
precision of agreement between two biological replicates 
[34]. Biological replicates are more variable than techni-
cal replicates because the two biological samples were 
independently grown, harvested and subjected to micro-
array protocols, thus correlation between biological rep-
licates can be as low as 30 % [35].

Scatterplots for each pair of replicates with regression 
line and correlation coefficients are shown in Fig. 2 for E. 
coli MG1655. Both statistical tests were performed with 

95  % confidential level. The oxidative condition shows 
the highest correlation values. The cold shock condition 
has the lowest correlation values, but its Spearman’s cor-
relation value 0.7847 and CCC value 0.7676 still indicate 
high correlations between the replicates. Therefore, we 
conclude that the biological replicates of E. coli MG1655 
under all treatment conditions are consistent enough to 
indicate that the MG1655 tiling microarray is reliable and 
reproducible at the individual probe level.

Scatterplots for each pair of biological replicates with 
regression line and correlation coefficients for A. tume-
faciens C58 are similarly shown in Fig. 3. They show that 
the two biological replicates under each treatment con-
dition are consistent with each other with a high corre-
lation value at the 95 % confident level. The low pH and 
heat shock condition produced the highest correlation 
value of 0.9398. The cold shock and oxidative condition 
produced a lower correlation value of 0.7393, which is 
still high enough to conclude the replicates are highly 
related. Therefore, we also conclude that the C58 tiling 
microarray is also reliable at the probe level.

Gene level consistency validations
Significant analysis of microarray (SAM) [36, 37] and 
one-way ANOVA [38] were conducted to detect dif-
ferentially expressed genes in E. coli MG1655 and A. 

Table 4 Growth conditions of MG1655 and C58

Name Conditions Harvest point

E. coli MG1655

Standard Grown at 37 °C in LB media Reached mid‑log phase O.D. 600 nm 0.6 ~ 0.8

Cold shock Grown at 15 °C for 4 h then grown at 37 °C in LB media Reached half of O.D. 600 nm of Standard

Heat shock Grown at 50 °C for 4 h then grown at 37 °C in LB media Same as above

Low pH Grown at 37 °C for 1 h in LB media with pH4.5 then grown at 37 °C in LB media Same as above

UV treat Exposed to UV light for 15 min then grown at 37 °C in LB media Same as above

Low carbon Grown at 37 °C in minimal C source MOPS media [49] (C‑ MOPS) Same as above

Low nitrogen Grown at 37 °C in minimal N source MOPS media (N‑ MOPS) Same as above

Low C & N Grown at 37 °C in minimal C and N source MOPS media (C‑N‑ MOPS) Reached quarter of O.D. 600 nm of Standard

Oxidative Growth at 37 °C in 49 mL MOPS media with 400 μL 7 % Hydrogen peroxide Reached half of O.D. 600 nm of Standard

Osmotic Growth at 37 °C in 45 mL MOPS media with 6 mL 4 M Sodium Chloride Same as above

A. tumefaciens C58

Standard Grown at 28 °C in YEM media Reached mid‑log phase O.D. 600 nm 0.6 ~ 0.8

Cold Shock Grown at 17 °C for 13 h then grown at 28 °C in YEM media Reached half of O.D. 600 nm of Standard

Heat shock Grown at 40 °C for 11 h then grown at 28 °C in YEM media Same as above

Low pH Grown at 28 °C in AB5.5 media [50] Reached mid‑log phase

Low Iron Grown at 28 °C in AB7 without Fe media (AB7 Fe‑) [51] Same as above

Oxidative Grown at 28 °C in 40 mL YEM media with 130 μL 1 % Hydrogen peroxide Reached half of O.D. 600 nm of Standard

Cold shock & oxidative Grown at 17 °C for 13 h then grown at 28 °C in YEM media Reached quarter of O.D. 600 nm of Standard

Low pH & cold shock Grown at 17 °C for 13 h then grown at 28 °C in AB5.5 media Same as above

Low pH & heat shock Grown at 40 °C for 11 h then grown at 28 °C in AB5.5 media Same as above

Low pH & low Iron Grown at 28 °C in AB5.5 without Fe media (AB5.5 Fe‑) Same as above
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tumefaciens C58 under the 10 treatment conditions. As 
stated earlier, most of the conditions are stress condi-
tions that can promote stress gene responses. The two 
statistical analyses were performed to validate that the 
tiling microarrays can detect biologically significant gene 
expression changes. SAM detects differentially expressed 
genes across all 10 conditions for each bacterium. One-
way ANOVA tests were performed for a few sets of 
probes targeting some known stress related genes to con-
firm that their means differ across the 10 conditions for 
each bacterium, which also identifies the stress responses 
of cells.

SAM was performed with unpaired two class (control 
and treatment), delta value of 0.06 and fold change of 2. It 
found 34 differentially expressed genes in E. coli MG1655, 
including 22 known stress response genes such as dnaX 
[39], entF [40], groL [41], and copA [42, 43]. For A. 
tumefaciens C58, SAM was ran with unpaired two class 

(control and treatment), delta of 0.065 and fold change 
of 3 to limit the number of differentially expressed genes 
reported. It detected 46 differentially expressed genes, 
including 16 known stress genes such as livJ [44], dadA 
[45], and rpoH [46]. The one-way ANOVA tests were 
performed with small subsets of known stress response 
genes at the 95 % confidential level. Stress response genes 
detected by SAM and/or confirmed by one-way ANOVA 
test are summarized in Table 5.

After ANOVA tests, multiple pairwise comparison 
tests (Tukey HSD [38] and Dunnett’s test [37]) were con-
ducted at 95  % confident level as post hoc tests to find 
out which pairs of treatment conditions have distinc-
tive stress gene expression differences. Differentially 
expressed stress genes tested and detected for each pair 
of conditions are listed in Table  6 for E. coli MG1655 
and Table  7 for A. tumefaciens C58. All differentially 
expressed stress genes confirmed by ANOVA were also 

Fig. 1 Processing of biological replicates. In each day, two culture tubes under each treatment condition were combined and the RNA sample 
was extracted from the combined tube. The extracted RNA samples from 2 different days (days 1 and 3, or days 2 and 4) were later combined to 
become the final replicate
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found by the post hoc tests except the ‘fepC’ gene in A. 
tumefaciens C58. The p value of fepC from ANOVA is 
0.00207 but Tukey HSD or Dunnett’s test cannot identify 
it as differentially expressed in all pairs of conditions. It 
may be inferred that the means for this gene in all condi-
tions are different from each other and there is no pair of 
conditions that is significantly different to allow detection 
by the post hoc tests.

It is worth noting that SAM generally detected more 
differentially expressed stress response genes than 
ANOVA can confirm. For example, the heat shock 
response gene hslO was detected by SAM even though 
ANVOA was not able to confirm that its means are sig-
nificantly different among the treatment conditions 
for E. coli MG1655. More interestingly, many stressful 

conditions triggered uvrA gene expressions, which is the 
SOS response gene in E. coli MG1655. For A. tumefaciens 
C58, stress response genes are induced more by com-
bined treatment conditions. For example, many stress 
response genes are differentially expressed not just by 
heat shock but by heat shock and low pH combined. We 
can conclude that the tiling microarrays detected sensible 
gene expression changes that conform to our expectation 
with regard to known cell stress response gene behaviors 
in the two tested bacteria.

Novel transcript discoveries
One of the stated benefits of a tiling microarray is that it 
can detect unexpected expressions as well as annotated 
gene expressions. Indeed, the two tiling microarrays for 

Fig. 2 Scatterplots with correlation values for 8 treatment replicate pairs of MG1655. On the graphs, ‘r’ denotes Spearman’s correlation and ‘ccc’ 
denotes concordance correlation coefficient
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E. coli MG1655 and A. tumefaciens C58 detected signifi-
cant numbers of RNA expressions from non-gene-cod-
ing regions on the two genomes. For example, our tiling 
microarray detected all 65 non-coding regulatory RNAs 
(ncRNAs) annotated in GenBank report U00096.3 for E. 
coli MG1655. Among the 65 ncRNAs, dicF is computa-
tionally predicted to target the hslV gene according to 
the bacterial small regulatory RNA database (BSRD) [47]. 
Since our tiling microarray covers both the dicF ncRNA 
and its target gene, we can calculate the correlation value 
between them is −0.4819401, which agrees with the pre-
dictions. Because the whole genome is monitored, when 
there are new predictions of such regulatory activities, 
the correlation values can be extracted from our tiling 
microarray data without having to design new experi-
ments to validate the predictions. We have seen many 
such evidences of ncRNA and target gene correlations, 

but it will require more analysis and maybe some inde-
pendent validation experiments to report their biological 
functions. It suffices to say here that the two tiling micro-
arrays do allow novel transcript discoveries as we have 
anticipated.

Conclusions
In this work we have described the design strategies 
and validation experiments of two whole-genome til-
ing microarrays for E. coli MG1655 and A. tumefaciens 
C58 bacteria. The tiling microarrays are thermodynami-
cally optimal for the two genomes based on the rigorous 
calculations conducted by the PICKY software [17]. This 
means that all probes selected have maximum specific-
ity toward their target genome regions and no additional 
probes can be added to the microarrays without jeopard-
izing its specificity under the given design constraints. In 

Fig. 3 Scatterplots with correlation values for 10 treatment replicate pairs of C58. On the graphs, ‘r’ denotes Spearman’s correlation and ‘ccc’ denotes 
concordance correlation coefficient
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average, there is a unique microarray probe every 100 bp 
along the genomes to uniquely detect any transcripts 
coming from that region. Therefore, transcripts longer 
than 100 bp are likely to be detected by at least one til-
ing microarray probe. The 100 bp selection window can 
be adjusted upward or downward depending on the 

microarray probe count and user preferences, but we do 
not expect the selected probes to increase significantly 
when this window is reduced because most thermody-
namically optimal probes, if not all, should have been 
found by PICKY at the current 100 bp window size given 
the ~40 bp non-overlapping probe length.

Table 5 Detected stress response genes in MG1655 and C58

a Means gene families

Gene Description Detection

Escherichia coli K12 substr. MG1655

 dnaX Temperature sensitive for replication and growth [39] SAM, ANOVA

 groL Acid tolerance response [41] SAM, ANOVA

 hslO Heat shock response [52] SAM

 entF Transcriptional regulation in C and N limited cultures [40] SAM, ANOVA

 copA Essential element in copper homeostasis and copper proteins; involved in oxidative stress protection [42, 43] SAM

 cusS Copper tolerance in anaerobic [43] SAM

 nusA Cold shock response [53] ANOVA

 uvrA DNA repair and SOS response [54] ANOVA

 aceE Induce the oxidative and acid resistance gene yfiD [40] ANOVA

 katf Control of catalase‑hydroperoxidase [55] ANOVA

 cydA Control cytochrome bd oxidase on LB but not on minimal medium [56] ANOVA

 mreBCD Involved in cell shapping and osmotolerant [57] ANOVA

Agrobacterium tumefaciens C58

 cspA Cold shock protein [4] SAM

 rpoH Temperature sensitive, control heat shock protein [46] SAM

 groEL Heat shock protein (stress protein) [58] SAM, ANOVA

 dnaK Heat shock protein [59] but also induced by other stresses [58] SAM, ANOVA

 livJ ABC transporter associated with the uptake of metal ions and involved in antioxidative stress defense [44] ANOVA

 dadA Catalyzes the oxidative deamination of D‑amino acids [45] SAM

 fepC Outermembrane receptor [60] ANOVA

 vira Virulence genes induced under several stresses, such as acidic condition or mitomycin C attack [58] SAM, ANOVA

 chva Induced by acidic pH [50] ANOVA

 sita Related to iron uptake [61] ANOVA

Table 6 Differentially expressed stress genes in each pair of conditions for MG1655

SD CS HS pH UV C- N- C-N- Oxi Osmo

SD uvrA entF

CS groL
nusA
aceE
gadC

uvrA uvrA uvrA
cydA

dnaX
uvrA
kat

HS livJ

pH cydA cydA cydA mreBCD

UV

C‑

N‑

C‑N‑

Oxi

Osmo
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The tiling microarray probes can detect transcripts 
expressed from both strands of the genomes because 
most of the common cDNA conversion and labeling pro-
tocols automatically produced double-stranded DNAs 
from original RNA transcripts. Given gene annotation 
information and bioinformatic techniques such as gene 
predictions, determining the actual strand of expression 
is not difficult for most genes [48]. One can also use some 
other methods such as RT-PCR to confirm the expressing 
strand for a few difficult transcripts.

We believe tiling microarrays are useful for many gene 
expression studies, especially for novel and non-model 
species that have not been annotated yet. Actually, til-
ing microarrays can help identify novel gene expressions 
and facilitate the annotation of novel species. Microar-
rays tend to produce data much faster (in just 2 days), can 
tolerate a few mismatched bases due to polymorphisms 
or sequencing errors, tend not to be overwhelmed by 
excessive bacterial rRNAs as RNA-Seq does, and does 
not usually require sophisticated computing capacity to 
interpret the data. The software used in this study and 
the data produced by the experiments are freely available 
to other researchers who may wish to design their tiling 
microarrays.

Additional files

Additional file 1. Picky analysis results for a previously designed tiling 
microarray. The tiling microarray created by Yu, et al. [21] was designed 
using a pipeline [22] that depends on BLAST for sequence‑level probe 
specificity screening. This compressed ZIP archive contains the summary 
(W83.report) and detail analysis (W83.picky) produced by Picky for this 
microarray.

Additional file 2. Assembled genome sequences for E. coli MG1655 and 
Agrobacterium tumefaciens C58. Two FASTA files containing the assembled 
genomic sequences are provided in this compressed ZIP archive.
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