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Abstract

To achieve a better trade-off between the vector dimension and the memory requirements of a vector quantizer (VQ),
an entropy-constrained VQ (ECVQ) scheme with finite memory, called finite-state ECVQ (FS-ECVQ), is presented in this
paper. The scheme consists of a finite-state VQ (FSVQ) and multiple component ECVQs. By utilizing the FSVQ, the
inter-frame dependencies within source sequence can be effectively exploited and no side information needs to be
transmitted. By employing the ECVQs, the total memory requirements of the FS-ECVQ can be efficiently decreased
while the coding performance is improved. An FS-ECVQ, designed for the modified discrete cosine transform (MDCT)
coefficients coding, was implemented and evaluated based on the Unified Speech and Audio Coding (USAC) scheme.
Results showed that the FS-ECVQ achieved a reduction of the total memory requirements by about 11.3%, compared
with the encoder in USAC final version (FINAL), while maintaining a similar coding performance.

1 Introduction
It is well known that a memoryless vector quantizer (VQ)
can achieve performance arbitrarily close to the rate-
distortion (R/D) function of the source, if the codevector
dimension is large enough [1]. However, with the increase
of the codevector dimension, the memory requirements
and the computational complexity of the VQ will also
increase exponentially. Furthermore, it will be difficult to
design a practical VQ with high performance in a high-
dimensional space. Consequently, various product code-
vector quantization methods [2-5] have been proposed as
alternative solutions. These methods cut down the mem-
ory requirements and reduce the computational complex-
ity with a moderate loss of quantization performance.
Among the widely reported product code techniques,
split vector quantizer (SVQ), which was first proposed
by Paliwal and Atal [6] for linear predictive coding (LPC)
parameters quantization, receives extensive attention. In a
SVQ, the input vector is first split into multiple subvectors
[7], and then the resulting subvectors are quantized inde-
pendently [8,9]. Although the SVQ cuts down thememory
requirements and reduces the computational complexity
of a memoryless VQ, it ignores the correlations between
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the subvectors and, hence, leads to a coding loss, referred
to as ‘split loss’ [10].
In order to recover the split loss, many techniques have

been developed. So and Paliwal [2,11] have proposed a
switched SVQ (SSVQ) method, which adds multiple dif-
ferent SVQs to the input vector space so as to exploit the
global dependencies. Based on SSVQ, a Gaussian mixture
model (GMM)-based SSVQ (GMM-SSVQ) was proposed
by Chatterjee et al. [12], where the distribution of the
source is modeled by a GMM. Furthermore, a GMM-
based Karhunen-Loève transform (KLT) domain SSVQ
was proposed by Lee et al. [13], which was constructed
by adding a region-clustering algorithm to the GMM-
SSVQ. To better exploit the probability density function
(pdf) of the source, Chatterjee and Sreenivas [14] devel-
oped a switched conditional pdf-based SVQ where the
vector space is partitioned into non-overlapping Voronoi
regions, and the source pdf of each switching Voronoi
region is modeled by a multivariate Gaussian. Although
these methods efficiently recover the split loss, most of
them simply focus on removing intra-frame redundancies
and fail to exploit inter-frame redundancies.
In addition, ordinary VQs can generally be divided into

two groups: entropy-constrained VQ (ECVQ) [15] and
resolution-constrained VQ (RCVQ) [16], and the above-
mentioned methods are mainly proposed for the RCVQ
and can hardly be applied on the ECVQ [17]. In the other

© 2014 Jiang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81761152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:microsum2005@sjtu.edu.cn
http://creativecommons.org/licenses/by/2.0


Jiang et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:22 Page 2 of 14
http://asmp.eurasipjournals.com/content/2014/1/22

side, an ECVQ usually achieves better R/D performance
than a RCVQ does [18]. This is mainly owing to the
length function contained in the ECVQ which allocates a
different number of bits to different vector indices accord-
ing to the probability of their appearance. Therefore, an
ECVQ with recovered split loss would achieve a higher
R/D performance than a RCVQ does.
To better recover the split loss of a SVQ, the finite-state

VQ (FSVQ) can usually be resorted to, which is able to
efficiently take advantage of the inter-frame dependen-
cies. FSVQ [19,20], which incorporates memory into a
memoryless VQ, is intrinsically a prediction-based tech-
nique. An FSVQ can be regarded as a finite-state machine
[21], which contains multiple states, each corresponding
to a certain state codebook. The state transition is deter-
mined by a next-state function based on the information
obtained from the previously encoded vectors. Thus, the
FSVQ utilizes the previous encoded vectors to predict
the current input [22] and, therefore, efficiently exploits
the redundancies among the input vectors and achieves
a considerable increase in the R/D performance over a
memoryless VQ.
In this paper, a composite quantizer, called FS-ECVQ, is

introduced, in which multiple ECVQs are combined with
a FSVQ. In FS-ECVQ [23], this FSVQ serves as a classifier
which splits the source sequence into multiple clusters.
To achieve better classification performance, the FSVQ
draws the current decision based on information obtained
from a number of previous adjacent vectors, even from
those in previous frames, and thus better exploits the
inter-frame redundancies than an ordinary SVQ does.
After that, a specially designed ECVQ is applied on
each cluster derived from the FSVQ. Among the result-
ing clusters, the more frequently a cluster occurred, the
higher vector dimension it will be assigned. Through
this method, the total memory requirements can be sig-
nificantly reduced and the coding performance can be
obviously improved. Moreover, within each component
ECVQ, multiple length functions are devised for cod-
ing the indices of input vectors, each corresponding to a
certain pdf model. To select the optimal length function
for each vector index, another FSVQ is introduced. This
FSVQ predicts the source pdf of the current vector index
based on the information obtained from its previous adja-
cent ones, and then the length function with the highest
matching probability is chosen. Through this method, the
‘mismatch’ between the designed pdf and the source pdf
can be efficiently decreased. Thus, the FS-ECVQ will be
more robust than an ordinary SVQ.
The organization of this paper is as follows. In Section 2,

some fundamentals about VQ, FSVQ, and ECVQ are
introduced. Section 3 deals with the design of the FS-
ECVQ. Then, in Section 4, a practical FS-ECVQ aimed
at coding the audio-modified discrete cosine transform

(MDCT) coefficients in the MPEG Unified Speech and
Audio Coding (USAC) [24] is implemented and tested.
Finally, conclusions are presented in Section 5.

2 Preliminaries
Since FS-ECVQ is based on FSVQ and ECVQ, in this
section we will review the classical results of these vector
quantization theories under the high rate assumption.

2.1 Vector quantization
Generally, a VQ, q, consists of four elements: encoder φ,
decoder ψ , index coder ζ , and codebook C. Suppose that
random vector, x, with pdf, f , is quantized by quantizer
q and the corresponding reconstructed vector is x̂. Then,
for a given measurable space (�,F) consisting of a k-
dimensional Euclidean space � and its Borel subset, the
mappings of quantizer q can be described as follows:

• Encoder φ: � → I , where I is a countable index set.
Each element in I corresponds to a different
codevector contained in codebook C. The aim of
encoder φ is to find the index of the best matching
vector in codebook C for input vector x according to
a given distortion criterion

• Decoder ψ : I → �, which is used to reconstruct the
vector in space � according to the received vector
index

• Index coder ζ : I → {bitstream}, which transforms
the index sequence generated from encoder φ to a
bitstream

• Codebook C, which is used by both encoder φ and
decoder ψ to generate the optimal codevector indices
or to find the corresponding codevectors

The average rate and the entropy of quantizer q are

Rf (q) = E(ζ(φ(x))) =
∑
i
piζ(i) (1)

Hf (q) = −
∑
i
pi ln p(i) (2)

respectively, where pi denotes the occurrence probability
of index i. According to the result in [25], it implies that

Rf (q) ≥ Hf (q) (3)

with equality if and only if ζ(i) = − ln pi. Therefore, the
optimal length function of quantizer q for pdf f is

ζ(i) = − ln pi. (4)

The performance of quantizer q can be measured by an
average distortion

Df (q) = E(d(xn, x̂n)). (5)

In our work, Euclidean distance, d(x, x̂) = ‖x − x̂‖2,
is used as the distortion measure, where ‖·‖ denotes the
l2 norm.
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2.2 Finite-state vector quantization
FSVQ is a VQ with a time-varying encoder and decoder
pair [21], which is realized by means of a finite-state
machine. Assume that a FSVQ containsM distinct states,
S1, . . . , SM, whose corresponding state codebooks are,
C1, . . . , CM, respectively. Suppose that xn is the input vec-
tor, whose current state is sn ∈ {S1, . . . , SM}. Then, by
searching the codebook Cm, corresponding to the current
state sn, for the best matching codevector x̂n, the input
vector xn can be quantized, whose vector index is denoted
as in.
In FSVQ, the current state sn is achieved using a next-

state function [26], γ , which can be written as

sn = γ (in−1, sn−1) (6)

where in−1 and sn−1 are the index and state of the last
vector xn−1, respectively. Thus, the state transition is
determined by the next-state function, and the current
state sn can be considered as a prediction to the input vec-
tor xn based on the previously encoded vectors. Once the
current state sn is obtained, the encoding procedure of the
FSVQ [20] can be written as

in = φ(xn, sn) (7)

which implies that the input vector xn is quantized in the
codebook Cm corresponding to the current state sn.
Similarly, the decoding procedure of the FSVQ is also

based on the current state sn. In this procedure, the
received vector index in and its current state sn are com-
bined to reconstruct the input vector xn. The decoding
procedure can be shown as

x̂n = ψ(sn, in) (8)

which implies that the received vector index, in, is
decoded in the codebook Cm corresponding to the current
state sn.
In FSVQ, encoder φ and decoder ψ are synchronized

using the following coding rule:

in = argmin
i ∈ Cm

d (xn,ψ(i, sn)) . (9)

2.3 Entropy-constrained vector quantization
The design of an ECVQ is to find a set of reconstruction
vectors which minimizes the average distortion between
the source and its reconstruction, subject to a con-
straint on the index entropy [15]. To obtain a common
conclusion, Gray et al. [25,27] investigated the variable-
rate ECVQ using a Lagrangian formulation in which a
Lagrangian multiplier λ > 0 is defined for each rate.
Assume that the pdf, f , of random vector x is abso-

lutely continuous with respect to Lebesgue measure, that
h( f ) = − ∫

f (x) ln f (x)dx exists and is finite and that
Hf (q1) < ∞, where q1 is a cubic lattice quantizer with

unit volume cells, the Lagrangian distortion of ECVQ, q,
can be given by

Jf (λ, q) = Df (q) + λRf (q) (10)

and the optimal performance can be written as

J∗f (λ)
�= inf

q
Jf (λ, q) = inf

q
{Df (q) + λRf (q)} (11)

where Df (q) and Rf (q), obtained from (5) and (1), are
the average rate and average distortion of quantizer q,
respectively.
In order to demonstrate the variable-rate results of the

research done by Gray et al. in a simplified form, we
introduce the following notations:

ξ( f , λ, q) �= Jf (λ, q)
λ

+ k
2
ln λ − h( f ) (12)

ξ( f , λ) =
J∗f (λ)

λ
+ k

2
ln λ − h( f ) (13)

ξk
�= inf

λ>0

(
Jμ1(λ)

λ
+ k

2
ln λ

)
(14)

where ξk is a finite constant and μ1 is the uniform pdf on
the k-dimensional unit cube C1 = [ 0, 1)k . Then, the main
result of the researches done by Gray et al. [25] is the
following:

lim
λ→0

ξ( f , λ) = ξk . (15)

This result guarantees that if a pdf f satisfies the condi-
tions of (15), then there exists an optimal quantizer q for f
in the sense that for any decreasing λ converging to 0, its
optimal performance is ξk .
Mismatch appears if there exists any difference between

the designed pdf and the source pdf. Suppose that the
designed pdf is g and the source pdf is f , then according
to the mismatch theorem proposed in [28], the minimal
distortion of quantizer q can be given as

lim
λ→0

ξ( f , λ, q) = ξk + I( f ||g) (16)

where I( f ||g) is the relative entropy and can be given as

I( f ||g) =
∫

f (x) ln
f (x)
g(x)

dx. (17)

Compared with (15), it can be seen that the mismatch
resulted from applying an asymptotically optimal quan-
tizer for pdf g to a source sequence with pdf f is exactly
the relative entropy of the source pdf f to the design pdf g,
I( f ||g).

3 Quantizer design
Compared with a conventional ECVQ, such as the quan-
tization methods of USAC, whose architecture is to be
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described in details in Section 4, the FS-ECVQ can be
taken as a super-ECVQ, in which multiple component
ECVQs are contained and all of them are combined to
a FSVQ. Thus, the FS-ECVQ is composed of two steps.
The first step is to split the source sequence into multi-
ple clusters using the FSVQ (main FSVQ), and the second
step is to apply a dedicated conventional ECVQ to each
cluster. Suppose that the largest available vector dimen-
sion is 8, the whole coding scheme of a FS-ECVQ can be
demonstrated as Figure 1.

3.1 Main FSVQ
The major function of the main FSVQ is to partition the
input space into four non-overlapped clusters according
to the four states contained. For each resulting cluster,
a component ECVQ is constructed holding a different
vector dimension and different memory requirements.
By this means, the total memory requirements could be
efficiently decreased. The state transition is determined
by a next-state function, which is the key component of
the main FSVQ. In the following part of this section,
we will mainly discuss the construction of the next-state
function.
The next-state function of the main FSVQ is built on the

dependencies among audio MDCT coefficients. In prac-
tice, audio signals are usually divided into a series of time
intervals (often referred to as ‘frames’) due to their long-
term time-varying property, and over a specified frame
they are assumed to be stationary. Thus, as an expres-
sion of the audio signal in MDCT domain, there are high
dependencies among the MDCT coefficients of the adja-
cent frames as well as among the coefficients within one
frame. As a result, based on the inter- and intra-frame
correlations, the MDCT coefficients of current frame
could be estimated through prediction methodology. In
our work, the audio MDCT coefficient frames are fur-
ther divided into small blocks, and then, by estimating the

shape properties of these blocks among multiple sequen-
tial frames, the next-state function is constructed in order
to exploit both the intra- and inter-frame dependencies.
In fact, within an audio MDCT coefficient sequence, the
occurrence frequency of a block is highly related to its
shape features. Suppose the block size is 4, then the rela-
tionship of the shape feature and the occurrence of a block
are demonstrated in Figure 2.
To characterize the shape of a block, three statistical

parameters block energy, e, block deviation, σ , and block
skewness, g, are employed in our work. Let μ be the mean
value of block x. Then the parameters e, σ , and g can be
written as

e = 1
N

N∑
i=1

x2i (18)

σ = 1
N

N∑
i=1

(xi − μ)2 (19)

g =
1
N

∑N
i=1(xi − μ)3(

1
N

∑N
i=1(xi − μ)2

)3/2 (20)

where xi andN are the ith element and the length of block
x, respectively. To describe the shape feature of block x in a
simplified form, a new statistical parameter,Vx, is defined,
which is given as

Vx = (σ + e) · (1 + log(1 + |g|)). (21)

Once a source sequence is split into a series of blocks,
the value of Vx will be calculated for each block. Thus,
a mapping can be established between the Vx set, com-
posed of all the possible values of Vx, and the input space
�. Then, by splitting the possible values of Vx into two
segments, we can partition the input space � into two
clusters, �k and �C

k . Here, k denotes the dimension of

Figure 1 Block diagram of the proposed FS-ECVQ scheme, which contains a main FSVQ and four component ECVQs.
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Figure 2 Three typical block shapes within an audio MDCT coefficient sequence. The blocks appeared (a) scarcely, (b)moderately, and (c)
frequently.

cluster �k . To implement the split, a threshold VT is
employed, whose value is obtained by maximizing the
coding gain of the FS-ECVQ under the constraint of the
total memory requirements using the training data. As
for the two resulting clusters, �k is supposed to contain
the blocks occurring relatively frequently, whereas �C

k is
assumed to hold those occurring relatively scarcely.
To construct the next-state function, four previous

blocks, A, B, C, and D, which are adjacent to the cur-
rent block, x, can be employed [29]. For simplicity, we
assume that the current block and its previous neighbors
form a Markov chain [26]. The relative positions of all
these blocks are demonstrated in Figure 3. Assume that
the shape parameters of the four adjacent blocks are inde-
pendent measurements, then according to the research
done by Nasrabadi et al. [30], the conditional joint poste-
rior probability, which the next-state function is built on,
can be given as

P(Vx|(VA,VB,VC ,VD)) = P(Vx)
∏D

i=A P(Vi|Vx)∏D
i=A P(Vi)

(22)

Figure 3 The input block x and the previously encoded adjacent
blocks A, B, C, and D. These blocks are used to obtain the current
state s by the next-state function of the main FSVQ.

where Vx and Vi are the shape parameters of block x and
its four neighbors A, B, C, and D, respectively. Sup-
pose that P(Vx) and P(Vi) are measured independently
and considered to be equal, then probability P(Vi|Vx) will
be equal to probability P(Vx|Vi), which represents a con-
ditional probability of the parameter Vx given one of its
neighbors Vi, for i = A, B, C, and D, and can be obtained
through recording all the possible cluster pairs occurring
together using the training data. Assume that all the shape
parameters obey the same probability distribution, then
the conditional joint probability, P(Vx|(VA,VB,VC ,VD)),
will only depend on the four conditional probabilities
P(Vx|Vi), for i = A, B, C, and D, and the other parame-
ters in (22) will be constant for any input block. Therefore,
we can build the next-state function (6) on these four con-
ditional probabilities, and the current state of the main
FSVQ, s, can be given by

s = γ (VA,VB,VC ,VD) = max
x∈{�k , �C

k }

D∏
i=A

P(Vx|Vi) (23)

which denotes an estimation of the cluster to which the
current block is most likely to be classified.
To split the source sequence into smaller clusters,

a pyramidal decomposing algorithm is employed, as
demonstrated in Figure 4. In this algorithm, a block, x, is
first separated from the source sequence, whose length is
set to be the largest available vector dimension, supposed
to be 8. Then, the current state s of the obtained block x,
which is calculated through (23), is compared with a given
threshold, T8. If current state s is lower than T8, block x
will be taken as an element belonging to cluster �8. Else,
it would be equally decomposed into two smaller blocks,
x(1)
4 and x(2)

4 , whose vector dimensions are both 4, and
then the block x(1)

4 will be taken as the new current block.
Once again, the current state s is calculated and is com-
pared with another threshold, T4. If the obtained state s is
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Figure 4 Pyramidal decomposing procedure of input vector (block) x. It is split into subvectors with an optimal vector dimension.

lower than T4, the block x(1)
4 will be taken as an element

belonging to cluster �4. Else, it will be decomposed once
more. This procedure continues iteratively until the lowest
available vector dimension, supposed to be 1, is reached.
Since each threshold can be regarded as the occurrence
frequency of a block, then the current blocks considered
to be with low-occurrence frequency, will be split iter-
atively, until a suitable vector dimension is found. The
whole procedure is summarized in Algorithm 1.

Algorithm1Themethod to split the source sequence into
4 non-overlapped clusters.
Require:

The source sequence, the largest available vector
dimension 8, and the thresholds Tk , for k ∈ {8, 4, 2, 1};

Ensure:
1: Set the vector dimensions of current block, x, and its

four previous neighbors, A, B, C, and D, to be 8; And
set k = 8.

2: Calculate current state, s, according to (23);
3: If s ≥ Tk , then k ← k/2; else goto step 5;
4: Equally split current block x into x(1)

k and x(2)
k , and

let x(1)
k be the new current block x. And then,

set the dimension of its four previous neighbors,
A, B, C, and D all to be k, and go back to step 2;

5: Cluster �k is selected and the current block x belongs
to �k ;

6: If the source sequence is unfinished, go back to step 1;
7: return Cluster �k , for k = 8, 4, 2, 1;

At beginning, there is no previous block, and therefore,
an original state, s0, ought to be initialized by the main
FSVQ.

3.2 ECVQ
Based on the research done byGray et al. [25], in our work,
Zn lattice quantizer and arithmetic coder are selected as

the lattice quantizer and the length function of each com-
ponent ECVQ, respectively. Unlike conventional ECVQ
[15,17], where all the vector indices generated from the
lattice quantizer share a same length function regardless
of their possible differences, in our work multiple length
functions are available and the optimal one is selected
by another FSVQ (sub-FSVQ) for each generated vec-
tor index. Moreover, to improve the robustness and, at
the same time, decrease the memory requirements of
each component ECVQ, the design of sub-FSVQ is opti-
mized and an iterative method to merge the similar length
functions is proposed.
The length functions are implemented by an arithmetic

coder, which are based on the pdf model of the input
index. Hence, the main work of the sub-FSVQ is to search
for the optimal one among a predesigned collection of pdf
models based on the information obtained from previous
indices.

3.2.1 Lattice quantizer
The issue whether an optimal ECVQhas a finite or infinite
number of codevectors has been in-depth investigated by
Gyärgy and Linder [31]. They found that ECVQ has a
finite number of codevectors only if the tail of the source
distribution is lighter than the tail of a Gaussian distri-
bution. With respect to the probability distribution of an
audio MDCT coefficient sequence, Yu et al. [32] show
that the generalized Gaussian function with distribution
parameter r = 0.5 provides a good approximation. More-
over, in practice, the possible values of the audio MDCT
coefficients are always finite and concentrated in a finite
range. Therefore, in our work, all codevectors of the lattice
quantizer are simply constrained in the range

P {||X|| ≤ t0} ≥ p0 (24)

where X denotes an input vector, and t0 and p0 are two
thresholds that constrain the norm and the probability of
input vector X, respectively.
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Since all the codevectors are constructed within the
range (24), the input vectors outside the range will suf-
fer a larger quantization loss than those inside the range.
Such circumstances are usually required to be avoided for
audio MDCT coefficients quantization. To keep the pos-
sible quantization error constant, the input vector which
falls outside the range (24) will be split into two parts,
the least significant bits (LSB) and the most significant
bits (MSB), and then the two parts are encoded separately.
Let x = (x1, . . . , xk) be a candidate vector, whose vector
dimension is k. Assume that after each split the generated
MSB and LSB are denoted by x∗ and Bi = (bi0, b

i
1, . . . , b

i
k),

respectively, where i denotes the i-th split. To indicate an
overflow happens, a symbol, escape symbol, is employed.
The whole procedure is demonstrated in Algorithm 2.

Algorithm 2 The split of an overflowed vector x into the
LSB and MSB parts.
Require:

The overflowed vector x = (x1, . . . , xk) and an array,
Bi, for i = 0, 1, 2, . . . , to preserve the resulting LSBs.

Ensure:
1: Set B0 = 0 and i = 0;
2: If ||x|| ≤ t0, then exit; {not overflowed, no split is

needed}
3: Split vector x into the LSB and MSB parts:

Bi = (bi0 = x0 & 1, . . . , bik = xk &1),
x∗ = (x0 � 1, . . . , xk � 1);
And then, i ← i + 1 and set Bi = 0;

4: If ||x∗|| > t0, x ← x∗, go back to step 3; {still
overflowed, split it again}

5: MSB is the resulting vector x∗ and LSBs are Bi, for
i = 0, . . . , I, where I is the number of split;

6: return The LSB sequence B0, . . . ,BI , MSB x∗, and I,
which denotes the number of escape symbol;

3.2.2 Sub-FSVQ
This FSVQ is used to search for the optimum in a pre-
designed collection of length functions, which are used to
encode the current vector index generated from the lat-
tice quantizer. The next-state function of the sub-FSVQ,
γsi , is built on the four previous indexes IA, IB, IC , and
ID, adjacent to the current input, Ix. Since the ECVQ
holds a finite number of codevectors, the simplest way to
construct the next-state function is to enumerate all the
possible combinations of the four neighbors, each denot-
ing a certain state. But with the increase of the number of
codevectors, the possible number of current states will be
extremely large, and thus, the memory requirements and
the computation cost skyrocket.
To reduce the number of possible current states, the

different dependencies between the current index and its

four previous neighbors must be taken into account. In
practice, less emphasis is placed on indices IA and IC than
on indices IB and ID. This is due to the fact that among the
four neighbors, current vector x is less relevant to vectors
A and C than to vectors B andD. Thus, we apply the oper-
ation || · ||2 to vectors A and C, so as to reduce the number
of their possible values.
The location of the current vector should also be consid-

ered. The frame, current vector located, can be generally
classified into two types: the normal frame and the reset
frame. In addition, within a frame the current vector can
be located at the normal position or the starting position.
Thus, there exist four cases, as demonstrated in Figure 5.
Specially, if the current vector is located at the starting
position of a reset frame, there will be no adjacent vector
to build the next-state function, then a special state, ss0 ,
should be assigned.
As a result, the next-state function of the sub-FSVQ can

be written as

ssi = γsi(IB, ID, I||A||2 , I||C||2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t0IB + t1ID + t2(I||C||2 + I||A||2) Case: (a)

t0IB + t2I||A||2 Case: (b)

t1ID Case: (c)

ss0 Case: (d)

(25)

where i denotes that the sub-FSVQ belongs to the i-th
ECVQ and t0, t1, and t2 are three constants making each
combination of the four indices corresponding to a differ-
ent current state. This is feasible since for an audioMDCT
coefficient sequence, the values of the four variables, IB,
ID, I||A||2 , and I||C||2 , are all finite, and then according
to their maximum possible values, it is easy to find the
possible values of the three constants.

3.2.3 Length function
The length functions are realized by an arithmetic coder
holding multiple pdf models. There are two difficulties
in building an optimal arithmetic coder for an optimal
ECVQ. First, thememory requirements for saving the pre-
designed pdf models will become infeasible as the number
of states derived from (25) increases. Second, as the vol-
umes of the partitions split by the sub-FSVQ shrink, the
available data may not provide credible pdf estimation.
Popat and Picard [33] proposed a solution to the sec-
ond problem using a Gaussian mixture model (GMM) for
describing the source pdf. Thus, this work mainly focuses
on reducing the memory requirements for saving the pdf
models necessary for the arithmetic coder.
The memory requirements can be reduced by merging

the similar pdf models. However, according to (16), if one
pdf model is replaced by another, mismatch will inevitably
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Figure 5 Possible previous adjacent indexes used to calculate the current state ssi by sub-FSVQ in four situations. (a) Normal frame and
normal position. (b) Normal frame but starting position. (c) Reset frame and normal position. (d) Reset frame but starting position.

take place. Let g be the true pdf of the input signal and
suppose that �g is its support. Assume that {Sm;m ∈ U},
whose corresponding pdf model is {gm;m ∈ U} for U =
{1, . . . ,M}, is a finite partition of �g and that Pg(Sm) ≤
0 for all m. Assume also that model gm is replaced by
another model, gn, then according to (17) the mismatch of
the pdf model pair, gm and gn, denoted by dmis(m, n), can
be given as

dmis(m, n) =
∫
Sm

ρmgm(x) ln
gm(x)
gn(x)

dx

= ρmI(gm||gn) (26)

where ρm, which equals to the probability Pg(Sm), is the
weight of model gm. Thus, the mismatch dmis can be
seen as a distance measure of a pdf model pair. The
more similar the two models are, the smaller is the mis-
match. Therefore, we can efficiently decrease the memory
requirements for saving the pdf models by merging the
model pairs, which hold small enough mismatches, into
a new pdf model with a negligible loss of the coding
performance.
For a pdf model collection, once we have obtained the

dmis values of each model pair, we can merge the ones
with minimal dmis values into a new pdf model so as to
reduce the memory requirements. If the memory size is
still above the requirements, the mergence of the simi-
lar pdf models should be continued. But once a new pdf
model is generated, the mismatches among pdf models
should be updated first. And then, a new merge can be

executed. The whole procedure will be carried out iter-
atively, until the memory size reaches the requirements.
Once the final pdf models are obtained, a remapping
between these models and their corresponding states is
needed.

4 Results
In USAC [34], an up-to-date MPEG standardization,
MDCT plays an important role [35]. In the USAC encoder,
the MDCT coefficients are firstly companded with a
power low function before scalar quantization, achieving
in effect a non-uniform scalar quantization. And then, the
residuals are further entropy coded. To improve the per-
formance of MDCT coefficients quantization and coding,
a novel scheme [29], which combined a scalar quantiza-
tion with a context-based entropy coding, was developed
in the USAC. In this new scheme, the input tuples (blocks)
were first quantized by a scalar quantizer (SQ), and then
the generated tuple indices were further encoded through
a context-based arithmetic encoder. In the USAC final
version (FINAL), the tuple length of this scheme was
selected to be 2, in order to decrease the total memory
requirements.
To further reduce the memory requirements and

improve the R/D performance of the MDCT coefficients
quantization and coding, a FS-ECVQ was implemented
and tested based on the USAC final version. The imple-
mented FS-ECVQ consisted of three component ECVQs,
ECVQ_CB4, ECVQ_CB2, and ECVQ_CB1, of which the
vector dimensions were 4, 2, and 1, respectively.
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To make an easy comparison with the FINAL, the FS-
ECVQ was divided into two parts, SQ, which was formed
by merging the scaling steps contained in the three com-
ponent ECVQs and constructed just the same as the
one in the FINAL, and the core module of FS-ECVQ,
which was referred to FS-ECVQ for simplicity. Thus, the
FS-ECVQ and the FINAL would share the same source
sequence and the same quantization error and only differ
in their coding performance. Therefore, the remainder of
this section was mainly focused on evaluating the coding
performance of the FINAL and the FS-ECVQ.

4.1 Memory requirements
The total memory requirements of the FINAL and the
FS-ECVQ were demonstrated in Table 1. From Table 2,
it could be seen that the number of codevectors in FS-
ECVQ and FINAL were 85 and 17, respectively. This
implied that the equivalent vector dimension of FS-ECVQ
would be slightly higher than 2, the dimension of FINAL.
Generally, fewer codevectors would lead to a smaller num-
ber of vector indices and a smaller memory requirements
of each cumulative distribution function (cdf) model.
Thus, compared with the FINAL, the FS-ECVQ held a
much higher memory requirements for preserving the cdf
models.
Compared with FINAL, the FS-ECVQ was less memory

exhausting in cdf model decision. This was mainly due to
the two FSVQs (main FSVQ and sub-FSVQ), which adap-
tively reshaped the input blocks and merged the states
with similar cdf models to be a new one, while at the
same time no side information was needed to be transmit-
ted. Thus, the number of states needed to be conserved
contained in sub-FSVQ would be much fewer than those
contained in the context-model of the FINAL. As a result,
the FS-ECVQ further reduced the total memory require-
ments of the FINAL by up to 11.3%.
The number of codevectors (codebook size) and the

memory requirements for saving the cdf models of FINAL
and FS-ECVQ were demonstrated in Table 2. It could be
seen that the FS-ECVQ employed three different code-
books, whose dimensions were 4, 2, and 1, respectively.

Table 1 Memory requirements for the twomethods: FINAL
and FS-ECVQ

Table name Description
Words of 32 b

FINAL FS-ECVQ

Model decision For selecting the optimal
cdf model

927.5 192

Cdf models Required for saving the
cdf models

512 1,075

Others Other requirements 1.5 11.5

Total - 1,441.0 1,278.5

Table 2 Number of codevectors, models, andmemory
requirements for FINAL and FS-ECVQ

Codebook
FINAL FS-ECVQ

Vector Model ROM Vector Model ROM

Dimension 1 - - - 10 27 108

Dimension 2 17 64 512 26 31 264

Dimension 4 - - - 49 27 703

Total 17 64 512 85 85 1,075

Among these codebooks, the 4-dimensional codebook
was assigned the largest number of codevectors, whereas
the 1-dimensional one was assigned the least. Through
this means, the equivalent vector dimension of the FS-
ECVQ would be reduced, and therefore, its memory
requirements would be efficiently decreased.

4.2 Average computational complexity
The average computational complexities of the FINAL
and the FS-ECVQ, whose units were the weighted million
operations per second (WMOPS), were shown in Table 3.
From this table, it could be seen that the FS-ECVQ and
FINAL held a similar average complexity. The average
complexity of FS-ECVQwasmainly due to its main FSVQ.
In FS-ECVQ, the main FSVQ was used to estimate which
cluster the current block would be classified into accord-
ing to the shape parameters of its four previous adjacent
blocks. To obtain these shape parameters, cubic terms
were introduced which obviously increased the total com-
putational complexity.
As the cubic terms usually led to a large computation, to

reduce the computational complexity, a look-up table was
employed in the FS-ECVQ so that the FS-ECVQ held a
similar computational complexity as the FINAL. In prac-
tice, the size of the look-up table was dependent on the
selection of the threshold of the main FSVQ. In our work,
to calculate the threshold of current block, four previous
neighbors were employed. Since the current block and its
four neighbors were highly correlated and usually hold a
similar envelope shape, the largest element of all the code-
vectors could be constrained to a small value, such as 8.
Thus, the size of the look-up table for storing the cubic
terms would be very small, about two words.

4.3 Rate performance
Nine audio items, covering speech, music, and mixed
speech/music signals, were used for the training of the

Table 3 Average complexity numbers for decoding 32
kbps stereo reference quality bitstreams for quantizers
FINAL and FS-ECVQ

Operating mode USAC-FINAL FS-ECVQ

PCU (MHz) 0.607 0.605
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main-FSVQ, sub-FSVQ, and cdf models, of which the
bitrates ranged from 12 to 64 kbps, and the length of
every item was about 2 h. And among them, four were
mono while the others were stereo items. Another nine
audio items, also covering speech, music, and mixed
speech/music signals, were chosen as the testing set for
the FINAL and the FS-ECVQ, of which the bitrates ranged
from 12 to 64 kbps and the length of every item was about
3 min. Among them, four were mono while the others
were stereo. The testing results were shown in Table 4,
where the percentage column represented the increment
of the coding gain of the current method over the FINAL.
The table demonstrated that the FINAL and the FS-

ECVQ achieved a similar coding performance in all the
nine items. This denoted that the FINAL and the FS-
ECVQ both could efficiently remove the redundancies
within audio MDCT coefficient sequences. Moreover,
both FINAL and FS-ECVQ obtained more coding gains in
the low bitrate items than in the high bitrate items. These
phenomenaweremainly due to the fact that the nine items
have different pdf of MDCT coefficients. In FS-ECVQ,
a different source distribution would lead to a different
calling ratio of its three component ECVQs.

4.4 Main FSVQ
The main FSVQ split the input vectors into subvectors
according to a pyramidal decomposing method, by which
the MDCT coefficient sequence was partitioned into
three clusters, �4, �2, and �1. The component ECVQs
applied on these resulting clusters were ECVQ_D4,
ECVQ_D2, and ECVQ_D1, respectively. To decompose
an input vector, in cluster �4 and �2, the main FSVQ
would first calculate two shape parameters from the
two pairs of previous adjacent blocks B, D and A, C,
respectively, via their corresponding block energies and
block skewness, and then, compare them with the two

Table 4 Bitrates of quantizers FINAL and FS-ECVQ for nine
audio items

Operating mode
FINAL FS-ECVQ

(kbps) (kbps) (%)

Test 1, 64 kbps stereo 48.59 48.77 −0.33

Test 2, 32 kbps stereo 24.56 24.55 0.04

Test 3, 24 kbps stereo 17.59 17.57 0.11

Test 4, 20 kbps stereo 14.87 14.86 0.09

Test 5, 16 kbps stereo 11.71 11.69 0.17

Test 6, 24 kbps mono 18.97 18.98 −0.05

Test 7, 20 kbps mono 15.41 15.42 −0.06

Test 8, 16 kbps mono 12.18 12.17 0.08

Test 9, 12 kbps mono 8.78 8.76 0.23

Average 19.18 19.18 0.03

thresholds, Tbd and Tac, respectively. Thus, a different
combination of the thresholds would lead to a different
distribution of the MDCT coefficients among the three
component ECVQs, and consequently a different coding
gain of the FS-ECVQ. The different combinations of Tbd
andTac in the two clusters and their corresponding results
were all demonstrated in Table 5. From the table, at least
two points could be derived.
First, the thresholds of cluster �4 had a larger impact

on the coding gain than cluster �2 did, which could be
explained by the fact that the variation range of the coding
gains on �4 was much wider than that on �2. Further-
more, within a level threshold Tbd had a larger impact
on the coding gain than threshold Tac did. Since Tbd and
Tac were obtained from adjacent blocks B, D and A, C,
respectively, this proved the assumption that B, D were
more significant than A, C.
Second, the component ECVQ, ECVQ_D4, gains than

the two others. From Table 5, it could be observed
that most of the MDCT coefficients were encoded by
ECVQ_D4. Therefore, to obtain the optimal performance,
the promotion of performance of ECVQ_D4 should be of
the highest priority.
The calling ratios of the three component ECVQs in

the nine testing items were demonstrated in Figure 6. It
could also be observed that among all the nine items, the
calling frequency of ECVQ_D4 was the highest, whereas
the frequency of ECVQ_D1 was the lowest. As the vec-
tor dimensions ECVQ_D4, ECVQ_D2, and ECVQ_D1,
were 4, 2, and 1, respectively, the calling rations of them
implied that most of the MDCT coefficients in each test-
ing item were encoded by the 4-dimensional ECVQ and
only a very small amount of them were encoded by the 1-
dimensional one. Through this way, FS-ECVQ achieved a
relatively high coding performance. Furthermore, among
all the nine items, the more frequently ECVQ_D4 was
called, the larger coding gains the FS-ECVQ obtained.
This explained why FS-ECVQ was more efficient in cod-
ing low bitrate items than the high bitrate ones.

4.5 ECVQ
As each component ECVQ contained two stages, lattice
quantization and entropy coding, we would first assess the
quantization stage and then, the entropy coding stage.

4.5.1 Quantization stage
To assess the quantization stage, we took LSB as a major
indicator. There were at least three reasons. First, LSB
appeared if and only if an input vector fell outside the
range constrained by the lattice quantizer, and thus, LSB
could be seen as the sign of the appearance of error in
the quantization stage. Therefore, the lower occurrence
frequency of LSB would usually denote fewer quantiza-
tion errors in the quantization stage, and as a result, a
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Table 5 The effects on the three component ECVQs and coding gains

Pyramidal
Threshold ECVQ_D4 ECVQ_D2 ECVQ_D1

Gains (%)
decomposition Tbd Tac Ratio (%) LSB (%) Ratio (%) LSB (%) Ratio (%) LSB (%)

�4
a 9

30

77.395 1.403 16.769 1.873 5.837 9.883 3.0626

10 79.276 1.623 14.895 2.075 5.830 9.895 2.9917

12 82.300 2.104 11.884 2.501 5.816 9.914 2.7091

17 82.517 2.159 11.669 2.529 5.814 9.916 2.6779

24 83.410 2.403 10.785 2.673 5.805 9.925 2.5094

∞ 87.733 4.947 7.728 2.672 4.539 10.129 0.9096

10

24 78.733 1.579 15.436 2.014 5.832 9.892 3.0123

27 78.836 1.588 15.333 2.025 5.831 9.893 3.0094

33 79.520 1.645 14.651 2.105 5.829 9.896 2.9834

36 79.606 1.654 14.566 2.117 5.829 9.896 2.9812

∞ 81.651 1.917 12.624 2.363 5.725 10.062 2.7537

�2
b 32

243 79.276 1.623

13.849 1.647 6.875 8.455 2.9771

45 14.542 1.880 6.183 9.363 3.0022

67 15.219 2.241 5.505 10.443 2.9449

75 15.496 2.436 5.228 10.950 2.8997

∞ 17.364 6.231 3.360 12.663 1.4433

65

189

79.276 1.623

14.727 2.021 5.997 9.634 2.9563

216 14.776 2.036 5.948 9.707 2.9535

249 14.922 2.085 5.802 9.941 2.9929

257 14.942 2.098 5.782 9.972 2.9916

∞ 15.537 2.548 5.817 10.975 2.8963

aSet the thresholds of �2 to be Tbd = 65, Tac = 243; bset the thresholds of �4 to be Tbd = 10, Tac = 30. Meanwhile, the main FSVQ is of different thresholds in 24 kbps
stereo.

Figure 6 The calling ratios of the three component quantizers. The three components ECVQ_D4, ECVQ_D2, and ECVQ_D1 have vector
dimensions of 4, 2, and 1, respectively.
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higher coding gain achieved by the component ECVQ.
Second, by adjusting the threshold Tbd and Tac, we could
achieve different occurrence frequency of LSB and thus
make different trade-off between the coding gain and the
memory requirements. At last, the ratio among the three
LSB occurrence frequencies is correlated with the distri-
bution of quantization errors among the three component
ECVQs. A higher LSB occurrence frequency denoted
more quantization errors distributed to the corresponding
component ECVQ.
The LSB occurrence in each component ECVQ signif-

icantly influenced the final coding gain of the FS-ECVQ,
which could be seen from the Table 5. For an input
vector, if the LSB appeared, the ECVQ would consume
much more bits than that for encoding it directly. There

were two methods for reducing the appearance of LSB:
to enlarge the range of the corresponding codebook or to
shrink the range constrained by the threshold. However,
the first method would lead to an increase in the memory
requirements, while the second would degrade the cod-
ing gain. Therefore, a trade-off must be made between
the memory requirements and the coding gain. Among
the three ECVQs, ECVQ_D4 had the least percentage
of LSBs while ECVQ_D1 had the largest. By this means,
the FS-ECVQ could save the memory requirements while
keeping the coding gain as high as possible.

4.5.2 The length functions
In each component ECVQ, the length function was
realized by an arithmetic coder, which employed the

Figure 7 The cdf models contained in the FINAL and the FS-ECVQ. (a) The 64 cdf models which are contained in the USAC FINAL; (b) 27 cdf
models contained in the ECVQ_D1 of the FS-ECVQ; (c) 31 cdf models contained in the ECVQ_D2 of the FS-ECVQ; (d) 27 cdf models contained in the
ECVQ_D4 of the FS-ECVQ.
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sub-FSVQ to search for the optimum in a predesigned
cdf model collection. The cdf models of FINAL and FS-
ECVQ were demonstrated in Figure 7. From the figure,
it could be seen that the cdf model numbers of the
FINAL and FS-ECVQwere 64 and 85, respectively. Essen-
tially, the cdf models contained were used to fit the
pdf of the MDCT coefficient sequence. A larger number
of cdf models generally would provide a higher accu-
racy fitting of the source pdf. Therefore, the FS-ECVQ
could obtain a higher performance than the FINAL,
theoretically.
Although the FINAL contained less cdf models than

the FS-ECVQ did, it obtained similar coding perfor-
mance to the FS-ECVQ. This was mainly owing to the
cdf model selection method used in FINAL, which accu-
rately selected the optimal cdf model for each input vector
index. However, it wasmore complicated than that used in
FS-ECVQ. This could be seen from the fact that the mem-
ory requirements for the cdf model selection in FINAL
wasmuch larger than those in FS-ECVQ, as demonstrated
in Table 1.

5 Conclusions
In this paper, an ECVQ with finite memory, called FS-
ECVQ, is proposed. In the FS-ECVQ, a FSVQ, namely
the main FSVQ, is used to partition the source sequence
into multiple non-overlapped clusters. Then to each clus-
ter, an ECVQ is applied. Within each ECVQ, its length
function is taken by an arithmetic coder holding mul-
tiple predesigned cdf models. To select the optimal cdf
model for each input vector, another FSVQ, namely the
sub-FSVQ, is employed.
Owing to the main FSVQ which effectively exploits the

inter-frame dependencies, the source sequence is split
into multiple clusters and no side information is needed to
be transmitted. Moreover, the main FSVQ assigned differ-
ent vector dimensions to the resulting clusters. The more
frequently a cluster appears, the higher vector dimen-
sion is allocated. This helps the FS-ECVQ to efficiently
reduce its total memory requirements while, at the same
time, maintaining a relatively high coding performance.
Finally, for each input vector, the sub-FSVQ selects the
best matching cdf model, which adds robustness to the
FS-ECVQ.
There are multiple ways to realize the proposed FS-

ECVQ. First of all, if the quantizing errors generated from
the lattice quantizer are directly discarded, then the FS-
ECVQ is equivalent to an ordinary ECVQ. However, if the
quantizing errors are taken as the LSBs and encoded by
an additional length function, the FS-ECVQ will be equal
to an uniform quantizer. In addition, if the quantization
steps of all the component ECVQs are separated from
the FS-ECVQ, then the FS-ECVQ becomes an entropy
encoder. The FS-ECVQ can also be used in coding the

speech, image, and video signals, and even any other
source sequence with non-uniform distribution.
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