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1 Introduction

Kaluza-Klein theory plays an important role as an organising framework in supergravity
relating higher and lower-dimensional theories to one another as well as providing a tool by
which to derive new theories by dimensional reduction. Nevertheless, one is confronted with
some challenging issues, such as the question of whether a lower-dimensional theory can be
obtained from a reduction of a higher-dimensional one, and if so, whether the reduction is
consistent. That is, whether all solutions of the lower-dimensional theory can be mapped
onto a subset of the higher-dimensional solutions. How this is done in practice, i.e. how
one uplifts solutions to higher dimensions, is yet another level of complication. Indeed,
examples of such results are rare and are mainly confined to truncations with relatively
simple scalar sectors.

Eleven-dimensional supergravity compactified on a seven-sphere is one example in
which progress has been made; the four-dimensional theory associated with this reduction
being maximal SO(8) gauged supergravity. Recently, an uplift ansatz has been derived for
the seven-dimensional components of the 3-form potential in terms of the (pseudo)scalars
of the gauged theory [1, 2]. This complements the uplift ansatz for the seven-dimensional
components of the metric given in ref. [3]. Together, these ansétze give a new method
for constructing solutions of D = 11 supergravity, and it is the purpose of the present
paper to explicitly demonstrate the utility of this new method. Indeed, without the new
uplift formula for the internal flux it is basically impossible to construct the solution to
be presented in this paper, or to derive any other solutions of this type that are more
complicated than those already in the literature (see for example refs. [3-7]). This is because
in all previous examples of solutions corresponding to critical points, the symmetry of the
solution reduces the equations of motion to a set of ODEs. In particular, if one obtains
the metric via the metric lift ansatz, the equations for the components of the flux field
strength are algebraic and usually easy to solve. The analysis becomes even simpler if
one has supersymmetry, where the ODEs are first order, as is the case for the Go [3] and
SU(3)xU(1) [7] solutions.

The ansétze can be applied to obtain a very general class of solutions of D = 11
supergravity. In particular, they facilitate the uplifting of all stationary points to Freund-
Rubin compactifications [8] with flux, wviz.
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with the corresponding metric
GundXMaxN = A7V, dat de” + gmndy™dy", (1.2)
where (z#,y™) are coordinates on the four and compact seven-dimensional spacetimes, re-

spectively; €,%(x) (with corresponding metric 7,,) is the vierbein of the maximally sym-
metric four-dimensional spacetime with corresponding alternating tensor 7up0; €m®(y)



(with corresponding metric gy, ) is the siebenbein of the compact space and fz is a con-
stant. In what follows we consider the siebenbein to be that of a deformed round seven-
sphere, i.e.

em(y) = Em"(y) 5" (y), (1.3)

where ¢€,,% (with corresponding metric ¢.,,) corresponds to the siebenbein on a round
seven-sphere of inverse radius my and the deformation parameter S has determinant A,

Ay) = detSa"(y). (1.4)

The uplift ansétze are derived within the context of the SU(8) invariant reformulation
of the D = 11 theory [9], whereby eleven-dimensional fields are decomposed in a 4 4+ 7
split, such that one can loosely talk of them as having external/internal indices. Note
that SU(8) is the local enhanced symmetry obtained in the toroidal reduction of D = 11
supergravity to four dimensions, with associated global group E;(7) [10]. Importantly,
however, no truncation is assumed and the reformulation remains on-shell equivalent to
D = 11 supergravity [11]. The SU(8) structures in the reformulation are obtained by an
analysis of the D = 11 supersymmetry transformations in such a 4 + 7 split, and by the
enlargement of the original SO(7) tangent space symmetry to a full chiral SU(8) symmetry;
the R-symmetry of NV = 8 supergravity.

The uplift ansétze for the internal metric and flux are derived by comparing the su-
persymmetry transformations of particular components of the eleven-dimensional fields,
namely those with a single “four-dimensional” index: the graviphoton B,™ and A .n,
which contain the internal metric and 3-form potential components, and the supersymme-
try transformation of the associated vectors in four dimensions, which are given in terms
of the (pseudo)scalar expectation values.

In this paper, we demonstrate the utility of the uplift ansétze by applying them to
the only known stable non-supersymmetric solution of the gauged theory [12, 13]: the
SO(3)xSO(3) invariant stationary point [14]. This yields a new solution of D = 11 super-
gravity: see equations (2.20), (2.22) and (7.29), (7.30) for the solution in stereographic and
ambient coordinates, respectively. This solution, to our knowledge, is the most non-trivial
closed form solution of this type ever found (inspection of the explicit formulae in section 5
of this paper will probably immediately convince readers of the correctness of this claim).
Indeed, the remarkable efficiency of the uplift formulae is clearly demonstrated by the fact
that it is significantly simpler to write down the solution than to verify that it does indeed
satisfy the D = 11 equations of motion.

Note that there are many known stable non-supersymmetric compactifications of D =
11 supergravity of the form AdSy x M7 (see e.g. ref. [15]) or indeed AdSs x Mg [16-18],
or even purely eleven-dimensional solutions, such as for example, the eleven-dimensional
Schwarzschild-Tangherlini solution [19]. However, the solution we construct here is the first
such solution, as far as we are aware, with non-trivial internal flux and uplifted from maxi-
mal gauged supergravity. While we cannot comment on the eleven-dimensional stability of
the solution, the fact that the compactification is stable [12] in the sense of Breitenlohner-
Freedman (BF) [20] is promising. Eleven-dimensional stability would be established by



demonstrating that the fluctuations associated with higher Kaluza-Klein states also re-
main above the BF bound.

The SO(3)xSO(3) invariant stationary point is a distinguished solution of the gauged
theory. Not only is it the only known stable non-supersymmetric solution, but it also has
the most negative value of the cosmological constant of all known stable points and several
unstable points [13] and is, therefore, likely [21] to be an attractive IR fixed point for many
flows in the world-volume theory on M2-branes [22]. One example of an RG flow in which
this solution is the IR fixed point is that considered in ref. [12], where the UV fixed point
is given by the maximally symmetric SO(8) invariant stationary point [8, 23]. The study
of such RG flows is important in so-called top-down holographic applications to condensed
matter systems (see e.g. refs. [24, 25]).

The SO(3)xSO(3) invariant solution is an example of a compactification of the
form (1.1). Therefore, the uplift ansétze for the metric and internal flux given in refs. [1, 3]
suffice. In this case, the eleven-dimensional field equations!

1 1

Ryn = EQMNF}%QRS - 6FMPQRFNPQRa (1.5)
-1 MNPQ \/i - NPQR;...R451...54
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o 1 o
Dq (A—lanpq) :ﬂ\/5j;FR77mnpqrstE]rst7 (19)

o

where R,” and R,,," denote components of the eleven-dimensional Ricci tensor Ru™N, Dy,
denotes a background covariant derivative and 7, .m, is the permutation tensor with
respect to the metric ¢,,,. All seven-dimensional indices in the equations above are raised
with ¢g™" except for 7, . .m,, whose indices are raised with ¢"". We parametrise AdSy
and the seven-sphere such that
Ry =3midu,  Rmn = —6m2Gmn. (1.10)
There are three constants in (1.7)—(1.10), namely, my4, m7 and fm. It is convenient
to choose my as the overall scale of the solution, since it is simply related to the coupling
constant, g, of the D = 4 theory [26],

my = L. (1.11)

V2

The remaining two constants are determined by the value of the scalar potential, P.. =
—P, g%, at the stationary point, or, equivalently, the cosmological constant of the solution

!We use the conventions of [9].



in four dimensions,
2P,

3 M-
The value of the fm parameter can be obtained from the uplift formulae in [26, 27] or the

m3 = (1.12)

uplift ansatz for the internal components of the 6-form dual [28, 29]. In particular, it has
been conjectured that the following relation should hold for any stationary point [27]

fm= %m7. (1.13)

However, a general proof of (1.13) beyond explicit examples remains an open problem.

It is straightforward to verify that for vanishing scalar fields one recovers the maximally
supersymmetric AdSy x S7 Freund-Rubin solution [8] given by (1.10) with

my=2my,  fm=+3V2my (1.14)

and no internal flux.

The outline of the paper is as follows: in section 2.1 we provide the necessary back-
ground in order to be able to present the solution without dealing with the technical details.
Then, in section 2.2, we introduce the objects in terms of which we find the solution, which
is presented in section 2.3. For the reader who is simply interested in the solution, and not
the technical details of its derivation, section 2 is sufficient.

In section 3, we state identities satisfied by the SO(3)xSO(3) tensors — an outline of
the derivation of the identities is given in appendix B. The metric ansatz gives A~!1¢g™" and
some of the identities listed in section 3.2 are used to invert this to find the metric, gmn,
in section 5. Furthermore, the identities are also used to find and simplify the expression
for the 3-form potential, A,,pp, from the flux ansatz in section 5. The majority of the
identities are, however, used, in section 6, to verify that the field equations are satisfied.

We present the SO(3)xSO(3) invariant stationary point of D = 4 maximal supergrav-
ity [14] in section 4. In particular, we recapitulate the scalar profile of the SO(3)xSO(3)
invariant stationary point, which is uplifted by means of the ansétze, in section 5, to give the
internal components of the metric and 3-form potential of the eleven-dimensional solution.

In section 6, we verify that the solution found in section 5 satisfies the D = 11 su-
pergravity field equations. Given the general arguments that guarantee that the ansatze
obtained from the uplift formulae solve the equations, this is not strictly necessary. How-
ever, we do this in order to demonstrate the full complexity of the solution as well as to give
the reader further confidence that the uplift formulae do indeed provide bona fide solutions
of the D = 11 equations.

Finally, in section 7 we re-express the eleven-dimensional solution in terms of ambient
and local coordinates, which are better adapted to the isometry of the solution than the
stereographic coordinates on S” used in section 5.

In order to set conventions, we review some basic material, largely contained in ref. [9],
in appendix A. For comparison, we list the identities satisfied by the SO(8) and SO(7) ten-
sors for the Gg and SU(4)~ solutions in appendix C. In appendix D, we demonstrate explic-
itly that the solution can indeed be expressed solely in terms of a single set of (anti-)selfdual



SO(8) tensors, as argued in section 2. In the final appendix, E, we give an explicit repre-
sentation of seven-dimensional I'-matrices and an embedding of R* @ R* in R®, which is

used in section 7.

2 Overview

2.1 The uplift formulae and invariant tensors on S’

The (pseudo)scalars of the maximal gauged supergravity in four dimensions parametrise
the noncompact coset E7(7)/ SU(8). In the unitary gauge, the group elements of the coset
are given by the scalar 56-bein [30]

_ 0  drn(@))  [urSF(z) ol TKL(2)
V(@)= exp <<Z5UKL(97> 0 ) a (’UIJKL(H?) UIJKL(x)> <o, 21)

where ¢!/KL = ®7 7k is a complex, selfdual tensor field:
1
HIIKL ﬂguKLMNPQd)MNPQ (2.2)

The uplift formulae for the internal metric and 3-form potential [1, 3] are then written
in terms of the 56-bein, V(z), and the Killing vectors, K/’ and 2-forms, K./ on S7
as follows:?

(A—lgmn)(%y) _ éKm]J(y)KnKL(y) [ (UMNIJ + UMNIJ) (UMNKL + UMNKL) ] (z),
(2.3)
and

(AP Ay ) (2, y) = —QiK%(y)K 1KL(y) x (2.4)

96
X [ (UMNIJ — UMNIJ) (UMNKL + UMNKL) } (33)

In writing these and similar formulae we will adopt and apply the following convention
consistently throughout this paper:

The raising or lowering of indices on any geometric object on S”, is always
done by means of the round ST metric Gy and its inverse. By contrast, to
raise or lower indices on the physical fields of D = 11 supergravity (as they
appear for instance in (1.5) and (1.6)), we always employ the full metric gmn
and its inverse.

This means, in particular, that on the right hand side of the above equations we have
K™ = gmn K17 and so on.
The full metric g, (z,y) is then obtained by inverting and peeling of the determinant

factor using
A7 = det(AT g™ G - (2.5)

2For conventions and properties of the Killing spinors and tensors, see appendix A.



For the 3-form field, Apnp(2,y), one must then insert the result for the densitised metric,
Aggr, on the right hand side of (2.4).

Formulae (2.3) and (2.4) are off-shell in the sense that they give the internal metric,
9mn, and the 3-form potential, A,,,,, for any configuration of the scalar fields of the
maximal gauged supergravity embedded in eleven-dimensional supergravity. In particular,
note that the full antisymmetry of Ay, in (2.4) is not manifest, but can be established
by means of the E7(7) properties of the 56-bein V, and is thus independent of whether the
equations of motion are satisfied or not [1].

The main task is thus to construct, from a given scalar field configuration ¢!/% L(a?),
the geometric quantities gpmn(x,y) and Appp(x,y). To gain a better perspective on this
problem, let us first discuss the construction in a more general context before we specialise
to SO(3)xS0O(3) symmetric configurations below. For the most general configuration that
has no symmetries at all the scalar field configuration would of course involve the full set of
35 scalars and 35 pseudoscalars. However, we are here interested in specific configurations

preserving some symmetry, for which we can restrict attention to®

T (s)
STTEL (5 Z A IJKL +i Z“ )V (2.6)

where {@g?K L} and {\Ifg‘?K L} form a basis of invariant real selfdual and real anti-selfdual
4-forms (when we are dealing with real tensors the position of the indices I,J,... does
not matter). If one is looking for stationary points preserving a given symmetry, the
scalar manifold is accordingly parametrised by coordinates {)\(T), M(S)}. Simple examples
of invariant 4-forms (for which the labels 7 and s are not needed) are

SrixL = C;’_JKL , VUi =0 for SO(7)" symmetry;
PrrkrL =0, Viskr = Crikr for SO(7)~ symmetry;
q)IJKL = C;FJKL 5 \I’IJKL - C;JKL for GQ Symmetry.

For the SO(3)xSO(3) solution we are about to construct, there are two invariant selfdual
and two invariant anti-selfdual 4-forms, which are given in (2.16) below. In order to rewrite
the solution in terms of geometric objects adapted to the (deformed) S7 geometry, we define
a set of invariant tensors via

T 1 n r T r °ommn ¢-(r
& = 176(I)§J)KLKUK g = _Eq’(I}KLKUKKL €0 =gmmen 2)
for the scalars, and
s E 1J KL
Sr(m)mp = 16\I’§}KLKmnKp (28)

30f course, at the stationary point, we can group all scalars and pseudoscalars into single SO(8) invariant
objects with associated SO(7) tensors, defined in an analogous manner to those defined in (2.7) and (2.8).
In this case, one is guaranteed that the solution may be written solely in terms of these reduced set of SO(7)
tensors. However, the result will not, in general, take a ‘nice’ form (see appendix D for a demonstration of
this for the SO(3)xSO(3) invariant solution).



for the pseudoscalars. By virtue of their definition and the (anti-)selfduality properties of
the invariant 4-forms, these tensors satisfy the relations

D€ = 2mzlm, Do) = 6mz £5), = 2m7 €0 gy,
° r 1 o r o (r) 2 s 1 o rst o(s)
Dmgr('l,p = §m7 <gnp§7(n) - gm(ngp) >a Der(Lp)q = 6m777mnpq Syt (2.9)

for all r and s. Furthermore, we have the inversion formulae

), ~ e S L compaggors
(2.10)
‘IISSJ)KL = %Sﬁrsn)lp Kl gp K
which are, again, valid separately for all r and s.

Now, for any specific set of invariant 4-forms we will need further identities. First,
such identities are needed to perform the exponentiation required for the calculation of
uw! gep, vT7EL and their complex conjugates in (2.1). Second, we need these identities to
solve the uplift formulae for g,,, and A,,,, and to bring the resulting expressions into a
manageable form.

The simplest examples, again, are provided by the SO(7)* and G solutions for which

the invariant 4-forms C’IiJ K1, obey
CIiJMNCJ\i/INKL = 125§<JL + 4C%JKL’ (2.11)

i.e. their contractions either reproduce the same 4-forms or give the identity. The general
case is more complicated because any product of 4-forms may produce new invariant tensors
that are not 4-forms. The simplest example here is the Go solution that depends on both
C’IJFJ xr and Cp . as well as the product C’;FJ unCrnir, which defines a new invariant
tensor (which is not a 4-form); this object then completes the list of Go invariant tensors. A
more complicated example is the tensor Fy; defined in (2.18) and further invariant objects
for the SO(3)xSO(3) solution. Consequently we will need to evaluate products such as

(r) (') (r) (s) (r) (s) (")
N Prnkr » ProvunTaiver o ProvunYarnpo®roxr o ete (2.12)

and either reduce them to previously defined expressions or add them as new objects to the
list of invariant tensors. The procedure stops when all products or contractions reproduce
objects already contained in the list; exploiting all such identities should enable us to

I and v!/EL in a closed form.

compute u!

Furthermore, as we will explain below in much detail for the SO(3)xSO(3) case, the
identities satisfied by the above invariants entail a corresponding hierarchy of identities for
the geometric tensors introduced in (2.7) and (2.8). The main use of these identities will
be in carrying out the inversion required to derive the metric and 3-form from the uplift
formulae (2.3) and (2.4) and in bringing the resulting expressions into a manageable form.
This last step is necessary for the verification of the D = 11 field equations which would

otherwise be unmanageably complicated.



Before proceeding let us comment on another point. In Kaluza-Klein theory one is
usually interested in calculating the mass spectrum of a given compactification, and the
massless states in particular. This requires a linearised expansion of the metric (2.3) and the
3-form potential (2.4) in the scalar fluctuations around a given vacuum. For the maximally
symmetric S7 compactification we thus have [23, 31]

G (2,9) = Gun(W) + Y Arrr(@) V@) + ...
Apmp(z,y) = Y Bryxr(@) VKl ) + ..., (2.13)

where Ajjxr and Bjjky are the 35 scalar and 35 pseudoscalar fields of N = 8 super-

(Z)IJKL :AIJKL+iBIJKL)

gravity ( , and, where the ellipses denote massive modes. The

corresponding eigenmodes have been known for a long time [23, 31]

1,
VEH ) = KRS - KK,

yIJKL(y) _ K[IJ KKL]

mnp [mn~"p]

(2.14)

The formulae (2.3) and (2.4) are thus the consistent non-linear extensions of the above for-
mulae (it is straightforward to check that the linearised formulae follow directly from (2.3)
and (2.4) by expanding the latter to first order in the scalar and pseudoscalar fields). One
can therefore ask whether it is possible to directly ‘exponentiate’ the formulae (2.13). The
above discussion shows that this is indeed possible for restricted configurations if one has
enough tensor identities at hand.

2.2 Invariant tensors for the SO(3)xSO(3) solution

The SO(3)xSO(3) subgroup of SO(8), which is the symmetry of the stable stationary
point in maximal gauged supergravity, is defined by the following branchings of the three
fundamental representations:

8, — (3,1)+(1,3)+2x (1,1), 8,. — 2 x(2,2). (2.15)

In the conventions that we are using, the eight gravitini, /!, and the Killing spinors, n’, on
S7, transform under 8,. We choose the two SO(3) groups to act on the subspaces defined
by I =1,2,3 and I = 6,7,8, respectively. Then the four invariant noncompact generators
of Ey7(7) are given by the tensors

4 - 7
Vi =4 (0155 + 079%L) » Yk =4 (017%L + 0615%L) » (2.16)
Ziir =4 (Orfke —019%L) s Ziyr =4 (015K — 019%L) -

where YI'S 1, and ZFJ i1, are selfdual, while Y. and Z ;- are anti-selfdual. In section 5,
we show that the simplest and most symmetric form of the solution is obtained in terms



of the following invariants defined by these tensors:*

€m = 16Yﬁ,KLK” KL, Emn = 161GT,KLK”KKL €= 9""&mn,
Cm 16 Z;_JKLKIJ KnKL Cmn = 16Z;’:]KLKIJKKL C = émngmnv
Lo 1J 7-KL L 1J
Smnp = EYIJKLK[mnKp} ) Trninp = 16ZIJKLK[ Kp] ) (2.17)

as well as two additional tensors

Fn=F;KY F,.=F ;K Frj=9617, (2.18)

mn

which satisfy (see section 3)

1 . 0
F, = = ThmnpgrstSTPIT™ D, Fr,= —m7 EFpp, . (2.19)

Note that, as emphasised before, the objects defined in (2.17) and (2.18) belong to S”.
Hence, their indices are raised and lowered with g, and its inverse, for instance £™" =

"G g
2.3 The solution

We are now in a position to state the main result of this paper, which is an explicit uplift of
the solution at the SO(3) x SO(3) stationary point of the scalar potential written in terms of
the geometric quantities introduced above. The solution below is presented in its simplest
and the most symmetric form. We refer the reader to section 5 for a more general form of
the solution which, in particular, includes an additional parameter, «, corresponding to an
accidental U(1) symmetry of the potential. The solution below is for a = —m /4.

The internal metric of the uplifted solution is

AQ
gmn =75 (X% + 2°)gmn — 12(X¢mn + ZGn) + 2fmfa], (2.20)
where
fm=6Fp —V5&n +V5Gn . (2.21)
The 3-form flux is
A3 T7V5 V5
Apn ZX—-—2)—X —-5Z ) Smn 5X + Z ) Than
r=1ars | (5 2~ 2) = X =52) Syt (L XX = 2) 45X +.2) Tomy
1 ° TS TS 4
+ 27777mnpqrst (qu - ch) (ZS ! +XT t) § (Xg[m + ZC ) np]ng:| )
(2.22)
where the warp factor, A, is given by
= 56 (2.23)

X224 10X Z 4+ 227

4Cf. definitions (2.7) and (2.8).

~10 -



with
X=2¢6-3V5, Z=2(-3V5. (2.24)

The solution is now complete modulo two constants, which as discussed in the introduction,
are determined by the value of the potential, P., at the stationary point using (1.12)
and (1.13). For the SO(3)xSO(3) point, P, = 14. Hence,

m3 = gmg, fem = 7V2my . (2.25)

In particular, the fact that the value of fz given above, as determined by equation (1.13),
is consistent with a solution of the equations of motion is further evidence for the validity
of this conjectured relation (1.13) between fz; and the potential. The remaining constant,
mr, sets the overall scale of the solution.

One should note that the metric and the 3-form potential in (2.20) and (2.22) are
obtained by an application of the identities derived in section 3 to simplify the “raw”
expressions that follow from the uplift formulae. We refer the reader to section 5 for
details of the derivation and to section 7 for another form of the solution in which the

geometry of the internal space is perhaps more transparent.

3 Identities for SO(3)xSO(3) invariants

In this section, we present in a systematic way a set of identities for the geometric objects

5 ) C ) fm ’ Cm ) gmn ’ gmn ; Smnp ) Tmnp ) Fm ) an ) (31)

defined in (2.17) and (2.18). These identities are crucial for the discussion in subsequent
sections, in particular, we need them to derive, in section 5, the simplified form of the
solution in (2.20) and (2.22) and to verify that the equations of motion are satisfied in
section 6. They are also of interest on their own as the starting point for identifying the
SO(3)xSO(3) geometry underlying our solution. Such an identification would allow one
to construct a large class of new solutions in which the underlying internal manifold is not
necessarily the round seven-sphere in much the same way as is done when extending the
SU(4)~ solution [6] to arbitrary Sasaki-Einstein manifolds [6, 32, 33].

The identities we are looking for fall into two broad categories: (i) generic identities,
which are proved using only the (anti-)selfduality property of the underlying SO(8) tensors
and properties of the Killing vectors/spinors;® (ii) identities specific to the objects (3.1).
These are proved by exploiting the concrete SO(3)xSO(3) invariant form of the SO(8)
tensors YlijL, Z?EJKL and Fyj defined in (2.16) and (2.18).

3.1 Generic identities

The identities in this section follow from the particular dependence of the SO(7) ten-
sors (3.1) defined in (2.17) and (2.18) on the Killing vectors/spinors. They do not require

5All identities in section 2.1 fall into this category.
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specific knowledge of how the underlying SO(8) tensors are defined. We refer the reader
to refs. [2, 5, 34, 35] for proofs and further details.

Equations (2.17) and (2.18) can be inverted using the completeness property of the
I-matrices. This yields, cf. (2.10),

1 3 1
YKL = “eRIT gm KL 55’""[(,%"[{5“ + ﬁngL%KnKL]’

6
Yijkr = %Smnp KT%K;(L},
ZrjkL = %Tmnp KR,
= éF "H %F " K (3.2)

Similarly, the background covariant derivative of the SO(7) tensors can be computed using
the Killing spinor equation (A.8)

Din = 2mz&pm, Din&y = 6mr&mn — 2m7€Gmn,
Dyfonn = 57 (Grny — Gpimn)
D€ = 2mi7Gom, DinCn = 6m7Cmn — 2m7CGmn,
Dynn = 517 (Gmno — o)
D Snpg = ém’?'f]mnpqrstSTSt, DinTopg = 6m7ﬁmnpqrstTTSta
Dy Fry = m7Fom, DypFyn = 2m70p(m Fy)- (3.3)

We stress once more that both (3.2) and (3.3) do not depend on the particular forms of
the SO(8) tensors YI%IKL, Z?EJKL and Fyy.

3.2 Special identities

The starting point for proving the identities satisfied by the SO(7) tensors and listed in
tables 1-7 are various contraction identities for the SO(8) tensors Yﬁ, KL ZIiJ i and Fry.
The latter follow directly from the definitions of these tensors in egs. (2.16) and (2.18),
and can be split into several groups depending on the number of factors and the number
of contractions. Each group then gives rise to different types of SO(7) identities. The
identities given in this section are sufficient for determining the internal components of the
metric and 3-form potential from the uplift ansétze and proving that the metric and 3-form
potential thus obtained solve the field equations.

A. Double contraction identities between two of the YI‘i]KL and ZEKL tensors:
+ + - - - - _ o+ +
Y unYunkr = ZiiunZ Nk Y unYunkr = ZiiunZ Nk (3.4)

+ + — 7= — — — _ 7+ +
YiomunZunkr = ZraunYunkrs YiounZunkr = ZrounYaunkr: (3.5)
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and

+ — _ - + — + _ o+ —
YiounYunkr = Zriun4unkrs YipunYunkr = ZiiunZunkrs

+ — v + + — _ - +
ZigunYunkr = YriunZunkr YiounZunkr = ZrgunYunkr: (3.6)

Note that each set of (anti-)selfdual tensors, YIijL and ZIiJKL, respectively, do not in
themselves lead to simple quadratic identities, but are instead related to each other via
quadratic relations. This is pertinent to the discussion in section 2.1 and appendix D,
where it is argued that one can always make do with a single set of (anti-)selfdual tensors
at the price of working to higher order. Here we see that there are no self-contained set
of quadratic identities for a single set of (anti-)selfdual tensors. Therefore, the result is
that one must work with expressions that are higher-order in tensors — as illustrated
explicitly in appendix D. This is to be contrasted with the previously known uplifts where
the situation is simpler, see table 8. In the case of the Gy invariant quantities, there
are quadratic relations between the single set of (anti-)selfdual tensors. While in the
slightly more complicated SU(4)~ example, the single set of (anti-)selfdual 4-form tensors
close on a 2-form tensor, rather than another set of 4-form tensors. More generally, for
stationary points with even less symmetry the lesson seems to be that one must include
enough (anti-)selfdual tensors in order to have quadratic relations between the tensors.
Otherwise, the metric and 3-form potential will not be expressible at most quadratically
in the SO(7) tensors.

B. Double contraction identities with triple factors:

}GEMNYAJ/;NPQYI;FQKL = 4YL+]KL7 ZfJMNZJJ\}NPQZ;QKL = 4ZI+JKL’ (3.7)
as well as
YITIMNY]\ZNPQYP_QKL =4Y 1k (3.8)
+ - + _

YiunYunroYrorr = 05
YIT]MNY]\;NPQY];QKL =0, (3.9)
YIT]MNY]\J/;NPQY;QKL + YIJ.F]MNYJ\ZNPQY};QKL =4Y, k1 (3.10)
YIT]MNY]\;[NPQYP_QKL + YI_JMNYJ\}NPQYJ;FQKL = 4Y1J3KL7 (3.11)

and analogous identities obtained by replacing Y by Z in the above identities.

C. Identities involving the Fj; tensor:

YirnZiwin = Zrgon Yoo = 121, (3.12)
YI:FIKLFKL = Z;tJKLFKL =0, (3.13)

8Y[§EJK|M\FML] == ZIiJKL’

SZ[jI[JK|M\FML] = FYiigr (3.14)

~13 -



() =2+ g =0-g (=218 g0
(ii) S S™P = 6, Ty TP = 6
(i) 76 =0, ("G =0
) emeny = (3- &) g Sem - sener, oo, = ($- £ ) g o - ener
0 sty = (12 $ ) g - Lomgny K, o, (1€ g Loy K
(vi) Tmngrsta TT Ty = 8€m&nlp — gff[mén]p TmngrstuST*S™p = 8CmCalp — §< CimIn)p
(vl 5 Sy = 26,0y + (3 - 55 ) 0 - 36
(viii) T Ty = 261670+ (; f;) gmn ég[mg[p&;‘]]

Table 1. Identities derived from (3.4) and (3.7).

1
(1) ngm = _§<7 fmnCmn = 7567 Sminmnp =0
(ii) nmnpqrstsnqu & = 18F™
(i) gy = Sem - Sy SFW cmnén T
1
(iv) gy = —%Kﬁmn - §an (Cﬁm" +£¢M") + an
Lo omn 1 mn men mn mn L omn
(v) Smqunpq:—ngg —ﬁ(f ¢+ )+§(C5 +&¢ )_§F
2 2
(Vi) flnpqrstusmquStu = _4’£m[n<p] - 4Cm[n§p] + ggém[ngp} + ggém[nCp] - G.ém[an]

iy 2., 2., .
(Vll) nnpqrstuquTSStu = —4§m[nCp] — 4Gy, nfp} + gCgm nfp + *fgm nCp + 6gm[an]

mnr mnr mn 1 m m n m n
(viii) S Tpgr + T Spgr = fC(S - §f[ C[p‘s - ’C[ €0 + 4¢! pS ]Q]

Table 2. Identities derived from (3.5) and (3.12).

Given the identities for the SO(8) tensors, it is clear from the inversion formulae (3.2)
that these identities imply identities satisfied by the SO(7) tensors in (3.1). We list these
identities in tables 1-4. Note that we do not use the cubic identities (3.11) in deriving the
SO(7) tensor identities — they will be used in section 4 to exponentiate the 56-bein in the
unitary gauge.

While it is correct that the SO(7) tensor identities in tables 1-4 are a conse-
quence of substituting the inversion formulae into the SO(8) tensor identities (3.4)—(3.7)
and (3.12), (3.14), it is rather laborious to obtain these identities by the said method —
at least without the aid of a computer program. In appendix B, we sketch a simpler proof
for these identities. Furthermore, in the appendix we explain how the identities listed in
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(i> Smnpfp + Tmnpcp = 07 Smnpcp = Tmnpgp =0

.. ¢ L. r
(11) SqmnCpq = Sq[mn(p]q = gsmnp - %nmnpqrsths st
(111) Tqmnqu = Tq[mngp]q = ngnp - %ﬁmnpqrstquTSt

. 1, 4
(IV) 4quTrmn - §nqmnstquSTtuv = SSSq[mEn]s - ggsqmn

1 4
(V) 4§qTSrmn - §ﬁqmnstuv€sstuv = 8qu[an]s - 7CTqmn

3

Table 3. Identities derived from (3.6).

(i) S™PF,, =0,
(i)
(iii)

TP Fyy = 0,

3

Smonp — iﬁmnpqrsts
Tmonp — %ﬁmnpqrstT F .
galmn ppl ngnP + i gmnpgrstg

q n qrst't

2
(IV) Tq[man}q — _gsmnp + 7nmnpqrsthT8Ft

12 pqust

pgr+ s

18
L,

18

Table 4. Identities derived from (3.13) and (3.14).

() Fn€"=C Fal"= ~6 Fnf™ = 'SP, Fp(™ = £ P
(i) Fun€" = ~Gn— Py Fogn = S — P — G+ < B

(i) FunG" = &m = Py FrpCPn = —iimn = < P+ ¢

(iv) FME, =1, F"™F, =0, F"™F, =F"F,—

Table 5. F-tensor identities derived by contractions of the equations in (iii) and (iv) in table 2

with &m, Cmy Fim, fmqv Cmq and qu.

tables 5—7 are derived from the identities in tables 1-4. Despite the fact that the deriva-
tion of these identities is quite an involved task, we have tried to present the identities as

systematically as possible. In particular, the order in which the identities are presented is

such as to indicate the fact that identities listed prior to a given identity may have been

used to derive or simplify that identity. This means that, for instance, we have included an

identity that may be obtained by contracting another identity, allowing the reader to check

the consistency of the two. In any case, here we limit the explanation of the derivations to

the comments in the table captions, sketching a derivation of the identities in appendix B.
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(1) gsmSnps —+ Csanps = gs[mSnp]s + Cs[anp}s

.. 1 1. - -
(11) gs[msnp]s = 7(CTmnp + 2£Smnp) - 777mnpqrst(2ch st + qu St)

9 108
s 1 1, rs TS
(111) Cs[anp] = §(§Smnp + 2CTmnp) - 108 nmnpqrst(zéqs t + CqT t)

Table 6. Identities derived from the equations in (iv) and (v) in table 3.

(i) ﬁmnpqrstngqSTSt = 6CSmnp§p =+ 54Smonp7 ﬁmnpqrst(pquTSt = 6£Tmnp<p - 54Tmonp
(11) ﬁmnpqrstFpqumt = 6Smnp§p + 6€Smonp7 ﬁmnpqrstFpquTSt = _6Tmnp<p + 6§Tmonp

(111) ﬁmnpqrstFpquTSt = 6£Smonp7 7D7'rrmpqrstF‘quTmt = 6CTmonp

Table 7. Identities derived by contractions of the equations in (ii)—(iii) in table 3 with &P, ¢? and
FP; and contractions of (iii) and (iv) in table 4 with &,, and (,, respectively.

4 The SO(3)xSO(3) solution of gauged supergravity

In the unitary gauge defined in equation (2.1), the u and v matrices are of the form

o oo 1

1 * * *
up M = Z (2n)! [(60")" 1K1 - ol L — Z enr ) (0" (00" ) sk - (41)
n=0 ’ n=0 )
For an SO(3)xSO(3) invariant configuration, the most general parametrisation of the
scalar and pseudoscalar expectation value ¢k is given by the SO(3)xSO(3) invariant
quantities defined in equation (2.16)

A o . R
PrIKL = 9 [Cosa (YITIKL + ZYIJKL) — s (Z;:]KL - ZZIJKL)] ) (4.2)

where the parameter o may be freely chosen without loss of generality. This is because,
while the relevant SO(3)xSO(3) invariant truncation of the theory contains two complex
scalars, the potential corresponding to this truncation is invariant under an extra U(1)
symmetry that lies outside the gauge group, namely SO(8) [21]. The « parameter corre-
sponds to this U(1) freedom that leaves the potential invariant. In what follows we will
choose to keep the value of a general. Interestingly, from an eleven-dimensional perspec-
tive we find that « corresponds to a coordinate transformation of the eleven-dimensional
solution along the seven compactified directions (see section 5.3).

In exponentiating the scalar expectation value ¢;yxr to find the v and v matrices, it
is useful to define®

1= é (Yt +iy ) (Yt —iv ) = é (Zzt—iz™) (zt +iz7), (4.4)

5In what follows, we make use of the short-hand notation

AB = (AB)rsjkr = ArsuNnBunkL. (4.3)

~16 —



which, using the cubic identities (3.7) and (3.11), satisfies the following properties
? =11, tixr =1krrs. (4.5)
Therefore, 11 is a hermitean projector, and
(Yt —iy ) I=Y"—iy~, (Zt+iZz")U=2Z"+iZ". (4.6)
In particular, using identities (3.7), we find that
do* = 2X711, O = ¢*. (4.7)

Hence, the u and v matrices may be written as follows

UIJKL:66L+(C—1)H[JKL, (4.8)
IJKL _ 8 + _ v : + i
v W) [cosa(YT —iY ™) —sina(Z¥ +iZ7)]; 5p (4.9)
where
¢ = cosh(V2)), s = sinh(v/2)).
The scalar potential for the scalar A reads
g2
P = —5(34 —8s% —12), (4.10)
and, indeed, does not depend on a.
The SO(3)xSO(3) invariant stationary point is given by
dpP
— =0 4.11
i (411)

and corresponds to [14]
c=v5, s=2. (4.12)

This stationary point is the only known stable non-supersymmetric stationary point of
D = 4 maximal supergravity [12, 13]. In fact, there clearly exists another stationary point
corresponding to s — —s, that is s = —2. From the perspective of the D = 11 solution
this corresponds to A,unp — —Amnp under which the equations of motion (1.7)—(1.9) are
invariant. We will take s = 2 henceforth, while keeping this in mind.

5 The SO(3)xSO(3) solution of D = 11 supergravity

Given the scalar profile of the SO(3)xSO(3) invariant solution of the gauged theory de-
scribed in the previous section, the eleven-dimensional SO(3)xSO(3) solution is simply
constructed by applying the uplift formulae (2.3) and (2.4) for the internal metric and
3-form potential [1, 3]. In this section we present the details of the calculation leading to
the solution in its simplified form.
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5.1 The internal metric

We apply the uplift formula (2.3) to evaluate the metric from the data at the SO(3)xSO(3)
invariant stationary point. The Sp(56) property of the u and v matrices [36]

MN KL MNKL _ <KL
N pupMNT T — UMNTI U =0417, 5.1
MN MN
Ny vMNKL —vMNITuw D kL =0, (5.2)

can be used to rewrite the scalar part of the metric ansatz (2.3) as follows

(UMN[J _|_UMNIJ) (UMNKL“‘UMNKL):_(S}?]L +9Re (UMNIJUMNKL —|—’UMNIJUMNKL) )

(5.3)
Substituting in the expressions for u and v, equations (4.8) and (4.9), we find that
Re (uMNUuMNKL i UMNIJuMNKL)
— §KF + P Re(Tlpyxr) + ——= (cosa Y —sina Z*), . (5.4)

2v/2

Contracting the expression above with K™/ K"KL and using the completeness rela-
tion (B.1) to rewrite the expression in terms of SO(7) tensors gives
s2[1

A—lgmn($7y) :gmn + Z gém[néq]gq + 2€mp€np + Smpqsnpq
1
9

— V2s¢ (cos €™ — sin a¢™™). (5.5)

+ —gmingdle,  2¢mren, + TPITT,

Using the SO(7) identities in table 1, the above expression reduces to
-1 _mn 2 82 2 2 ommn 82 m,n men s mn mn
AT g™ = | = @+ )| 7 = g (M) + o (T 2™, (5.6)
where

Xi(a) = €s — 3v2¢ccos a, Zi(a) = (s + 3V 2csina. (5.7)

The first four lines of equations in tables 1 and 2 and the identities in table 5 can be
used to invert the densitised metric (still for arbitrary «)

Moo = 3B 75Ty P D~ 125Xt o)+ ] 59
where
Xy(a) = V2cosaés — 3c, Zy(a) = —V2sina (s — 3¢,
V(a) = s*(cos® a —sin® a) (€2 — ¢?), (59)
and
fm(a) = V2ccosaly + V2csina &y, + 3sF, . (5.10)
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We can calculate the warp factor, A, using (2.5), by evaluating the variations
Agmn 6(A™1g™™) (5.11)

with respect to o and A. After simplifying (5.11) using identities in tables 1, 2 and 5,
one can integrate back to obtain A, with the overall normalisation fixed by requiring that
A =1 for A = 0. This gives
3 36
A +2X 2+ 234+

(5.12)

This completes the derivation of the uplifted metric tensor, gy, for arbitrary values of A
and .

5.2 The internal flux

As before, we simplify the scalar part of the flux ansatz (2.4) using the Sp(56) property of
the u and v matrices

(uijU — ’UijIJ) (uinL + UinL) = (5%(‘][/ + 21 Im(uijuuinL - ’UijIJ’U,Z‘jKL) . (513)
For the u and v matrices corresponding to the SO(3)xSO(3) invariant sector
KL ijI1J, KL S¢
— vy, ) _

. 5 B
Im(u”uui]’ i =s"Im(Il; k) + QﬁYIJKL. (5.14)

Contracting the above expression with K!J K9KZ and making use of the completeness
relation (B.1), the flux ansatz (2.4) gives

82

48+/2

4 1
A_lgqumnP(xa y) = <858q[m§n]s - gfsqmn - 4§qr‘5’rmn + §7D7qmnstu’ufsstuv

4 1,
- 8qu[mén}s + gCTqmn + 4<qurmn - 9nqmnstuv<STtuv>
1
+ 55¢ (cosa S, +sinaT9,,,) . (5.15)

Upon use of the identities in tables 3 and 6, the expression above simplifies significantly:

5
6v2

Multiplying the above equation by the metric and substituting the expression (5.8) for

A_lgquAmnp =

<2555q[m£n]8 - 25T8q[m§n}s - 3

1 1

Agpq, and making full and repeated use of the SO(7) identities in section 3.2, the resulting
expression reduces to

A a* [ <S(1+02)X +53C\/§C(s'na§+cosag)>5
mnp — T = | — |3 —_ 1 mn
P 18\/§ 9 1 6 P

s 5 s3c .
+ <2(1 +c)2 — ?\@g(smaf —|—cosa§)>Tmnp

52

+ @ﬁmnpqrst (Z1§q - chq) (lerst + XlTTSt)

83

6

(5.17)

(Xlg[m + ZlC[m) Snp}qé-q] .

with A given in (5.12).
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Note that while it is clear that the metric obtained from the ansatz (2.3) is manifestly
symmetric in its indices, this is not the case for the 3-form potential (2.4). However, as
is shown in ref. [1], the antisymmetry property of the 3-form potential is guaranteed to
hold even off-shell for any values of the scalar fields as is the case for the 3-form potential
in (5.17).

This concludes the uplift of the SO(3)xSO(3) stationary point to D = 11 supergravity.
It is indeed remarkable that such a complicated solution as this one can be so simply derived
in the matter of a few calculational steps.

5.3 Choice of o

As remarked earlier, from the point of view of gauged supergravity we are free to choose
a without loss of generality, because of an accidental U(1) symmetry of the potential
that is outside the gauge group. This is a novel feature of the SO(3)xSO(3) invariant
truncation and is absent for other truncations for which the higher dimensional uplift is
known. There ought to be a way of understanding this redundancy in the choice of « from
an eleven-dimensional perspective. Given that in the four-dimensional theory the U(1)
transformation does not lead to a different stationary point, it must be the case that for
any choice of a the uplifted solutions are equivalent, viz. they are related by coordinate
transformations as we demonstrate here. Specifically, we find that a shift in the parameter
« corresponds to a diffeomorphism in the seven compactified dimensions, in the sense that

ba (Agmn () = Lv (Agmn(a)),  Ga (Amnp(@)) = Ly (Amnp(a)) , (5.18)

with the generating vector field V7

1 .
V=g F" Do (5.19)

This allows us to pick any particular value of a: checking the equations of motion for that
particular value then implies that the equations are also satisfied for other values of «.
Henceforth, we choose to fix the value of «,

(5.20)

o= —

4 Y
so that the metric (5.8) is symmetric under the interchange of tensors defined with respect
to YI%,KL and Z?[JKL. In this case,

1 1
sin(a) = ———, cos(a) = —, =0, 5.21
(a) 7 (a) 7 y (5.21)
X1:XQEX:§S—3C, 21=ZQEZ=<S—3C, (522)
and the metric determinant is:
A =363 (X% 4 22xzZ + 22) 17 (5.23)

"Note that, while V is a Killing vector on the background internal space, corresponding to the round
S7, it is no longer a Killing vector in the deformed space given by the metric gmn. In deforming the round
seven-sphere to obtain the SO(3)xSO(3) invariant solution, the number of Killing vector fields reduces from
28 to 6; these are given by K12, K'3 K23 K% K% and K.
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In summary, at the stationary point values given by equation (4.12), we find the
internal metric and 3-form potential given in equations (2.20) and (2.22). It is only at the
stationary point values, given in equation (4.12), that these expressions solve the equations
of motion (1.7)—(1.9). Note also that with the choice of a given in this section, the metric
is indeed symmetric under the interchange of tensors defined using invariants ij} g, and
ZIiJ x> While the 3-form is antisymmetric.® Given the symmetric form of the solution for
the choice of & = —7 /4, this is the solution that we work with in order to verify that the
field equations are satisfied.

6 Verification of the Einstein and Maxwell equations

In this section, we verify that the SO(3)xSO(3) invariant solution does indeed satisfy the
field equations of D = 11 supergravity, equations (1.7)—(1.9). It is a surprising fact that the
verification forms by far the most involved part of the work and requires the use of many of
the identities listed in section 3.2. In comparison, finding the solution using the non-linear
ansatze is fairly straightforward. This is a testimony to the power of the uplift ansétze,
which are non-linear. From the perspective of the SU(8) invariant reformulation, it is clear
that the ansétze should lead to internal metric and 3-form potential components that satisfy
the D = 11 supergravity equations of motion. This is because they have been derived by
the use of supersymmetry transformations which are first order equations, rather than
second order as in the case of the field equations. Moreover, the highly non-linear problem
of relating the scalars of the D = 4 maximal gauged supergravity to the components of the
internal metric and 3-form has been linearised by packaging the components of the D = 11
fields in the generalised vielbeine. The relation between the scalars of the D = 4 theory
and the generalised vielbeine is a linear one. Both of the simplifications alluded to above
mean that while the derivation of the solution is relatively simple, its verification in the
context of the original formulation of D = 11 supergravity [11] becomes non-trivial.

In order to verify the Einstein and Maxwell equations (1.7)—(1.9), we make use of the
computer algebraic manipulation program FORM [37] to simplify the expressions for the
Ricci tensor and the 4-form field strength.

6.1 Components of the Ricci tensor

Y and

We begin by computing the components of the eleven-dimensional Ricci tensors R,
R,," that appear in the equations of motion, (1.7) and (1.8), and whose indices are raised

with the full metric, gpsrny. Denoting

9" (z.y) = A" (@), gu(z,y) = A7 (Y)guw(2), (6.1)

8Note that under this interchange we also have
F7YL%_Fm7 an_>_an'

We refer the reader to the first equation in table 3 for the antisymmetry of the last term in equation (2.22).

- 21 —



the Christoffel symbols with mixed index components are

1 1/, 4
Fﬂlj = - igpqaqgl“’ = 5 (A 1DQA> gpqg,ul/a (63)
1 1/, 4e
Pin = 597 0nguo = =5 (A 1DnA> o (6.4)
Moreover, for convenience, we define
. , 1 , s .
D7 = Dhy = Ty = 5 ( Dingng + Dngmg — Dqgmn> . (6.5)

The relevant components of the eleven-dimensional Riemann tensor are

RVype = — 9pTh, + 0,TH, — FgMF%, +THG TN = RE,,, —TH T7 4 T8 T

pm= ov on* pv
o 1

= Ry + §(A—1pr)(A—1z°)qA)gpq5f; Tou (6.6)

RFym = — 8, 4 9,T" —THTP Tk P

vpT nm np-rvm

__ %f)n(A‘lf)mA)é{j + Lpr (ATTD AV + i(A‘lf)nA)(A‘lf)mA)é{f, (6.7)

2 mn
RmunV — gmpgupRpanv (68)

where é“ww and ]:Emnpq denote the Riemann tensors of the background AdS, and round
seven-sphere, respectively. The associated Ricci tensors in our conventions are given
in (1.10).

It is now straightforward to obtain the expressions for the relevant components of the
Ricci tensor,

Ry = Rpupv + Rpupv
= 3Amigu + Guvg™" <(A1f?mA)(A1f?nA)

1. o 1. .
- 5zjn(A—lz)mA) + 2F£W(A_1DPA)>, (6.10)
Ry = Rpmpn + Rpmpn

— —GmZ — Dy, + Duln, 0 P77 fr

pr-nm nr-pm
+ (AT DL AYATID,A) — 2D, (ATID,,A) 4 217, (ATID,A). (6.11)
In fact, it is more convenient for us to directly calculate A™'R,” = A7'R,,g" and

AR, = Rmp(A_lgp”). Using the expression for the internal metric given in equa-
tion (2.20) and the expression for the determinant (2.23) as well as equations (3.3) and the
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SO(7) identities in section 3.2,

2 AG
(91X4 140X3Z — 718X222 — 140X 23 + 9124

—1 v __ AN
AT R,” =3mi0, + 972

+ 24V5(X + 2)(19X% — 50X Z + 192%) + 1260(5X2 + 2X Z + 522)> s,

(6.12)
—-1p n m% AS n n n n
A Ry, = 1296 (AO(Xv Z)(Sm + Al(Xa Z)‘fm =+ A1(27 X)Cm + AQ(Xv Z)Fm
+ A3(X, 2)Em€™ + A3(Z, X) (™ + Aa(X, 2)F F”
+ A5 (X, Z)§m(" + A5 (2, X)€" + Ag (X, Z)En I
— A6(Z, X)(nF" + A7 (X, Z2)F&" — A7(Z, X)F (7). (6.13)

Recall that in our conventions, the index n on the left hand side is raised with the inverse

metric ¢™", while on the right hand side we use the inverse metric on the round S7, §™".

The coefficient functions in the above equation are as follows:

2
Ag(X, 2) = \f(/'\,’ + Z) (17x* — 80A3 2 — 66X22% — 80X 23 4+ 172%)

4
+ 30(132(4 — 134X%Z — 214X%2% — 134X 2° + 132%)

+40V5(X + 2) (1747 — 58X Z + 172?) — 840(5X% + 2X Z + 527),
A1(X,2) = —10080v5(X? — 2?) — 96 (41X3 — 4522 — 9X¥ 2? — 3523)
—8V5(X + 2)(17x°% — 5522 — 33X 2% — 2527),
As (X, Z) = 10080(X? — 2%) + 96V5(X — 2) (TX? + 10X 2 + 72?)
+200(X — 2)(X + 2)3,
A3(X, Z) = 672V5(5X 4 132) + 32(45X% — 160X Z + 792?)

8‘f (174° + 43X%Z — 149X 2% +1727)

Ay(X,2) = — 2016(%2 +10XZ + 2%) — 96V5B(X + 2)(X? — 50X 2 4 22),

As(X,2) = —672V5(13X 4+ 52) — 64(50X2 — 33X Z — 52?)

8
f (81X% — 61X Z + T5X 2% 4+ 252%)

Ag(X, 2) = 336\/5(/1’2 +10XZ + 2*) + 16 (5X° — 188X 2 — 175X 2% — 3827),
A7(X,Z) = —4032(5X + 132) — 48V/5(35X% — 118X Z + 4722)
— 16 (25X° 4+ 116 X°Z — 15X 2% + 662°) .

Note that, like the metric, both R,” and R,," are symmetric under the interchange of
tensors defined using Y/, and Z3, ., definitions (2.17).”

9See footnote 8.
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6.2 4-form field strength

In this section, we calculate the 4-form field strength

Fonpg = 4D}, A (6.14)

npq|

of the 3-form potential given in equation (2.22). Using the equations for the derivatives of
the SO(7) tensors (3.3)

22 my AS
anpq = T By (/Y, Z)g[msnpq] - Bl(Za X)C[anpq] + BQ(Xa Z)C[msnpq}

- BQ (Za X)é[anpq} + B3(X7 Z)ﬁmnpqrstsmt - BB (Z, X)ﬁmnpqrstTmt
+ ihmnparst S (Ba(X, 2)E + Ba(Z, X)(' + Bs(X, 2)F") |, (6.15)
where we have simplified some expressions using the SO(7) identities in section 3.2 and

Bi(X, Z) = 3(X% + 10X Z +492?) — V/5(X% — Z22)(X + 112),

Bo(X,2) =3(5X2 +2X 2 4+ 52%) + V5(X3 — 3x%22 — 21X 2% — 2%),

1 5

By(X,Z) = — o(X + 2Z)(X? —2XZ +52%) + ;I/;(XQ + Z%)(X? 10X Z + 27),
5v/5

B4(X7Z): _\!(Xz 22)7

Bs(X, 2) = 15(x% — 22).

Raising the indices on Fj,,;, using the inverse metric g"" poses the greatest challenge
from a computational point of view. Therefore, we choose to calculate it using the following
method

ATLFMPE — JA3(ALgrimy (A1 gnlsl) [Algpltj’)r (A*IAq]St) _D, (Algp|t|>A1Aq]5t:| .
(6.16)

Substituting the expression for the inverse metric, equation (5.6) and flux, equation (5.16)
at the stationary point values and with & = — /4, and simplifying the resulting expression
using equations (3.3) and the SO(7) identities in section 3.2 gives

\/i mry AS
36

o 02(27 X)f[anpq] + Cg(X, Z)ﬁmnpqrstsmt _ 03(2, X)?D]mnquStTmt

A~ Lpmnpq _ [Cl(X, Z)g[msnptﬂ - (2, X)C[anPQ] + Cy(X, Z)C[mgnpq}

TS, £ (Cy(X, 2)6 + G2, X)G+ C(X, B)F) |, (67)
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where
224

Ci(X,2) = ?22 - 7(3 +V52) (X% +10XZ + 2?),
224 8
Ca(X.2) = = - XZ+ (15 + VBX) (X2 +10XZ + 27,
\/5 2 2 2 2 2
C3(X,2) = — 14(X +52) — — (3X* 4+ 16X Z 4+ 1727) — §X(X +10XZ + 27)
2
Cu(X,2) = — gx + i (X?+10x2 + 2%),
Cs(X, Z) = 0.

The field strength of A, Fy,ppe, and F™™P1 also share the antisymmetry property of
Apnp under the interchange of tensors defined from ij p and Z +
This allows us to derive an expression for

ATy FPI
4ms 2 A6
81

= -—6A"'R,," + <14X4 +35X3Z +178X%22% + 35X 23 + 1424

63

+3V5(X + 2)(19X? — 50X Z +192%) + Z(zgzﬂ — 190X Z + 2932)) 5,

(6.18)

where we have used the expressions for Fy,,,, and F""P4  equations (6.15) and (6.17),
respectively, as well as equation (6.13) and the SO(7) identities in section 3.2.

Finally, contracting the indices in the equation above and using the expression for R,,"
in equation (6.13) as well the SO(7) identities gives

16m2 A6 4 4
AT Frippg P = 27;(142( + 3532 + 178X 2% + 35X 2% + 142
+3VB(X + 2)(194% — 50X Z +192?) — 189(3X — 2)(3Z — X)).

(6.19)

6.3 The Einstein and Maxwell equations

Using equations (6.12), (6.13), (6.18), (6.19) and (2.23), it is now straightforward to show
that the Einstein equations (1.7) and (1.8) are satisfied for the values of my4 and §m given
n (2.25). Finally, using the equations for the derivatives of the SO(7) tensors (3.3) to
differentiate (6.17) as well as the SO(7) identities in section 3.2, we find that the Maxwell
equation (1.9) is also satisfied.

7 Solution in ambient coordinates

The solution presented in the previous sections is given in terms of quantities defined on
the round seven-sphere. In particular, the metric, gy, in (2.20) is written as a deformation
of the metric, ¢, on the round seven-sphere. Furthermore, the tensors (2.17) are defined
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in terms of the Killing spinors on S7. While this is necessary for obtaining the solution
via the uplift ansétze (2.3) and (2.4) for the metric and flux, it is perhaps not the most
natural form in which to express the solution given its isometry. In this section, we present
the solution in a form in which the action of the SO(3)xSO(3) is more manifest.

7.1 Ambient coordinates

To find the relation between the coordinates on the round seven-sphere and coordinates
that we will use in this section, we introduce coordinates = on R®, where A = 1,...,8.
Then the seven-sphere is defined by

miz-x=1, (7.1)
where in this section we use the notation z - x = z4z4. It is straightforward to see that
the above relation is solved by

m

2y

_ 8_1—\y’2
1y

- , 7.2
5 IyP (7:2)

my ™ mr T
which define stereographic coordinates y™ on the round seven-sphere of inverse radius my
(with |y|?> = y™y™). The relations in the previous section can be viewed as being written
in precisely such a coordinate system. Hence, in the previous sections the line element on
the round S7 is given by

ds® = Gpn dy™dy™. (7.3)

In fact, the induced metric on the seven-sphere can easily be calculated by substituting
equations (7.2) into the flat line element on R®, whereupon we find that

o 4
Jmn = —5———5=0mn- (7.4)
T mE (4 y2)2
A convenient choice for the siebenbein is
o 2
e’ = —ﬁdy“. (7.5)
mz(1+ [y|?)

Instead of viewing the action of SO(3)xSO(3) in stereographic coordinates, we can now
view its action as an action of SO(3)xSO(3) ~ SO(4) on two four-dimensional subspaces
of R® in ambient coordinates z*. More precisely, we can view R® as the direct sum R* pR*
and decompose x = (u,v), where u,v € R* such that SO(4) acts separately on u and v.'°

The SO(3)xSO(3) invariant tensors in the previous section, written in terms of Killing
spinors on the round S7, can be expressed in ambient coordinates as follows. In terms of
Killing spinors, the 1-form duals of Killing vectors on S” are [3]

K = K1/ ¢, (7.6)

10No confusion should arise between these and the u and v matrices that parametrise the scalars in the
gauged theory, described in section 4.
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However, since the Killing vectors, K./, generate SO(8) in 28, they are related by triality
to generators of SO(8) in the vector representation. Or, equivalently, in terms of their
1-form duals

1
K = “TITIL AR, KA = - —TPPE, (7.7)
2 8WL7
where

KAB = 2214425, (7.8)

Furthermore,

1 o o 1

K(IQJ) = §K£l‘,]e“/\ éb = §F{4{3 dKAB. (7.9)

Now we can use these relations to determine the SO(3)xSO(3) invariant tensors in ambient
coordinates. We start with the scalar invariant ¢ defined in (2.17), and substitute for K/

using relation (7.7)

2
m
£= 7167 YIT]KLFQJBKL.’EACL‘B = 3m$ ng‘l 228, (7.10)

Note that since the exterior derivative in K48, definition (7.8), is with respect to stereo-
graphic coordinates, we also use relations (7.2) in deriving the above result. Similarly,

¢ =3m2T1E5 A28, (7.11)

Naively, there are three scalar invariants that can be formed from u and v. However, note
that from equation (7.1)

u-u+v-v=1. (7.12)
Therefore, we only have two scalar invariants
U-u—v-0, u-v
and without loss of generality we can pick an embedding of the R* in R® where
E=-3u-u—v-v), ¢ =—6u-wv. (7.13)

For an explicit embedding where the above relations hold see appendix E. Note that any
other embedding will correspond to a rotation between u and v, which in the present
representation, see appendix E, is given by Ff’B, viZ.

w0, v —u (7.14)

This freedom is represented by the parameter « in section 5, which is related to the rotation
angle between v and v. In the four-dimensional theory, this corresponds to a redundancy
in the description of the SO(3)xSO(3) invariant stationary point and not an invariance.
As was shown in section 5.3, this is reflected in the fact that the uplift of all these points
correspond to the same solution up to coordinate transformations.
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Given the expressions for £ and ¢ in ambient coordinates, it is now straightforward to
find the tensors &, and ¢, in ambient coordinates by differentiating expressions (7.13) and
using equations in (3.3):

mr&,e® = -3 (u-du—v-dv), my(e® = =3 (v-du+u-dv). (7.15)

The remaining invariant 1-form Fp, (2.18), is found using equations (7.7), (7.8) and the
third equation in (E.6),
m7Fué® =v-du—u-dv. (7.16)

We may again differentiate the tensors &, and (, to obtain expressions for the symmetric
tensors &, and (,p, respectively, in ambient coordinates. However, we will instead find these
expressions by other means, which will be applicable also to the derivation of the tensors
Sabe and Type.

Using equation (7.7), we rewrite

2
o o m
Sap €°¢" = = E Y e Vi TED KPP, (7.17)

Note that the indices on Y+ fully antisymmetrise the indices on the I'-matrices. Hence we
can make use of the following identity [30]:

17 k)1 1 2
rapTen =5 (F[IA]B Tép) = gpeapcperch T Féﬁ%) + 00w Taipf > (718)

which is a consequence of SO(8) triality and is a decomposition of the object on the left hand
side into its anti-selfdual (first term) and selfdual part (second term). Moreover, noting
that in the expression for £, the combination of I'-matrices contracts with a selfdual tensor,
Y;}KL, we obtain

2
Saé"é" = TITIR KACKOP. (7.19)
Finally using (7.8) and the first equation in (E.6), we find that
m2 Eqp €9€° = (v-v) dv - dv — (u - u) du - du, (7.20)

where we have also used
u-du+v-dv=0, (7.21)

which follows from (7.12). Similarly, we also find

m2 Cap 646° = f[u-v(du-duqtdv-dv)+du-dv] (7.22)
We determine Sgp. and Ty in an analogous way. For example,
1 o o o —
S(3) = 5 Sabe €°67E° = 7% Vi, T TEE KAB@ A KD, (7.23)

Hence, we can again use identity (7.18), but in this case the anti-selfdual part of the
decomposition given in equation (7.18) survives and we obtain

Se) = = Ui Dp alda® A da® A da®), (7.24)
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which can be evaluated using the I'-matrices and the embedding given in appendix E. All
in all, we obtain

1
ms Sy = — D [e(u, dv, dv, dv) + €(v, du, du, du) + 3e(u, du, du, dv) + 3e(v, du, dv, d’u)],
(7.25)
1
m3 T3y = — 6 [e(u, du, du, du) — €(v, dv, dv,dv)], (7.26)

where we have introduced the convenient notation
e(u, du, du, dv) = €k utdu? A duf A dot. (7.27)
It is clear that there are two more invariant 3-forms,
e(u, du, dv, dv), (v, du, du, dv), (7.28)

that do not appear in the expression for S(3) or 1{3). However, these invariant 3-forms as
well as the 3-forms in S(3) and T(3) do appear in the expression for the internal 3-form
potential given below.

7.2 The solution

In terms of the ambient coordinates introduced above, the solution (2.20)-(2.22) reads:*!

ds? = 6ij2[ + c(6c — s(C+€)) (du - du + dv - dv) + s(s€ — 3¢) (du - du — dv - dv)
T (7.29)
+23(s(—30)du-dv+és2f2 :
and
3) = ;ﬁig [ + 5 (12¢° — ?s(2¢ + 26 + 3) — es*(C — 26 + 3) + (5°) e(u, du, du, du)
— 5 (12¢% + ¢?s(—2¢ — 26 + 3) + s (¢ — 26 — 3) + (%) e(v, dv, dv, dv)
—3s(c+ ) (6c* — es(C + & + 3) + &5?) e(u, du, du, dv)
—3s(c—s) (602 —cs(C+€—-3)— 532) (v, du, dv, dv)
—s(c—s) (602 —cs(C+E€+3)+ 582) (v, du, du, du)
+ s(c+s) (_6c2 +es(C+HE€-3)+ 532) e(u, dv, dv, dv)
— 35%(c + 5)(Cs — 3¢)e(u, du, dv, dv)
+352(c — s)(3¢ — gs)e(v,du,du,dv)} , (7.30)
where
Ash= g 8", A= A A ENE, (731)

my f=my foé® =3c(u-du—v-du—u-dv—v-dv)+3s(v-du—u-dv) (7.32)

and with ¢ and s set to their stationary values (4.12).

HK P. would like to thank N. Bobev, A. Kundu and N. Warner for a collaboration which independently
led to the metric in the ambient form presented here [38].
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7.3 Local coordinates

We conclude this section with a construction of local coordinates on S7 using the Euler
angles of the SO(3) x SO(3) isometry group and the two scalar invariants, £ and ¢. To this
end let us consider S7 as a subspace of 2 x 2 complex matrices

23 —iz? 242t I
= (‘Zl +izt 23 4022 ) 7 # = i (7.33)
satisfying
1
ETrZZT:u-u+v-v:1 (7.34)
and 1
det Z = ~3 (€ +iC). (7.35)

Then the SO(4) action on C* is the same as the action of SU(2); x SU(2)2 on such matrices
given by
Z — REZRI, (7.36)
under which both (7.34) and (7.35) remain invariant.
We use the Euler angles for the two SU(2)s defined by

03 (0515) cos % —e2(%57¥3) gin %

R0, 95,¢5) = ,  J=12. (7.37)

e~ 3(® =¥ gin % e~ 5(®i+%5) cos %

By an SU(2); x SU(2)2 transformation, one can bring Z to a diagonal form,

p

; P
Zalp, p) =V/2 2@t (COS 2 sn? ) ., 0<p< g 0<p<2r, (7.38)
2

where (p, p) parametrise a disk of radius 7/2. Using (7.35), we find
£=3sinpcosyp, (=3sinpsingp (7.39)

so that have [¢|, |¢| < 3, which is consistent with identities (i) in table 1 [5].
At a generic point, we have

Z="R1(01,01,%1) Za(p, p) Ra(02, d2, ¥2)T . (7.40)

Clearly, Z is invariant under v; — t; + x, which shows that a typical orbit is isomorphic

with the coset
SU(2)1 X SU(2)2

u() ’

where U(1) is the diagonal subgroup.'? The local coordinate system on S7 is now comprised

(7.41)

of the angles p and ¢ that parametrise a disk and the FEuler angles 601, ¢1, 02, ¢2 and ¢ =
11 — 1o on the coset. The range of these angles are

0<p<T. 0<B9<m,  0<p. b1 b <2m. (7.42)

12Note that at the center of the disk & = ¢ = 0 and we simply reproduce the explicit construction of 7!
in [39)].
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Let us also introduce the left invariant forms on SU(2); x SU(2)2,
oy = sintp; d; — cos;sin0; de; ,
= —cosy;df; —sint;sinf; de; (7.43)

ag‘] =dip; + cosb; doj

<.

2
I

<.

satisfying da( = a( A a( iy ete., and define

i

These forms are then pulled-back onto the coset by setting 1)1 = —1p9 =1 /2, such that

yield a local frame, 0% a = 1,...,5, along the orbits of the SO(4) isometry.
The round metric on S” in these coordinates reads

1
22
457 = 2 (4" +5in pdg? + (o070 + o))
. _ _ 2
—sinp (06)0(2) + 0;5)0(1)) + (cospdg@ — 03) ] . (7.46)
The geometric objects (3.1) are the scalars given by (7.39), the vectors:

a3
mr(cosp&a +sinp(e)e” = cospdp ,

§ (7.47)
7(cos @ Co — sin €)% = & sin pp,
the symmetric tensors:
1 1
. oq °b __ . 3 3 . + — + —
mr(cosp&ap +sinp (gp)ete’ = — 1 sinp(cospdp — 0°)o” + 7 Sinp (0(1)0(1) + 0(2)0(2))

1 + = + -
+ 6 (cos(2p) — 3) (0(1)0(2) + 0(2)0(1)) ,

. Oa o 1 /i — —
mi7(cos @ Cap — sin p Eqp) €260 = 1 dp (cos pdp — o3) + g cos p(aa)aw) — 0(2)0(1)) ,
and the 3-forms:

o o o 3
m% (COSCPSabc - SincpTabC) EYN €A eczﬁx

{ —idp A [(O'(JE) A U(E) + G(Jg) A aa)) —sinp (U(+1) A Ué) + O'(JE) A aa))}

+cosp(cos pdip — o) A (o) Aoy — oy A"<_1>)}

~
Q
>
Mo
o
>
Mo
o
I
|

m% (COS 2 Tabc + sin 2 Sabc
{(cospdgp — o)A [(0

+ smpo’ A [(0( ) A Ua) + U(Jg) A 06)) —sinp (O'a) A 0(;) + O'(JE) A U(E))} } .
(7.49)

) A a(_2) + O'(-;) A 0(_1)) —sinp (aa) A 0'(_1) + 0(2) N ‘7(_1))]

cha
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We also have that

o 1
my F,e® = —i(dcp —cospa?),
. . (7.50)
2 ° ob _ : 3 + - + —
ms Fape® N e’ = 5 sinpdp A 0° — 1 cos p (0(1) A T1) T %2 A 0(2)) .

Rotations by the angle ¢ to obtain the actual SO(7) tensors (3.1) result in even larger
expressions. As expected, the explicit formulae for the metric (2.20) and the 3-form po-
tential (2.22) in these local coordinates are quite complicated and we will not write them
here. One can easily obtain them using the expressions for the SO(7) tensors given above.

8 Outlook

In this paper, we have constructed a new and highly non-trivial solution of D = 11 su-
pergravity corresponding to an uplifting of the SO(3)xSO(3) invariant stationary point
of maximal gauged supergravity. While this solution is of interest in holographic applica-
tions and we hope that readers will find good use for it, we have endeavored to present the
derivation of the solution in such a manner as to lend itself to a more general explanation of
uplifting solutions of this type, i.e. Freund-Rubin compactifications with internal flux. The
uplifting of any stationary point of the gauged theory to eleven dimensions will follow the
same steps as those presented for the SO(3)xSO(3) invariant stationary point here, except
that, clearly, for stationary points with less symmetry, this will be a more cumbersome
process with many different invariant forms to consider.

Apart from allowing for a direct derivation of uplift formulae, the rewriting of the
eleven-dimensional theory in an SU(8) invariant reformulation [9], highlights features of
the four-dimensional theory in eleven dimensions and makes it possible to prove [26, 27],
for example, the consistency of the S7 reduction [8, 23].

In recent work [28, 40], the ideas initiated in ref. [9] are taken to their full conclusion
giving an on-shell equivalent reformulation of the D = 11 theory in which features of the
global group E7(7) are also made manifest. As well as breaking manifest eleven-dimensional
Lorentz invariance and covariance, one is also compelled to introduce eleven-dimensional
dual fields in order to bring out the Ey(7) structure.

The reformulation of D = 11 supergravity given in ref. [28] provides a very direct and
efficient way of studying the relation between four-dimensional maximal gauged theories
and D = 11 supergravity via a higher-dimensional understanding [28] of the embedding
tensor [41-44]. In particular, it allows for a simple analysis of which four-dimensional
theories arise as consistent reductions of the eleven-dimensional theory (see e.g. [45]). For
example, it is very simple to deduce [29] that the new deformed SO(8) gauged theories of
refs. [46, 47] cannot be obtained from a consistent reduction of the D = 11 theory.

In fact, given the success of the reformulations described above, we argue that, gener-
ally, the most appropriate setting in which to address questions to do with reductions and
consistency is one in which the higher-dimensional theory is reformulated in such a man-
ner as to fully resemble a duality covariant reformulation of the lower-dimensional theory,
including both the global and local duality groups.
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Of particular relevance here is that in the case of the S7 reduction to the original
maximal SO(8) gauged theory [36], ref. [28] completes the metric and flux ansétze and
provides full uplift ansatze for any solution of the gauged theory to eleven dimensions, in-
cluding dynamical solutions with non-trivial z-dependence [29]. The method can, however,
be applied more generally. For example, one can in principle setup a reformulation along
the lines of [9, 28] for type IIB supergravity and thereby study its S® truncation — for a
recent conjecture on uplift ansétze in this case see ref. [48].

An interesting application of these full uplift ansétze [28, 29] would be to construct the
full interpolating solution for a particular RG flow between two stationary points of the
potential, such as the flow between the maximally symmetric SO(8) and the SO(3)xSO(3)
invariant stationary points considered in ref. [12].
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A Conventions

We define a set of euclidean, antisymmetric and purely imaginary 8 x 8 I-matrices (I'f = T).
These are generators of the euclidean Clifford algebra in seven dimensions,

{Fava} = 2(5(11)]18><8- (Al)

We choose a Majorana representation and set the charge conjugation matrix that defines
spinor conjugates or raises and lowers spinor indices to be the unit matrix. An explicit
representation for the I'-matrices is given in appendix E.

The I'-matrices can be used to define the 8 x 8 matrices

Tara; = Dy -+ Doy (A.2)

for : = 2,...7. 'y and I’y are antisymmetric matrices and 'y is symmetric. These
7+ 21 + 35 = 63 matrices together with the unit matrix span the vector space of 8 x 8
matrices. Thus, we find that

Layar = —1ay..ars (A.3)
Lay.ag = —May...agbl'bs (A.4)
Lay.as = %nal...asbcrbcv (A.5)
Layag = %nal...amcdrbcd- (A.6)
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Furthermore, it is useful to note that each product of I'-matrices can be written in terms
of the unit matrix, I'y, I'yp and T'gpe.
We choose the eight Killing spinors of the round S” to be orthonormal,

i’ =6, nlil =Tsus, (A.7)

where 77 = (n!)T.
The curved I'-matrices on the round seven-sphere are given by L = €T Hence,

in our conventions, the Killing spinors satisfy
. my e
iDpnt = ?I’mnl. (A.8)
The Killing spinors define a set of Killing vectors, 2-forms and tensors:

KI =it T, K, = T’y KLy = i Ty (A9)

mnp

respectively, whose equivalents are also defined in flat space. Using equation (A.8), the

J

reader may check that K!/ is proportional to the derivative of K17,

Du K] =m:K[;)

mn?

DK = 2magym KL (A.10)

Note that curved seven-dimensional indices of the Killing vectors and their derivatives are
raised and lowered with the round seven-sphere metric Gy, .
As all I'-matrices are traceless, we find that

ﬁlf‘ml...minl =0 (A.ll)

fori=1,...,6.

B Derivation of SO(7) tensor identities

In this appendix, we sketch the derivation of the SO(7) identities, listed in tables 1-7, for
the SO(3)xSO(3) invariant tensors (3.1) .
In the derivations below, we make heavy use of the completeness relation

166757 = 2K T K™ 8F 4+ KT KM EE (B.1)

as well as the following useful identities [9]:

1 I1J 1-KL 1, 1 1J KL [ ] 2

EY}TIKLKmnKp - ggp[mgn]a EEKITIKLKmnqu = — 45[7215”](1 + gféggn,
(B.2)

1 g+ glJ KL _ L 1 gt g1 gpaKL _ _ g5l - dl 2 5Pl

167 TJKLmn"tp __ggp[an]v 16 1JKLmn == [an] +§C mns
(B.3)

iy— KIJKKL__EO Srst iz— KIJKKL__EC’ Trst B.4

6 oreEmnKpy = = clmmparstS™s 16 21k KKy = = lmnpgrst T (B4)

One can verify these using the inversion formulae (3.2).
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Derivation of the identities in table 1:

Identities (i) and (ii). Consider the first equation in (3.4) contracted with K/’ K*&L:

KV @MV KPR 4 KN E PRy ) K
= K Zi Ko K™ P9 Zp o KPEE, - (BL5)

mn

where we have used the completeness relation (B.1) and the fact that KL/ KELZ =
0 by virtue of the fact that K%JKf L is selfdual, while Z ;. is anti-selfdual. Now,
substituting for the SO(7) tensors using the definitions (2.17) and equation (B.2) gives

mn 1 o otim ¢n mmn
28" Emn + §9t[m§n}gt[ § l=71 P Lnnp: (B.6)
which simplifies to
EMEm + 68" Enn = 3T P L. (B.7)

Repeating the above steps, except now contracting the first equation in (3.4) with
KlJK™EL gives
— A8 + £ + 306 = 9T P Ty (B.8)

Finally, by contracting the first cubic identity (3.7) with K[/ K“KL and simplifying as
before, except that the completeness relation (B.1) must be used twice, gives

(36 + 287 — €& — 186" 6pnn) & = 0. (B.9)

There are seemingly two cases to consider: first we consider the case in which the expression
in the brackets vanishes. Together, with equations (B.7) and (B.8), we obtain the equations
for £€™&p, €™y and TP T, in terms of €2, as they appear in equations in (i) and (ii)
in table 1. The equations derived from considering the second case, &, = 0, are already
contained in equations (i) and (ii). However, in our case, &, Z 0 anyway.

Note that we had to use a cubic identity, (3.7), to derive a quadratic identity. This
seems strange and one may wonder whether that was necessary or whether the identity
could have been derived from quadratic identities. However, a simple counting of the num-
ber of quadratic identities available gives two, whereas the number of unknown quantities
that we have expressed in terms of ¢2? is three. Note, however, that (3.7) is not used
anymore in deriving the identities in table 1.

Interchanging Y and Z in the discussion above, or equivalently by considering
the second identities in (3.4) and (3.7) gives analogous expressions for (" (pn, (™" Cmn
and S"™"PS, .

Identities (iii) and (vi). This case is similar to the example above. We contract equa-
tions (3.4) with K/ KPKL This gives identity (vi). Identity (iii) is obtained upon letting
index p = n and noting that the wedge product of an odd-form with itself vanishes, e.g.

ﬁmnpqrstsnpqsmt =0. (B.lO)
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Identities (iv) and (v). These identities are derived by contracting equations (3.4) with
KIJKEL and K%,Knp KL Tdentities (i)-(iii) are used to simplify the expressions.

Identities (vii) and (viii). Contract identities (3.4) with K./ K** and use identities

(i)—(v) to simplify.
Derivation of the identities in table 2:

Identity (i). The third identity in the line is proved by contracting the last equality
in (3.12) by d75. Using the appropriate inversion formulae in (3.2) and

M KL

1J KL abe
o KOG R = 3205k, (B.11)

we immediately find Sy, 7™ = 0.
The first two identities are derived by contracting either equation in (3.5) with
KIJKmKL and KIJKmnKL
m mn °

Identity (ii). Contract the last equality in (3.12) with K™ !/, whereupon we find
Zie Yoo K™ = 12F™. (B.12)
We then make use of the inversion formula for Z; ., ,,, (3.2) to find
1
- 1J LM JIK

Zier K™Y = ZS"WK}W K, (B.13)
Substituting this expression and the inversion formula for Y., , in equation (B.12), gives
the required result.
Identity (iii). These are obtained by contracting identity (3.5) with K[/ KL,

Identities (iv) and (v). The symmetric, in indices m and n, part of these are derived by
contracting (3.5) with K™ 1/ K" KL and K™P1J gn KL The antisymmetric part is derived
by contracting (3.12) with K™/,

Z?_KLMYJ—FKLMKmnIJ = 12F™", ZI_KLMYJ_KLMKmnIJ = 12F™". (B.14)

The evaluation of the left hand side of the above equations using the inversion formulae 3.2
yields the antisymmetric part of the identities.

Identities (vi) and (vii). These identities are derived by contracting identity (3.5) with
KLJ Kﬁf . Note that the F' terms in this expression arise through the use of identities (iii),
which have been used to simplify the expression.

Identity (viii). This is obtained by contracting identity (3.5) with K%KZ{;L .
Derivation of the identities in table 3:

Identity (i). These identities are proved by contracting equation (3.6) with K1/ KEL.

Identity (ii)—(v). These are obtained by contracting equation (3.6) with K./ KXE

mnttp
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Derivation of the identities in table 4:

Identities (i) and (ii). The required result is obtained by contracting identities (3.13)

Km[] KmnIJ

(with the — sign choice) with and

Identities (iii) and (iv). Contract identities (3.14) (with the — sign choice) with
KmnIJKpKL.

Derivation of the identities in table 5: it would, at first sight, appear that the
identities in table 5 are most easily derived analogously to the identities in table 4, sketched
above, using identities (3.14) except with the + sign choice. However, in fact they can most
simply be derived by contracting identities (iii) and (iv) in table 2 with &, Gy Emns Gmns Fm
and F,,, and using identities (i), (iii) and (iv) from table 1 and identities (i), (iii) and (iv)
from table 2 to simplify the resulting expressions. Note that the identities must be derived
in the order given in table 5 as earlier identities are used to obtain later ones.

Derivation of the identities in table 6:

Identity (i). We add 4£7"S,.,,,, to both sides of equation (iv) in table 3,

4

1,
4<qumnr + 4£qumm“ - §nqmnstuv<STtuv = SSS[qmgn]s - ggsqmn (B15)

Rearranging the above equation, we conclude that " ;Tinn, +£" ¢Smns is fully antisymmetric
in {¢g, m,n}. Hence identity (i).

Identities (ii) and (iii). Fully antisymmetrise the indices in identities (iv) and (v) in
table 3. This leads to a set of simultaneous equations, which can be solved to obtain
the result.

Derivation of the identities in table 7:

Identity (i). These are derived by contracting identities (ii) and (iii) of table 3 with &P
and (P, respectively and using identities (iii) of table 2.

Identity (ii). Contract (ii) and (iii) of table 3 with F? and use identities (i) of table 5.

Identity (iii). These are the most non-trivial identities to prove. We consider the first
of the identities, and the other follows from analogous arguments, or simply interchange
symmetry. However, before embarking on the proof, we note that contracting (v) in table 3
with Fj, and using identity (iii) of table 6 leads to an equation for the sum of the two
equations in (iii) and not on each separately. Therefore, we need another method.
Contract identity (iii) in table 4 with &,. Hence, using identity (i) of table 3,

nmnpqrstFpquTSt = 18sq[man}q§p. (B16)

In order to find an expression for Sq[m"Fp}q that is amenable to contraction with &,

we consider

ghm ¢, sl (B.17)
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Symmetry SO(8) tensor identities Associated SO(7) tensor identities
§ala = (21 + 5)(3 - 5)
68ap = (3 + g)éab - Tiafagb

+ + +
Ga ChmunCarnir = 12017, £4CT 6SabeScde = 126% + Nabede fgSetg

4S[achd]ef = nabcdgh[eSf]gh
6Se[abScd]f = nabcdgh(esf)gh
K,Kq =1, KapKp =0

YnYarwir = 805, — sF L E
ITMNYMNKL KL K *'r] KooKy = KoKy — 0

SU4)~ Fr8p = —5f ok —o
Yo, FM =y M yo M) abelte =
MIJK—- L - M[IJK L] - M[IJK L] -

TocdTbed = 4(0ap — Ko Kp)

Table 8. List of identities satisfied by Ga and SU(4)~ invariant tensors. We use notation where
(XrsKr)— refers to the anti-selfdual part of tensor X. The SO(7) tensors &, S and T are defined
according to the general definitions (2.7) and (2.8), and 4K, = Fi ;K17 4Ky, = Fr K.

This expression can be simplified in two ways. First, we can use identity (viii) of table 2
to rewrite & [m[an]r] and the identities in tables 1 and 2 can be used to simplify expres-
sion (B.17). Another way of simplifying the expression is to observe that, from (ii) in
table 3,

5[mqgnrsfp]q7" — g[mlchr‘glnplﬁ

Hence, we can also rewrite expression (B.17) using identity (iv) of table 2. We can now
equate the two different expressions to derive

278U Pl = 26¢S™P 4 2(9 — ()T 4 3¢ImgnPlag,
— 6¢Smnerl — 6eSImNCP, + 12¢TU™ ¢, (B.18)

The required identity can be deduced by substituting the above equation into expres-
sion (B.16) and simplifying using the identities listed in the tables.

C Comparison of stationary points

In this appendix, we present table 8, which gives a list of the various tensors used to
construct other stationary point uplifts and the associated identities they satisfy.

In Go, the single set of tensors C* do not close on themselves at the quadratic level,
but one can form new tensors from the contraction of C*CT. However, the new SO(7)
tensors that can be defined for these objects are related to £ and S at the quadratic level,
hence there is no simplification in doing this.
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D Choice of SO(3)xSO(3) invariants

The metric (5.8) and the 3-form potential (5.17) have been derived using two sets
of SO(3) x SO(3)-invariant geometric objects on S”, namely, (£, &my Emny Smnp) and
(¢, Cm» Cmns Timnp), that are associated with two sets of (anti-)selfdual SO(8) tensors YlijL
and ZI“—LJKL, respectively. This choice of invariants is crucial for being able to carry out
the simplification of the metric and the 3-form potential in sections 5.1 and 5.2 starting
with the uplift formulae (2.3) and (2.4), and also for the explicit check of the equations of
motion in section 6.

However, as we have already discussed in section 2.1, one might as well choose to
work with a single set of the geometric objects associated with the particular noncompact
generator of Er(7) that parametrises a given stationary point. In our case that means setting

Pryxr=cosaY e, —sinaZf e, WikL=cosa Yy e +sinaZy ey (D.1)
and expressing the solution in terms of the corresponding set of SO(7) tensors

Yon = COSQ &y — SN (i X, = cosa&y —sina(y, r= cosaf—sinal,

Smnp = €08 & Sppp + sina Ty -
(D.2)
To do this one may introduce the complementary set of rotated tensors, 3,,., 3m, 3 and
Tnnp, such that

Emn = cosal,,, +sinaj,,, Cmn = —sinayg,,, +cos a3, etc. . (D.3)

After rewriting the solution in terms of the rotated tensors, one can check using identities
in section 3.2 that all terms involving the additional tensors either cancel out or can be
rewritten in terms of (D.2).

The calculation is long and, as one might expect, results in more complicated and less
symmetric formulae for the metric and the 3-form potential. The reason for this is that the
geometric objects that are being eliminated, 3,,,,, , ..., Tmnp, are replaced by more complex
expressions in terms of sums of products of tensors that are kept. To illustrate this point,

let us consider the warp factor, A, given in (5.12). At the stationary point (4.12),3

1 1
X2+ 27X 20 + 23+ =20 Kcos(Qoz) + 5> €2 — 2sin(20) £C — (cos(Zoz) - 5) ¢2
— 72V/10 (cos a & — sina ¢) 4 540
=2412 — 1632 — 72101 + 540

=401% — 72V101 + 16 1™ 1" G pgSnP? + 396, (D.4)

3 Throughout this section we assume that ¢ and s are set to their stationary point values. Otherwise,
there are additional terms proportional to 3 that must be dealt with separately. We have not analysed that
case in detail.
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where, to eliminate 32, in the last step we used the fact that
F GG =9 - - =9 -1" - 5%, (D.5)

which follows from the identities in tables 1, 2 and 5.

One may also note that the a-dependence in the first line in (D.4) is completely
removed by rewriting the right hand side in terms of the rotated tensors using (D.3).
Furthermore, the rotated tensors, r,,,, .. Gmnp and 3,,, -, Tmnp, satisfy the same
identities as &mn s+« s Smnp a0d Gy - -+, Tinp, Tespectively, in tables 1-7. This means
that the calculation is precisely the same for all @ and thus we may as well set a = 0.
The problem then is simply to rewrite the metric (5.8) and the 3-form potential (5.17) for
a = 0, solely, in terms of £, , & and Syupp. With this in mind, we now turn to the metric
tensor (5.8).

It can be shown that one can write all SO(7) tensors appearing in the metric in terms
of a small number of fields constructed from &, &, &mn and Spypp only:

(i) scalars

&, = =" ShpgSn? (D.6)
(ii) vectors
Em s Em = " SmpgSn’?, (D.7)
(iii) symmetric tensors
émn ) émgn ’ gmn ) EmEn ) (D8)
and
Emn = Smpanpq 3 Emn = fmpfnqsprssqm )
an = ‘fpgq‘s’mpranr 5 an = é—pqupranT ; (DQ)
A = fquT (mnn)pqrstuSStu ) Kmn = f(p§W) (mTn)pgrstu Suw? sete

Using the identities, one finds that there are two relations between the symmetric
tensors. One is simple
gEmn =6 ﬁmn s (D.l())
while the other involves most of the tensors and is quite complicated. We choose the basis
of the symmetric tensors by eliminating =,,=, and an from the list.
Now, the metric (5.8) (with a = 0 and for general s and c) is
2
Imn = % [gO f]mn + 91 &Emn + 925mén + 938 mn + g4§mn + 95 0mn + g6 Arn + 97Kmn] > (D-ll)

where
1
go= — 6V2c€s® — 12v/2c€ s + 684 (46 + 2+ 126) + 2 (£ +27) s* + 36,
9 45
91:28 (18\/§C+£S (75 —6)> s go= — —,
) 3 (D.12)
gs= = 5 (—36\f2c§s + (11€2 + 63) 52 + 108) : gu= — 425,
254 5¢st 5 g3 254
= - — =—— —V2cs = - —.
gs 3 g6 9 ) gr 3
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This completes the proof that the metric tensor can be expressed entirely in terms of
a single set of geometric objects, &y , §m and Sy, together with composite tensors that
are built from them. A similar result should also hold for the 3-form potential. Since the
solution written in this form is clearly quite complicated, we will not discuss this further.
It should be clear at this point that the more symmetric basis of invariant tensors used
throughout the paper is a much better choice for doing calculations and that it leads to
simpler and more symmetric looking formulae.

E Ambient coordinate embedding

In this appendix, we provide an explicit embedding of the R* in R®. We use the following
representation of seven-dimensional I'-matrices in terms of Pauli matrices:

MN=1®d e, =12, (E.1)
MP=0?®del, M=sloled (E.2)
=210 M=cedol, (E.3)
I"= —-o*0d*®q’ (E.4)

In terms of seven-dimensional T-matrices the SO(8) generators '8 are'
et =peb 98— _jpe, (E.5)
In this representation,
M#i=- _HBedel, I'M=(¢ledel, IM=—i’elxl (E.6)

Therefore, we can easily verify that for the embedding given by

myat = {ut,u?, 03, 0t —ot, 0% w3 ut) (E.7)

the SO(3)xSO(3) invariant scalars, equations (7.10) and (7.11), are
E=-3u-u—v-v) ¢ =—6u-wv. (E.8)

Furthermore,
Szt = F4A5B 2B = {v!, 02, —u?, —ut, ut, u? 03 vt} (E.9)

so the a rotation rotates the u coordinates into the v coordinates, and wvice versa.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

11 the expression below we use I' for the SO(8) generators in the spinor representation and denote the
seven-dimensional gamma matrices by I' to avoid confusion. However, we do not make such a distinction
elsewhere.
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