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Abstract

Background: Plant phenotype datasets include many different types of data, formats, and terms from specialized
vocabularies. Because these datasets were designed for different audiences, they frequently contain language and
details tailored to investigators with different research objectives and backgrounds. Although phenotype
comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that
span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited
by the absence of a common semantic framework.

Results: We developed a workflow to curate and standardize existing phenotype datasets for six plant species,
encompassing both model species and crop plants with established genetic resources. Our effort focused on
mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea
mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine
max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation
standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for
cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common
format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait
Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant
phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein
functions, and shared metabolic pathways that underlie informative plant phenotypes.

Conclusions: The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon
phenotype data analyses represents a novel approach to plant phenomics that enhances the utility of model genetic
organisms and can be readily applied to species with fewer genetic resources and less well-characterized genomes. In
addition, these tools should enhance future efforts to explore the relationships among phenotypic similarity, gene
function, and sequence similarity in plants, and to make genotype-to-phenotype predictions relevant to plant biology,
crop improvement, and potentially even human health.
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Background
Plant phenotypic variation constitutes the raw material
for much of plant biology, including research on gene
function in model species, breeding of desirable crop
varieties, functional investigations from the cellular to
ecosystem scale, and inference about the evolution and
ecology of both plants and the species that interact with
them. Disentangling the relationships among genotypes,
phenotypes, and the environment is one of the grand
challenges of contemporary biology [1], yet this endeavor
is severely limited by our ability to collect, integrate, and
systematically analyze phenotypic data [2]. Researchers
generally use free text to describe phenotypes, which al-
lows for rich descriptions, but makes it hard to compare
phenotypes across species, integrate data into the exist-
ing knowledge landscape, or derive information from
combined datasets [3]. In recent years, ontologies have
become powerful tools for working with phenotypic
data, particularly in biomedicine, because standardizing
terminology across species and sub-disciplines enables
inference based on logical relationships [4-6]. Here we
present a new approach to studying plant phenotypes
modeled on recent advances in the use of ontologies in
biomedical research on animal model systems.
Throughout this paper, we use the words phenotype,

phene, and phenome with precise meanings. A ‘pheno-
type’ is the composite set of one or more observable
characteristics associated with a given organism or cell,
that results from the interaction of the genotype and the
environment [7,8]. The separate characteristics that
make up a phenotype are termed ‘phenes’ [9,10]. For ex-
ample, in maize, a dwarf phenotype can be defined as a
composite of the phenes ‘reduced internode length’ and
‘compact, broad leaves’. Phenes relate to ‘phenomes’ in
the way that genes relate to genomes: an organism’s or
species’ phenome is composed of the complete set of its
phenes. Phenomics, therefore, is the study of all pheno-
types associated with an organism or species (i.e. its
phenotype space). In correspondence with Genome
Wide Association Studies (GWAS), Phenome Wide
Association Studies (PheWAS) associate a gene with a
variety of phenes or phenotypes, which is particularly
relevant for genes that have a pleiotropic effect [11].
Biomedical scientists have developed and utilized

phenotype ontologies and ontological reasoning to support
comparative and predictive phenomics [12,13]. Phenotype
ontologies are controlled, hierarchically-related phenotypic
descriptions that enable large-scale computation among in-
dividuals, populations, and even multiple species [14]. A
number of vocabularies and pre-composed phenotype
ontologies (in which terms are pre-defined) have been
developed for specific taxa or applications [15-18], but
comparison across datasets or among different species
requires an extensive alignment process whenever
different vocabularies/ontologies are used to represent
the data. An alternative to phenotype ontology alignment
is the use of post-composed phenotypes, in which all the
elements of a phenotype are explicitly logically defined or
“composed” from existing terms from species-independent
ontologies [16]. One method of post-composing a pheno-
type description is to first break it down into its compo-
nent phenes, and then define an affected Entity (E) and a
describing Quality (Q) for each phene [19,20]. In this
method of post-composing phenotypes, Entity-Quality
(EQ) statements are composed for all phenes under con-
siderations, and the entire set of phenes is reasoned over
simultaneously. Finally, to derive novel insights from cu-
rated genotype and phenotype data, semantic similarity
measures are applied, based on a consistent ontological
representation [21-23].
This approach has been applied successfully to mam-

malian phenotypes to predict gene function across spe-
cies, as well as disease, drug, or pathway involvement of
genes [5,12,13,24,25]. Two major limitations to adopting
a similar approach in plants are the lack of phenotype
data curated with species-neutral ontology terms, and the
need for standards for creating EQ statements to describe
plant phenotypes. Nonetheless, two important existing re-
sources are available to support post-composed ontology
analysis of plant phenotype data: 1) well-developed ontol-
ogies for plant science [26], particularly the Plant Ontology
(PO) [27] and Gene Ontology (GO) [28,29]; 2) curated sets
of mutant phenotype descriptions for multiple plant spe-
cies in model-organism and crop databases such as
MaizeGDB [30,31], Oryzabase [32], Gramene [33,34], and
the Sol Genomics Network (SGN) [15,35] as well as in the
literature (e.g., [36]). In addition, an intellectual framework
for logically defining plant traits has been developed in the
Plant Trait Ontology (TO) [33].
To push the field of plant phenomics forward, it is clear

that there is a need for additional high-quality phenotype
descriptions generated by research, as well as for high-
confidence predictions of phenotypic associations among
equivalent phenotypes, both across species and between
phenotypes and their causative genotypic variants and en-
vironments. Here we describe how our work to translate
existing high-quality phenotypic descriptions across six
plant species enabled the prediction of phenotypic asso-
ciations. Furthermore, we demonstrate that additional
curation of such data into ontological representations
can expand the phenotypic predictive capacity of plant
sciences.
This paper includes methodology, as well as an initial

dataset that was used to test and refine the methodology.
In brief, we compiled EQ statements for 1,742 phenes
from 2,747 genes and gene models in six plant species
[Arabidopsis thaliana (Arabidopsis), Zea mays ssp. mays
(maize), Medicago truncatula (barrel medic or Medicago),
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Oryza sativa (rice), Glycine max (soybean), and Solanum
lycopersicum (tomato)] and applied consistency checks to
ensure a high-quality phenotype annotation set. The
annotated phenotype data set was subjected to an auto-
mated semantic similarity analysis, based on PhenomeNET
[37,38], and the results are available in a separate plant in-
stance [39]. The semantic similarity dataset was evaluated
for its ability to enhance predictions of gene families, gene
functions, and shared metabolic pathways across the six
species and compared to an existing classification of plant
phenotypes [36].

Results and discussion
A method for describing phenotypes with a common
semantic representation across six plant species
We include in the Results a brief description of our
method, because this is the first report outlining this type
of analysis of phenotypes across multiple reference species
in plants. For this analysis we limited our species set to
the model/crop species Arabidopsis, maize, Medicago,
rice, soybean, and tomato, to take advantage of the exist-
ing data for these species. However, the method could be
applied to any plant for which there are characterized mu-
tant phenotypes associated with sequenced genes. To
maximize the ability to compare both phenotypes and ge-
notypes across species, we used only genotypes for which
the sequence was known and made efforts to limit our
datasets to phenotypes resulting from mutations to a sin-
gle gene. For genes where phenotype information was
available for different alleles, we counted each allele as a
separate genotype (Additional file 1). For each species, the
authors with the most relevant expertise selected free text
phenotype descriptions for inclusion using methods spe-
cific to that species (see Methods). The number of geno-
types analyzed varied widely among species (maximum
2,393 in Arabidopsis, minimum 30 in soybean), reflecting
the availability of phenotypic descriptions for each species.
We first decomposed each free text phenotype descrip-

tion into a set of simple atomized statements correspond-
ing to each component, or “phene”, of the phenotype. We
then translated each of these components into an EQ (En-
tity-Quality) statement (Figure 1). As with EQ statements
previously developed for mammalian species, we distin-
guish between structural phenotypes, such as “short
plant”, and process phenotypes, such as “late flowering”
[40]. In a structural phenotype, the Entity is an affected
part of the plant, represented with a term from the Plant
Ontology (PO) [27] or Gene Ontology (GO) cellular com-
ponent branch [29]. In a process phenotype, the Entity is
an altered process represented with a term from the GO
biological process branch. In both cases, the manner in
which the entity is affected was described using Quality
terms from the Phenotype and Trait Ontology (PATO)
[16]. For example, the atomized statement “short leaves”
can be expressed as: Entity = vascular leaf from the Plant
Ontology (PO:0009025)a and Quality = decreased length
from the Phenotype and Trait Ontology (PATO:0000574).
We found that many of the phenes required more com-

plex EQ statements and terms from additional ontologies
to fully represent their meaning. For example, the phene
“lack of anthocyanins in aleurone” could be expressed as:
aleurone layer (PO:0005360) lacks parts or has fewer parts
of type (PATO:0001999) anthocyanins (CHEBI:38697), with
the form:

primary E1 − Q − secondary E1

where Q is a relational quality. In addition, we found that
the Entities themselves may be complex. For example, an
EQ statement for the free text “silks are green” would be
phrased: style (PO:0009074) part_of (BFO:0000050)b ear in-
florescence (PO:0020136) green (PATO:0000320), with the
form:

primary E1 − R − primary E2½ � – Q

where R is a relation from the Relation Ontology (RO)
[41,42]. All EQ statements in the dataset could be parsed
using the generalized formula:

primary E1ð Þ − R − primary E2ð Þ½ � − Q − QL½ �
− secondary E1ð Þ − R − secondary E2ð Þ½ �

where QL is a qualifier to the quality Q. At a minimum,
we required that a primary E1 and Q be present, and any
of the other elements were optional. We found that all
phenotypes in our dataset could be described with the on-
tologies listed in Table 1, although we recognize that our
dataset does not encompass the entire breadth of possible
plant phenotypes, and additional ontologies and develop-
ment of existing ontologies will be needed to annotate
more diverse phenotypes.
Because a phenotype consists of one or more phenes,

one or more EQ statements were used to describe it. For
example, the phenotype “corngrass” in maize is described
as “narrow leaves, extreme tillering, highly reduced ears
and tassel; grasslike growth habit, often vegetative leaves
in the ear and tassel”. This phenotype was broken down
into 5 phenes, which were annotated with EQ statements
(Figure 1). Likewise, an individual EQ statement can be
used to describe more than one phenotype. In the corn-
grass example, the EQ statement that describes the “nar-
row leaf” phene is also used in several other phenotypes,
such as “narrowleaf” (Additional file 1). Our approach
considers each “phenotype” as the sum of its individual
EQ statements.
This method allows for highly detailed and species-

independent descriptions of phenotypes, but still has sev-
eral limitations. Creating accurate EQ statements requires
knowledge of both the species-specific phenotypes as well



Figure 1 The method applied to annotate mutant phenotypes from textual descriptions. Textual descriptions from the literature or
databases (A), based on observations of mutant plants, are first broken down into atomized statements corresponding to phenes (B) that are
then represented with EQ statements (C).
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as the ontologies used to describe them. Brief pheno-
type descriptions may be available in databases (e.g.,
MaizeGDB, SGN), but much more complete and accur-
ate descriptions of mutant phenotypes are spread over
many publications spanning several years. Collecting
and extracting phenotype information is very labor in-
tensive. In addition, EQ statements are created by curators
and thus still reflect a certain amount of subjectivity. It is
often possible to build more than one EQ statement for
the same textual description, and it is not always clear
when to use a process entity versus a structural entity. In
this project, we established a strict set of rules and proto-
cols and held regular meetings to help ensure consistent
construction of comparable EQ statements across species
Table 1 Description of applied ontologies

Ontology Content

Plant Ontology (PO) [27] Plant anatomy and morphology and
development stages

Gene Ontology (GO) [29] Biological processes, cellular components
and molecular functions

Chemical Entities of Biological
Interest ontology (ChEBI) [43]

Molecular entities focused on ‘small’
chemical compounds.

Phenotypic Qualities
Ontology (PATO) [16,19]

Phenotypic qualities

Plant Experimental Conditions
Ontology (EO)

Treatments, growing conditions, and/or st

NCBI taxonomy (NCBITAXON) A curated classification and nomenclature
the organisms in the public sequence dat

Relation Ontology (RO) [41] Core upper-level relations and biology-spe

Species-independent ontologies used to form EQ statements. All ontologies were d
(see Methods). In the future, we would like to evaluate the
importance of consistently structured EQ statements for
analyzing semantic similarity, and determine whether
some variation can be tolerated.

An ontology-based dataset of mutant phenotypes for six
reference plant species
The complete list of genes, genotypes, phenotypes, at-
omized statements, and EQ statements can be found in
Additional file 1, which is also included as part of the
complete dataset housed in the iPlant Data Commons [44].
The largest set of annotations came from Arabidopsis,
followed by maize, rice, and tomato (Table 2). The low
numbers of annotations for Medicago and soybean reflect
Link

http://www.plantontology.org/

http://geneontology.org/

http://www.ebi.ac.uk/chebi/

http://obofoundry.org/wiki/index.php/PATO:Main_Page

udy types http://planteome.org/amigo/cgi-bin/crop_amigo/
term_details?term=EO:0007359

for all of
abases.

http://www.ncbi.nlm.nih.gov/taxonomy

cific relations https://code.google.com/p/obo-relations/

ownloaded on 15 March 2014.

http://www.plantontology.org/
http://geneontology.org/
http://www.ebi.ac.uk/chebi/
http://obofoundry.org/wiki/index.php/PATO:Main_Page
http://planteome.org/amigo/cgi-bin/crop_amigo/term_details?term=EO:0007359
http://planteome.org/amigo/cgi-bin/crop_amigo/term_details?term=EO:0007359
http://www.ncbi.nlm.nih.gov/taxonomy
https://code.google.com/p/obo-relations/


Table 2 The number of EQ statements, genes, genotypes, and phenotypes they were associated with, for six plant species

Species #EQs (phenes) #unique EQs - all
genotypes

#genes #genotypes #phenotypes

Arabidopsis thaliana 5172 1260 2393 2393* 1385

Zea mays ssp mays 373 180 114 169 117

Oryza sativa L. 340 271 92 95 86

Solanum lycopersicum 269 174 72 128 90

Medicago truncatula 149 99 40 45 40

Glycine max 61 39 30 30* 24

Total 6364 2023 2741 2866 1742

The number of EQ statements, genes, genotypes, and phenotypes they were associated with, for each species.
*#Genotypes equals # genes because no information on alleles was available for these species.
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the relatively small number of studies on these species and
the scarcity of curated phenotypes. There was little overlap
of unique phenotypes among species (Additional file 2). In
the following sections, we describe some of types of com-
putational analyses that can be done with this dataset.

Quantitative analysis of pairwise semantic phenotype
similarity of genotypes across the entire dataset
To determine pairwise semantic phenotype similarity
scores, we used the method described for mammalian ge-
notypes [37] where phenotypes are represented by EQ
statements that are then integrated using species-
independent ontologies and a semantic similarity measure.
That is, every phenotype (which is composed of one of
more EQ statements) is compared to every other pheno-
type, and their similarity within the ontological graph is
evaluated. For a pair of phenotypes to receive a score of 1,
each phenotype would have to contain the same number
of identical (or nearly identical) EQ statements. A score of
0 would mean that none of the EQ statements for either
phenotype were similar. For the 8,213,956 possible pairs
from the 2,866 genotypes, 548,888 (7%) of the genotype
pairs yielded phenotype semantic similarity scores greater
than zero. Score distributions, overall and on a per-species
basis, are provided in the following sub-sections.

Distribution of similarity scores
We calculated semantic similarity scores for 548,888
genotype pairs in the range of >0 – 1. A similarity score
of 0 indicates no semantic overlap with respect to the
phenotype, while a similarity score of 1 indicates an
identical semantic phenotype description (and therefore
equivalent sets of EQs). Figure 2A illustrates the distri-
bution of semantic similarity scores for intra- as well as
inter-species genotype pairs. For 13% (71,290) of the
genotype pairs possessing a semantic similarity score,
the score fell into the range 0.9 – 1 (not including the
similarity of a genotype to itself, which is always 1).
While 13% seems high, some of the nearly identical
scores occur because of the limited availability of pheno-
type information for many genotypes. For example, if
two genotypes are annotated with the same single EQ
statement, the result is a semantic similarity score of
one, even if in reality those mutant genotypes may have
many more phenes that were not recorded. Only known
phenes that were already curated from the scientific lit-
erature were assigned to genotypes, and our method
cannot compensate for gaps in the literature (e.g., due to
limitations in biological experiments). As the dataset
grows, a better separation of genotypes with respect to
their semantic phenotype similarity will be possible.
Almost half (241,042 = 44%) of the non-zero semantic

similarity scores are below 0.1, indicating that many of the
phenotypes show only a small overlap in their description.
For example, the rice mutant DWARF4 (Os03g0227700
[45], allele osdwarf4-1) shows a similarity of 0.08 with the
rice mutant MADS18 (Os07g0605200 [45]). This results
from both genes being annotated with “dwarf”-related
phenotypes but also possessing diverging annotations,
such as increased panicle number for DWARF4 and early
flowering for MADS18. It is not surprising that most of
the phenotypes show at least some marginal overlap, as
this is intrinsic to the aim of the study: making phenotypes
comparable. This highlights the potential of the method,
but, at the same time, raises the need for consistent, co-
herent, and complete phenotype annotations in order to
computationally replicate the underlying biology and de-
rive accurate predictions.
Although there are more complex scoring mechanisms

that take frequency of EQ statements into consideration
[23], we applied a Jaccard index that determines the over-
lap of phenes used in the phenotype descriptions. In an
earlier study, it was shown that different types of semantic
similarity measures do not differ much as long as the re-
sults are interpreted carefully [21]. In future work, we in-
tend to investigate the applicability of alternative scoring
methods, in combination with the development of bench-
mark sets for evaluation purposes.



A) B)

D)
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Figure 2 Semantic similarity score distributions for inter- and intraspecific pairwise phenotype similarity. When binning all semantic
similarity scores across all species, 44% of semantic similarity scores indicate a relatively low phenotypic overlap between genes (semantic
similarity range 0–0.1) while 13% show highly similar phenotypes (similarity score range 0.9-1) (A). Distributions of intraspecific scores
(pairwise scores where both genotypes belong to the same species) were similar to the overall distribution of scores (B-H).
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Species-specific distribution of scores
To obtain further insights into the distribution of similar-
ity scores, we split similarity scores according to species. If
both genotypes that were used to calculate the pairwise
similarity score belong to the same species, we recorded
the resulting similarity score only for this species. If both
genotypes leading to a particular similarity score belong to
different species, we recorded it as a cross-species score.
The resulting seven similarity score distributions are illus-
trated in Figure 2B-H. Species-specific score distributions
are mostly consistent with the overall score distribution
(Figure 2A). There are some differences for soybean and
Medicago, but this is likely due to the small sizes of the
phenotype annotation sets in these species.

Differences between the semantically-generated
phenotype network and a manually derived
phenotype grouping
A previous analysis of Arabidopsis used the same set of
phenotypes and laid much of the groundwork for this
present study [36]. Mutant phenotypes were categorized
in a simplified, three-level hierarchy consisting of 4
groups divided into 11 classes and 42 subsets. Each gene
was assigned to one of 11 phenotypic classes based on
the developmental stage when the phenotype was first
observed and what methods and conditions were used
to detect it (see more details in Methods). Genes were
also assigned to one or more of the 42 subsets, based on
the nature of the phenotype (e.g., gametophyte defective,
flowering time).
To assess whether our results recapitulate those of

[36], we calculated the average similarity scores for each
of their classes (higher level grouping) and subsets
(lower level grouping). Semantic similarity by class was
greater than 0.3 for all classes except Vegetative, and
ranged from 0.13 for Vegetative to 0.87 for Chemical
and Biological (Additional file 3 and Figure 3). Average
semantic similarity scores were lower and more variable
across subsets, ranging from 0.10 for GEM (gameto-
phyte, embryo defective) to 0.92 for OBI (other bio-
logical interactors), with 25 of 42 subsets having average
scores less than 0.3 (Figure 3). Although there were in-
deed several classes and subsets that had good concord-
ance with the semantic similarity scores, in general,
semantic similarity scores within both classes and sub-
sets were low (less than 0.5).
There could be several reasons for low semantic similar-

ity scores within classes or subsets, such as annotations
that are not ideally defined, a poor choice of semantic
scoring mechanism, or classes/subsets that are too broadly



Figure 3 Average semanitic similarity scores for previously derived groupings of Arabidopsis genotypes. The average pairwise semantic
similarity for subsets previously identified by [36] ranged from ~0.1 to ~0.9. Subsets are shown grouped by the classes and groups to which
they belong.
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defined and therefore contain a large variety of pheno-
types. In general, we expected pairs of genes within the
same subset to have lower semantic similarity scores than
pairs of genes within the same class, because genes can
belong to multiple subsets, but only a single class. If
the phenotype of a gene has multiple phenes, that gene
should to belong to multiple subsets, and unless two
genes share all of the same phenes (and therefore be-
long to all of the same subsets), they would have a rela-
tively low similarity score within each subset. Genes in
the same class may have somewhat higher similarity
scores, because classes aggregate several phenotypic
subsets (Figure 3). However, they do not aggregate sub-
sets from other classes (as semantic similarity does)
and thus are unlikely to completely mirror semantic
similarity scores.
Examination of two contrasting subsets, Flowering

time (FLT) and Pathogens/Herbivores (PTH), can help
to explain some of the agreement or disagreement be-
tween membership in a class or subset and degree of se-
mantic similarity (Figure 3). The PTH subset seems to
be more coherent with respect to phenotype annotations
than the other groups, which suggests that PTH genes
are not documented as having pleiotropic effects. In
contrast, pairs of genes in the FLT subset have low aver-
age semantic similarity, suggesting that these genes are
highly pleiotropic. Consistent with this, the PTH subset
genes have on average 1.68 phenes whereas genes in the
FLT subset have on average 3.99 phenes.
The categorical system devised by [36] has the dis-

tinct advantages of being more intuitive and not
requiring an understanding of ontologies to make an-
notations or carry out an analysis of the data. However,
the disadvantages are that category boundaries are
sometimes somewhat arbitrary, very disparate pheno-
types may be included in a single category (e.g., miscel-
laneous categories), and each phenotype may be forced
into a single class. Although the class/subset classifica-
tion can capture pleiotropic phenotypes, it does not
provide a way to compare pleiotropic phenotypes of
multiple genes the way semantic similarity scores based
on collections of EQ statements does. In contrast, the
ontology approach allows the grouping of phenotypes
at any level of the ontology that may be appropriate for
a particular analysis, while still allowing each observa-
tion (phene) to be separately annotated.

Semantic similarity predicts participation in shared
metabolic and regulatory pathways
It is a premise of this work that through computational
analysis of EQ statements representing phenotypes, bio-
logical processes can be recapitulated, modeled, and
even discovered. Were this to be true, one would expect,
for example, that gene products in the same metabolic
pathways would be annotated with EQ statements that
are highly similar. To test this hypothesis, we used the
PlantCyc project databases AraCyc (v 11.5) [46], Oryzacyc
(v 1.0), SoyCyc (v 4.0) and CornCyc (v 4.0) as well as
LycoCyc from SGN (v 3.3 Solanum lycopersicum) [47],
and MedicCyc from the Noble Foundation [48]. One
metabolic pathway that is well populated among those da-
tabases and for which our phenotype datasets have
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representation is the phenylpropanoid biosynthesis initial
reactions of flavonoid biosynthesis. 3-hydroxy flavo-
noids, also called anthocyanins, are pigments. They
serve to, e.g., attract pollinators and protect plants from
UV-B damage [49,50].
For the gene products involved in the phenylpropa-

noid biosynthesis pathway – more specifically the initial
reactions of flavonoid biosynthesis – we queried Plant
PhenomeNET. The most informative query result came
from maize, which had only the c2 gene (colorless2 con-
verts 4-coumaryl-Coa to 2′, 4, 4′, 6′-tetrahydroxychal-
cone) curated into the phenylpropanoid biosynthesis
initial reactions. When Plant PhenomeNet was queried
with GRMZM2G422750 (the gene model identifier for
c2) a number of maize genes associated with phenotypes
were returned:

c2 GRMZM2G422750 similarity score 1 (identity: this
is the query)
c1 GRMZM2G005066 similarity score 1
r1 GRMZM5G822829 similarity score 0.6666666667
b1 GRM similarity score 0.5

All three of the identified gene models are involved in
the anthocyanin pathway of maize, which controls fla-
vonoid synthesis (reviewed in [51]). More specifically,
the gene products of the c1, r1, and b1 loci activate
genes in the anthocyanin pathway. This result: (1) indi-
cates that reasoning across curated phenotypes in plants
is capable of creating result sets that recapitulate well-
characterized biological phenomena, (2) hints that for
plant species that are not genetically well-characterized,
the ontological reasoning approach to predicting
phenotypic associations could assist in forward genetics
approaches, and (3) highlights the potential use of rea-
soning across phenotypic ontological associations to
prioritize high-quality data curation where data are
missing from or complementary to repositories like the
PlantCyc database.
Focusing on (2) – that the suggested approach can

help with characterizing understudied species – the rea-
soning is as follows. Consider a poorly studied species
with a number of mutant phenotypes that include an al-
tered seed color phene. The phenotypes of this species
would be described and codified using ontological rep-
resentations. These phenotypic descriptions then could be
used as queries to return genes from a well-characterized
species (e.g., maize) with phenotypes that have high simi-
larity to the phenotype in the poorly studied species. This
result set could indicate to a researcher who is not an ex-
pert in pigment biology that the flavonoid and anthocya-
nin biosynthetic pathways and their regulators were of
interest for determining which genes were responsible for
the phenotype.
Evaluation of phenotypic similarity across orthologs and
gene families
Manual assessment of gene families
We were able to place 2,741 EQ-annotated genes (2,393
Arabidopsis, 30 soybean, 40 Medicago, 92 rice, 72 to-
mato, 114 maize) into 1,895 gene families, of which 460
families contain two or more genes annotated with EQ
statements. The gene families, based on the Phytozome 10
Angiosperm-level families [52], generally contain both
dicot and monocot representatives from the species in this
study. Forty-two of the families contain between five and
12 genes with EQ statements, allowing us to assess how
often homologous genes have similar functions. Further,
there are 147 families that contain EQ statements from
two or more species. These are of interest because it al-
lows us to assess how often functions are conserved be-
tween orthologs.
For most families with multiple EQ-annotated genes,

gene function is conserved or similar. For example, in the
terpene synthase family (family 54585183, Additional files
4, 5 and 6), with 12 EQ-annotated genes from Arabidopsis,
rice, and maize, all genes included aspects of “dwarf” phe-
notypes (quality “decreased height”, PATO:0000569).
However, salient phenotypes in maize also include floral
hermaphrodism, in contrast to the typical male and female
floral separation in wild type domesticated maize. In the
Flowering Locus T family (family 54614050, Additional files
4, 5 and 6), there are 12 EQ-annotated genes from five of
our study species. All of the characterized mutant pheno-
types involve floral development or photoperiod control.
We also observed gene families in which annotated

phenotypes are quite different across orthologs. For ex-
ample, in the family (54614050, Additional files 4, 5
and 6), a leucine-rich repeat, serine-threonine kinase
family, the SUNN mutant in Medicago display extra
root nodules, while the CLV1 mutant in Arabidopsis
displays abnormal leaf phyllotaxy and altered floral
morphology [53,54].
Plant phenomeNET: a web interface for searching the
plant dataset
We adapted PhenomeNET [37] to provide the results of
the computational analysis of the plant data sets to the
broader research community in an online form. Plant
PhenomeNET is available via [39] and provides access to
the genotypes of all six species that possess at least one
EQ statement. For each genotype, a detailed genotype
page provides information about similarity scores to any
of the other genotypes as well as a link to an additional
page providing the phenotype assigned by the curator
and those inferred via the ontologies. We note here that
similarity scores of 0 for genotype pairs are not reported
in Plant PhenomeNET.
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Using plant phenomeNET – Searching for tasselseed1
To illustrate the usage of Plant PhenomeNET, we pro-
vide an example search for tasselseed1 (ts1) maize gene.
The tassel of maize normally bears only male flowers,
but in the ts1 mutant, female flowers also develop in the
spikelets born on the tassel. By entering “ts1” into the
search box and submitting the form, we obtain a list of
genes that all match the string “ts1” (for search query
and results see: panel A and B of Figure 4). For the navi-
gation from the search list, there are two options pro-
vided (see last two columns in panel B of Figure 4): one
can either show the phenotype or explore phenotypically
similar mutants.
By following the first link “show phenotypes”, the user

obtains the assigned (top list, panel C, Figure 4) as well as
the inferred EQ statements (bottom list, panel C, Figure 4)
for the ts1 gene. For example, the curator assigned an EQ
statement for the “abnormality of the tassel” as part of the
phenotype. One of the EQ statements that was inferred
based on the ontology structure is “extra floral organs
in spikelet”.
Following the second link to “explore” similar mutants,

the user obtains an ordered list of phenotypically similar
mutants with the most similar at the top and the least
similar at the bottom (see panel D, Figure 4). Each of the
mutants provided in the list can then be explored further
with the links provided for navigation. One interesting
case is presented in our list with the rice mutant FOR1,
with the atomized statement “extra floral organs in the
spikelet”. This example illustrates how important cor-
rectly assigned EQ statements are, and how, using in-
ferred EQ statements, connections can made between
mutants from different species.

Conclusions
After defining a common method for semantic represen-
tation of plant phenotypes, we annotated 2,741 geno-
types with 2,023 unique EQ statements. This represents
the first cross-species plant data set that can readily be
integrated with other data via shared ontologies. This
use of ontologies to support phenotypic reasoning en-
ables integration beyond plants and would enable gener-
alized analyses to discover phenomena conserved across
all domains of life as described in [55]. An example of
such cross-domain inference is their finding that the
pathways that underlie gravitropism sensing in Arabi-
dopsis root tips are concordant with an inner ear defect
in human developmental biology known as Waardberg
syndrome [55].
In our initial computational analyses using semantic

phenotype similarity scoring, we were able to identify
gene sets that are functionally related, i.e. belonging to
the same gene family or involved in the same pathway.
The method described here can be readily applied to
other plant species to suggest genes for analysis in
under-studied species or crop wild relatives, or expanded
to describe and compare phenotypes across diverse plant
species for evolutionary analysis, as has been done for
fish [17,56]. Because the ontologies used for compari-
sons are taxon-neutral, there are no restrictions to
expanding this method to non-flowering plant models
such as Physcomitrella patens, Selaginella moellendorffi,
or Ceratopteris [57-59], and comparisons across widely
divergent species (e.g., maize versus moss) may even re-
veal surprising conservation or co-option of gene func-
tion. Even for the species used in this initial study, there
is much to learn about the relationships between geno-
type and phenotype, and we urge the continued curation
and EQ-based annotation of plant phenotypes, to ex-
pand this data set and increase its utility. Because
species- and clade-specific databases will need to curate
and hold these statements, a standardized method for
storing this data, preferably using a common database
schema such as [60], should be implemented.
Methods
Generation of the lists of phenotypes for each plant
species
Each of the model plant species represented in this ana-
lysis is supported by a database of genomic and other
data. These databases are highly individualized, based on
the differing needs of their community members. As
such, the generation of a list of phenotypes associated
with a mutant allele of a known gene was slightly differ-
ent for each species.
Selection of Arabidopsis phenotypes
The Arabidopsis mutant phenotype dataset, first com-
piled by [36], includes ~2,400 genes with recessive mu-
tant phenotypes for which the disrupted gene is known.
Information for this dataset was previously gathered from:
1) a sequence-based map of genes with mutant pheno-
types [61]; 2) the SeedGenes database of essential genes
[62], as updated by [63]; 3) a list of genes associated with
mutant phenotypes obtained from TAIR [64]; and 4) sev-
eral thousand publications describing Arabidopsis mutant
phenotypes retrieved from the Pubmed Database [65]
using appropriate keywords (Arabidopsis, mutant(s), mu-
tation(s), knockout, and null). Short, free-text phenotype
descriptions found in column I of Supplemental Table S2
of [36] were used as the input for the Arabidopsis EQ
statements. Genes with only a dominant, gain-of-function
mutant phenotype [66] were generally excluded. Based on
past work, the Arabidopsis phenotypes analyzed here are
associated with sequenced genes but not with specific mu-
tant alleles.
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Figure 4 This figures illustrates the usage of Plant PhenomeNET for the maize gene mac1. After searching for the gene (A), search results
are returned (B) and assigned and inferred phenes are shown (C), as well as semantically similar phenotypes from other genes (D). See text for
more details.
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Selection of maize phenotypes
In the MaizeGDB database [31], maize phenotypes are as-
sociated with mutant alleles (variations) of genes based on
a maize-specific controlled phenotype vocabulary, consist-
ing of 1,088 phenotypes. Of the 1,088 phenotypes associ-
ated with mutant-defined loci, we removed continuous
trait phenotypes (e.g., phenotypes that are attributable to
quantitative trait loci or QTL), and several other types of
phenotypes not likely to be relevant for this analysis, such
as gel mobility of a protein on a starch gel. Of the
remaining phenotypes, we selected only those associated
with gene models (DNA sequences).

Selection of rice phenotypes
In order to create a list of rice mutants that were associated
with known genes, data was combined from Gramene [34]
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and Oryzabase [32,67]. The Oryzabase file was quite large
(about 4,800 traits/phenotypes listed, with about 1,600 of
those associated with a known locus), while the Gramene
list was smaller, with about 160 loci. The information from
the two sets was combined and all the mutants with identi-
fiers from both databases were cross-referenced to ensure
there was no overlap or duplications. Many of the described
mutants had to be eliminated from the master list as they
were only described morphologically (i.e. not associated
with a known locus or gene). For the remaining mutants,
we combined all available phenotypic descriptions from the
two sources.

Selection of soybean and Medicago phenotypes
Curated lists of phenotypes for these species are not
available in public databases. Thus, in order to create
lists of mutant genes in soybean and Medicago for this
study, the primary literature was searched for pheno-
types and their descriptions.

Selection of tomato phenotypes
Tomato loci with a known phenotype were selected from
the Sol Genomics Network database (SGN) [15,35]. Phe-
notypes are associated with alleles, with some loci having
multiple alleles with different phenotypes. The loci were
curated manually based on previously described mutants
[68] and literature curation of published tomato cloned
genes with an associated phenotype. We included only loci
with morphological or metabolic phenotypes, excluding
isozyme alleles and loci that have a described phenotype
but no associated gene sequence.

Quality assurance across the entire data set
In order to provide consistency across species and allow
for computational analysis of the entire phenotype data
set, we developed a set of rules to define how the EQ
statements should be constructed, and employed manual
and automated quality checks to verify compliance with
the rules. Manual checks determined if the EQ state-
ments were made in a consistent manner across species.
We did find consistency in most cases; however, minor
inconsistencies have a relatively small effect, as the
power of using hierarchical ontologies to describe phe-
notypes allows similar but not identical EQ statements
to have high similarity scores.
Automated quality checks computationally verified the

validity of the assigned EQ statements based on our pre-
defined set of rules. An example of such a rule is a re-
quirement that entities be represented with either PO
(for structural) or GO IDs (for process phenotypes) and
that the type of Quality chosen from PATO must match
the Entity (i.e. a structure quality for a structure entity
and a process quality for a process entity). Furthermore,
the automated checks ensured that valid identifiers were
used for each ontology term and that each term label
matched its ID, which was useful for correcting typo-
graphical errors. More details on the rules we employed
are provided in Additional file 7. The automated quality
assurance was an iterative process in which the errors
were removed continuously as the data set expanded.
The data set comprising EQ statements from all six spe-
cies (Additional file 1) successfully passed the automated
checking procedure.

Building a phenotype network using semantic similarities
of gene pairs based on assigned EQ statements
The computational analysis relied on the representation of
phenotypes as EQ statements. Each phenotype was repre-
sented as an affected entity that is further described with a
quality. The application of EQ statements has been proven
useful for cross-species gene function prediction, as well
as pathway involvement and the identification of disease
gene candidates [53,69]. As described by [19], species-
specific phenes were decomposed into an affected Entity
and Quality, and represented using species-independent
ontologies. All the ontologies used here for the description
of the phenotypes in any of the six species were down-
loaded on 15 March 2014 and converted to OWL EL. In
addition to the ontologies, a set of logical definitions to
connect plant structures with biological processes has
been downloaded on 29 April 2013 and was also inte-
grated with the ontologies (see Additional file 8). For fur-
ther details on the applied ontologies see Table 1.
Once the ontologies were transferred into an OWL EL

profile, they were combined into one ontology. We ap-
plied the method implemented in PhenomeNET [37], to
represent the statements in OWL with:

has−part some E and has−quality some Qð Þ
where Entities and Qualities were used as defined by the
curators. Following this approach generates one inte-
grated ontology that then can be used to infer additional
phenes using reasoning over the ontology. An inferred
phene is an EQ statement that is an ancestor term of the
assigned EQ statement. For example, the maize mac1
(multiple archesporial cells1) gene was curated with an
EQ statement named “Male and female infertility” and
from the complete list of curator-assigned statements,
and one additional EQ statement named “Complete ster-
ility” was inferred.
To determine the semantic phenotype similarity of two

genotypes (genotype A and B), a Jaccard index based on
the binary vectors is calculated:

simphen ¼ PgenoA ∩ PgenoB
� �

= PgenoA ∪ PgenoB
� �

where P_geno_A represents the phenes of genotype A
and P_geno_B represents the phenes of genotype B.
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Applying this scoring method, phenotype semantic simi-
larity scores fall into the range [0, 1], with 0 indicating
no overlap between phenotypes and 1 indicating identi-
cal phenotypes. Calculating the semantic similarity score
for each possible combination of genotypes results in a
2,866 × 2,866 data matrix. Similarity scores > 0 are pro-
vided as Additional file 9. We note here that 10 EQ
statements of Arabidopsis genotypes (<0.2% of total EQ
statements) were excluded from the computational ana-
lysis, because they either needed further discussion
among the curators due to the relations used to build
the entity or include a term that was removed from the
ontology in the period between curation and the compu-
tational analysis.
This matrix constituting a genotype network based on

phenotype similarities was 1) compared to an existing,
manually created phenotype-specific grouping of genes
[36], and 2) used to assess gene function (see following
sections and Results and Discussion). We note here that
this scoring is highly dependent on the assigned EQ
statements and that the annotations assigned to date are
as complete as can be derived from existing findings.
This means that for phenes that have not been tested
yet, we assume that this phene is absent. With the
growth of the data set, more detail will be added to the
genotypes, which in consequence will improve the ac-
curacy of semantic phenotype similarity scores and the
representation of biological processes.

Employed data and software
We downloaded all the ontologies from the OBO Foundry
[70,71] or their respective download site (see Table 1), and
used El Vira (version 0.2) [72] to transform ontologies
from an OWL DL profile into an OWL EL profile. The ap-
plication of OWL EL files facilitates faster reasoning over
the combined ontologies and is consistent with the de-
scription of the method described for mammal data [37].
To integrate the individual annotation files along with the
respective ontologies used in annotation into a single
ontology, the Brain library version 1.5.2 was used to easily
modify OWL EL ontologies [73]. All scripts required for
the data analysis were implemented in Groovy (version
2.0.4) [74]. A copy of PhenomeNET was set up to hold the
results of the computational analysis, which were uploaded
using the PhenomeNET database scheme. Plant Phenom-
eNET is accessible from [39].

Comparison of semantic similarity and an existing
classification of plant phenotypes
For intraspecific comparison of Arabidopsis phenotypes,
we used Table S2 from [36]. In this previous work, genes
were sorted into a three-tiered hierarchy of phenotypes
of groups, class, and subsets. Their classification system
was designed for the specific purpose of defining the set
of essential genes for an organism, and for this purpose
it was not necessary to differentiate among phenotypes
of different mutant alleles of the same gene. Genes were
placed into a single group and class, prioritized by devel-
opmental stage when phenotypes are first observed and
what methods and conditions are used to detect them.
The lowest rank included phenotypes where detection
required a biochemical assay or microscopic examin-
ation. When the phenotype of a weak allele was more
informative or better characterized than the phenotype
of a null allele, the assignment was made on the basis of
the better-known phenotype (e.g., fy - null is emb lethal
but known as flowering time gene). Genes were also
assigned to one or more of 42 phenotypic subsets, such
as shoot architecture, flowering time, miscellaneous
seed defects, and temperature.
To carry out a comparison of the previous results to

the present work, we rearranged the dataset from [36]
so that each unique gene/subset combination was on a
single row. Because genes could belong to multiple sub-
sets, there were multiple rows per gene. We removed data
for 82 genes that were in [36] but not included in the
present study. We calculated average semantic similarity
of the classes and subsets as the average of all pairs of
genes where both genes were in the same class or subset.

Pathway assessment based on phenotype network
The BioCyc databases for Arabidopsis (AraCyc version
11.5), maize (CornCyc version 4.0), rice (OryzaCyc ver-
sion 1.0), and soybean (SoyCyc version 4.0) were down-
loaded from Plant Metabolic Network [45,75]. The
database for tomato (LycoCyc version 3.3) was down-
loaded from the Sol Genomics Network [15,35], and the
database for Medicago (MedicCyc version 2.0) was re-
quested from and provided by The Samuel Roberts
Noble Foundation [47,76].
To identify well-populated pathways across all six spe-

cies, we divided the number of pathway steps catalyzed
by a gene product for which a phenotype was included
in our dataset by the average number of reactions in the
pathway across the species examined (e.g., number of
steps with a curated phenotype divided by number of
total steps in the pathway). For instances where more
than one gene encoded the enzyme responsible for a sin-
gle step, that step was counted only once (i.e. the pres-
ence or absence of a gene encoding the enzyme was
counted, not the number of genes encoding that step in
a particular plant genome).

Assessment of gene families using the phenotype network
Gene families are based on the Angiosperm-level fam-
ilies from the Phytozome10 release [50], accessed on
August 13, 2014, as multiple-sequence alignments for
each family. These gene family alignments included
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peptide sequences from 43 species, and comprised 29,803
gene families. From these alignments, we calculated
HMM-based alignment models using hmmbuild (HMMer
package version 3.1 r4562, Eddy, 2011 [77]). We then
searched the peptide sequences from each of the seven
species discussed in this paper, along with peptide se-
quences from Amborella trichopoda (to serve as an out-
group in phylogenies), against the gene family HMMs,
using hmmscan (maximum E-value 1e-4), and then placed
each sequence into the family of the top HMM match,
giving a multi-fasta file for each gene family. The resulting
family files were realigned to the respective HMM using
hmmalign. Prior to generating phylogenetic trees, the
resulting alignments were trimmed of non-aligning resi-
dues (as lower case characters in the output of hmmalign,
indicating non-match-state residues in the HMM align-
ments). Phylogenetic trees were calculated using RAxML
(raxmlHPC-PTHREADS-AVX, v. 8.0.26 [78]), using model
PROTGAMMAAUTO. Analyses of EQ statements relative
to gene families were conducted by generating combined
EQ statements for each gene (concatenating multiple EQ
statements into a single string separated by “;;”) and then
joining these combined statements with genes. The result-
ing analyses are in Additional file 4. Alignments and phylo-
genetic trees are in Additional files 5 and 6, respectively.
Genome assembly and annotation versions used in

these gene families were: Glycine max assembly and an-
notation version Wm82.a2.v1; Medicago truncatula as-
sembly v 4.0v1; Arabidopsis thaliana v TAIR10; Oryza
sativa Japonica (Nipponbare) assembly IRGSP-1.0, with
the IRGSP-1.0 gene model names; Zea mays spp mays
B75 RefGen v3, assembly annotation v 6a; Lycopersicon
esculentum v iTAG2.3; Amborella trichopoda v 1.0.

Endnotes
aOntology term identifiers of the form PO:0000925 are

shorthand for identifiers of the form http://purl.obolibrary.
org/obo/PO_0009025.

bSome relations in the Relation Ontology fall within the
BFO namespace, because they are imported from the
Basic Formal Ontology.

Additional files

Additional file 1: All EQ statements curated for the six species. All EQ
statements in tabular form, with explanations of how to fill in each column.

Additional file 2: Overlap among unique phenotypes for sets of
species. Unique phenotypes means that if one EQ statement is shared
between two species, it is counted as overlap only once, no matter how
often it occurs.

Additional file 3: Average similarity scores for previously derived
Arabidopsis genes grouped by class. Classes follow [36].

Additional file 4: Gene families with EQ statements. An Excel file
with gene family membership by species, concatenated EQ statements
for genes with EQ annotations, and gene family descriptions.
Additional file 5: Gene family alignments. An archived, compressed
directory of the multi-fasta alignments (text files) for the 1,985 gene
families with EQ statements from this study. Access using “tar -xzf
alignments_w_EQs.tar.gz” and then with an alignment viewer or
standard text editor.

Additional file 6: Gene families with EQ statements. An archived,
compressed directory of the phylogenetic reconstructions (“trees”),
calculated from the alignments in Additional file 5. Tree files are in
Phylip/Newick format. Access using “tar -xzf trees_w_EQs.tar.gz” and
then with a phylogenetic tree viewer.

Additional file 7: List of error checks for the EQ statements.

Additional file 8: Logical definitions for biological processes in
plants. A subset of logical definitions built to connect biological
processes with plant structures were used as part of the computational
analysis. While the logical definitions are now part of GO, we used an
earlier independent version provided here as an OWL file, which can be
opened in a text editor or OWL editor.

Additional file 9: Similarity scores of genotype pairs with
similarity >0.
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