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1 Introduction

It is well known that the critical dimension of bosonic (or supersymmetric) string theory is

26 (or 10) and we can check this fact by many methods, including Light-cone quantization

and BRST quantization [1, 2]. Recently, Luca Mezincescu and Paul K. Townsend showed

that by using light-cone gauge a consistent critical string theory can be constructed also in

three dimensions, since there is no Lorentz anomaly in three dimensions. In fact, in three

dimensions the dangerous commutator which breaks Lorentz symmetry, [J −I ,J −J ] (I, J =

2, · · · , D − 1), vanishes trivially because there is only one transverse direction [3–5, 20].

[J −I ,J −I ] ≡ 0 in 3 dim. (1.1)
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Moreover they found that the spectrum of a 3d string in light-cone gauge includes “anyons”,

which have non half-integer spins.

The difference between the critical dimension in the light-cone gauge quantization and

that in others might mean the fault of the light-cone quantization or the incompleteness of

other quantizations including BRST method. Mezincescu and Townsend suggest that such

difference may be caused by the existence of anyon, although it is still not clear whether this

is in the case and how the difference arises. Beside finding a reason for the difference, it is

also important to find other examples which give a different result in the light-cone method

and others and to invent other quantization schemes which reproduce results obtained by

the light-cone method, especially by the covariant one.

In this paper, we investigate 3d tensionless bosonic closed string. It has been known by

using BRST method that tensionless p-branes have no Lorentz anomaly in any dimensions

and that conformal tensionless p-branes have the critical dimension for the space-time

conformal symmetry, D = 2 [6–9]. And the mass spectrum also has been investigated

in [10, 11].

On the other hand, Isberg, Lindstrom, Sundborg and Theodoridis show that there are

some anomalous commutators in the space-time conformal group of light-cone gauge [12,

13]. Specifically, [KI ,J −J ], [K+,K−], [KI ,K−] and [K−,J −I ] have anomalous terms. Es-

pecially Isberg et al. emphasize in [12, 13] that the commutator [KI ,J −J ] has anomalous

terms in traceless part of I and J and gives the definition of K− by trace part:

[KI ,J −J ] = −iδIJK− + LIJ
t.l., (1.2)

where LIJ
t.l. is traceless and proportional to the generator of σ-dependent special linear

group. In D ≥ 4, we will find that through Jacobi identities all other anomalous commu-

tators are related to this commutator or the definition of K−. For example, if we choose J

different from I and use the fact that there is no Lorentz anomaly for a tensionless string,1

we obtain

[K−,J −I ] = i[[KJ ,J −J ]− LJJ
t.l.,J −I ]

=−i[[J −I ,KJ ],J −J ]− i[[J −J ,J −I ],KJ ]− i[LJJ
t.l.,J −I ]

= i[LJI
t.l.,J −J ]− i[LJJ

t.l.,J −I ]. (1.3)

Similarly we will find that all anomalies derive from LIJ
t.l..

In three dimensions, we can readily find that no anomalous terms appear in [J −I ,KJ ],

that is, LIJ
t.l. = 0. Using Jacobi identities and [K+,KI ] = 0 which is checked easily, we obtain

[K+,K−] = 0. Because we can’t set I 6= J in three dimensions, however, [K−,J −I ] and

[KI ,K−] are not related to LIJ
t.l.. We just get the relation between [K−,J −I ] and [KI ,K−].2

Therefore it is nontrivial whether [K−,J −I ] is anomalous and we need to investigate it in

order to conclude the absence of space-time conformal anomaly. Fortunately, because the

1[J−I ,J−J ] ∝(σ-translation gauge-fixing constraint). This constraint corresponds to the level-matching

condition for tensile string and commutes to all generators.
2[K−,J−I ] = −i[P−, [K−,KI ]] or [KI ,K−] = −i[[J−I ,K−],K+]
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vanishing of [K−,J −I ] is equivalent to that of [KI ,K−], we just have to check [K−,J −I ] =

0. This check is the first content of this paper.

In this paper, we write operators by the Fourier expansion and choose the “reference

ordering”.3 Then we investigate commutators of the space-time conformal group for Her-

mitian generators. In the calculation, we need to introduce some regularization because

we find many troublesome divergences. In this paper, we regularize by removing higher

modes of operators than a given cutoff and find [K−,J −I ] = 0.

As the second content of this paper, we also investigate the spectrum of a 3d tensionless

bosonic closed string. We get massive states and massless states there. Because massless

states are conformal invariant, we discuss it in more detail.

The content of the paper is as follows: in section 2, we represent a 3D tensionless closed

bosonic string in light-cone gauge. In section 3, we quantize a 3D tensionless closed bosonic

string in light-cone gauge and find that this string theory has the space-time conformal

symmetry. In section 4, we discuss the spectrum of a 3d tensionless string. In section 5,

we end the paper with the conclusion and outlooks. The definition of light-cone coordinate

and the algebra of conformal group are collected in appendices.

2 3D tensionless string in light-cone gauge

In this section we consider in three dimensions the light-cone quantization of a string

without tension, namely a tensionless string. We follow the method of [3] to quantize a

tensionless string.

First we consider a string with tension, namely a tensile string. A 3D bosonic closed

string with tension T is described by Nambu-Goto action:

S[X] = −T
∫

dτ

∮

dσ

2π

√

(

(

Ẋ ·X′
)2

− Ẋ2(X′)2
)

, (2.1)

where Xµ(τ, σ);µ = 0, 1, 2 represents an embedding of the world sheet (τ, σ) to 3D

Minkowski space with matric η = diag(−1, 1, 1). An overdot indicates a derivative with

respect to time parameter τ and a prime indicates a derivative with respect to string coor-

dinate σ. The centerdot or superscript “2” indicate the contraction. Moreover we assume

that the functions are periodic, Xµ(τ, σ) = Xµ(τ, σ + 2π).

By using the conjugate momentums Pµ, and the auxiliary fields V and U , we can

rewrite the action (2.1) to the form

S[X,P;V, U ] =

∫

dτ

∮

dσ

2π

{

ẊµPµ − 1

2
V
[

P2 + (TX′)2
]

− UX′µPµ

}

, (2.2)

where V and U are the Lagrange multipliers for the Hamiltonian and S1-diffeomorphism

constraints, respectively. When one eliminates Pµ, followed by the elimination of V and

U in order, the Nambu-Goto action (2.1) is reproduced.4

3In the reference ordering all P-modes and p− are to the right of all X-modes and x− [12, 13].
4The action of a relativistic massive point particle is S = −m

∫

dτ
√

−ẋµẋµ. This can be written as

S =
∫

dτ
[

ẋµpµ − 1
2
v
(

p2 +m2
)]

, where pµ is conjugate to xµ and v is the Lagrange multiplier for the

off-shell condition, p2 +m2 = 0. The former action is reproduced by the eliminating pµ and v in order.

– 3 –
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The new action (2.2) has a local symmetry under the transformations

δXµ = αPµ + βX′µ,

δPµ = T 2(αX′
µ)

′ + (βPµ)
′,

δV = α̇+ U ′α− Uα′ + V ′β − V β′,

δU = β̇ + U ′β − Uβ′ + T 2(αV ′ − α′V ), (2.3)

where α(τ, σ) and β(τ, σ) are arbitrary functions. We choose light-cone gauge to fix this

local symmetry and investigate whether there is Lorentz anomaly or not. Then we will

find that “anyons” appear in the spectrum [3].

From now on, we set T to be zero to investigate the tensionless string. The action (2.2)

with T = 0 is

S[X,P;V, U ] =

∫

dτ

∮

dσ

2π

{

ẊµPµ − 1

2
VP2 − UX′µPµ

}

, (2.4)

and the gauge symmetry (2.3) becomes

δXµ = αPµ + βX′µ,

δPµ = (βPµ)
′,

δV = α̇+ U ′α− Uα′ + V ′β − V β′,

δU = β̇ + U ′β − Uβ′.

(2.5)

In the next subsection we fix the gauge symmetry (2.6) with light-cone gauge.

2.1 Light-cone gauge

The light-cone components of coordinates and their conjugates , (X+, X−, X) and

(P+, P−, P ), are written with the components in Minkowski base as follows:

X± ≡ 1√
2
(X1 ±X0), X ≡ X2,

P± ≡ 1√
2
(P1 ±P0) = P∓, P ≡ P2.

(2.6)

We impose light-cone gauge to fix the gauge symmetry (2.5),

X+ = τ, P− = p−(τ) 6= 0, (2.7)

where p−(τ) is a non-vanishing function of τ . This gauge choice restricts gauge parameters

such that α = 0, β = β0(τ) and then leaves only the residual global gauge symmetry

induced by a constant shift of σ. We leave this for a moment to clarify what the constraint

is, though we will fix this later.

To obtain the action in light-cone gauge, we decouple the center of mass coordinate

which is the average about σ from the rest. Namely, for a given function F (τ, σ), we

decompose it into f and F̄ :

f(τ) ≡
∮

dσ

2π
F (τ, σ),

F̄ (τ, σ) ≡ F (τ, σ)− f(τ).

(2.8)

Note that
∮

dσ
2π
F̄ = 0.

– 4 –
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Using the gauge choice (2.7) and the decoupling with regard to F = X−, X, P+, P, U ,

we find that the Lagrangian (2.4) reduces to

L = ẋp+ ẋ−p− + p+ +

∮

dσ

2π
˙̄XP̄ − u

∮

dσ

2π
X̄ ′P̄ −

∮

dσ

2π
ŪX̄ ′P

+ p−

∮

dσ

2π

{

X̄−Ū ′ − V

(

P+ +
1

2p−
P 2

)}

,

(2.9)

where X̄− is a lagarange multiplier giving the constraint Ū ′ = 0. Together with
∮

dσ
2π
Ū = 0,

we obtain Ū = 0. On the contrary the variation of Ū induces the relation

p−(X̄
−)′ = −X̄ ′P +

∮

dσ

2π
X̄ ′P̄ . (2.10)

which we use to determine X̄−.

Moreover the variation of V leads to

P+ = − 1

2p−
P 2. (2.11)

We regard this equation as expressing P+ in terms of other variables. The center part of

P+ is the Hamiltonian

H ≡ −p+ =
1

2p−

(

p2 +M2
)

, (2.12)

and the mass squared is given by

M2 = 2p+p− − p2 =

∮

dσ

2π
P̄ 2. (2.13)

In summary the Lagrangian reduces to

L = ẋp+ ẋ−p− +

∮

dσ

2π
˙̄XP̄ −H − u

∮

dσ

2π
X̄ ′P̄ . (2.14)

Next we use the residual gauge symmetry induced by β0 to fix u = 0 and rewrite the

Lagrangian to the form

L = ẋp+ ẋ−p− +

∮

dσ

2π
˙̄XP̄ −H (2.15)

with a constraint
∮

dσ

2π
X̄ ′P = 0. (2.16)

Finally we solve most of the infinite constrains in the action (2.4) by eq. (2.10)

and (2.11) and then leave the only constraint (2.16). It is an advantage of using light-cone

gauge that we can solve most of the constraints leaving a finite number of simple constar-

ints. The difference between the light-cone quantization and others originates in whether

the number of constraints is finite or infinite and whether we can deal with them adequately.
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Fourier expansion. To solve eq. (2.10) and (2.11) explicitly, we use the Fourier expan-

sion of X and P with respect to σ:

X =
∞
∑

n=−∞

Xne
inσ, X0 = x,

P =
∞
∑

n=−∞

Pne
inσ, P0 = p.

(2.17)

The reality conditions of X and P lead to

(Xn)
∗ = X−n,

(Pn)
∗ = P−n, (2.18)

where the asterisk represents the complex conjugate. From now on the sum without an

explicit range specified must be understood to run from minus infinity to infinity.5 For a

tensile string, we usually combine Xn and Pn as

αn = −i
√

T

2
nXn +

1√
2T

Pn,

α̃−n = i

√

T

2
nXn +

1√
2T

Pn

(2.19)

which express the right-moving or the left-moving respectively. However, because we have

no scale like T , it is not clear whether we should introduce some scale to combine Fourier

coefficient (2.17) in the oscillator form.

Let us rewrite the mass squared (2.12) and the constraint (2.16). First we solve

eq. (2.10) as follows:6

X̄− = − 1

p−

∑

n 6=0

i

n
Mne

inσ, (2.20)

where

Mn ≡ −i
∑

m

mXmPn−m, for n 6= 0. (2.21)

Denoting the center part by x−, we have X− = x− + X̄−.

Next we solve eq. (2.11)

P+ = − 1

2p−

∑

n

Lne
inσ, (2.22)

where

Ln ≡
∑

m

PmPn−m. (2.23)

5For example,
∑

n
≡

∑∞
n=−∞,

∑

n 6=0 ≡
∑−1

n=−∞ +
∑∞

n=1,
∑

n>0 ≡
∑∞

n=1 and so on.
6The condition

∮

dσ
2π

X̄− = 0 leads to the same constraint as (2.16) or (2.25).

– 6 –
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From the zero mode L0, the mass squared reads as

M2 = 2
∑

n>0

PnP−n. (2.24)

Further the constraint (2.16) is expressed as

0 =

∮

dσ

2π
X̄ ′P = i

∑

n

nXnP−n ≡ −M0, (2.25)

which corresponds to the level-matching condition for a tensile string.

Equations of motion. Using the Fourier expansion, the Lagrangian (2.15) is written in

the form

L = ẋp+ ẋ−p− +
∑

n 6=0

ẊnP−n −H, (2.26)

where H = 1
2p−

(p2 + M2) and the mass squared is given by eq. (2.25). We obtain the

equations of motion from this Lagrangian,

ṗ = ṗ− = 0, ẋ =
p

p−
, ẋ− = −H

p−
(2.27)

and

Ẋn =
Pn

p−
, Ṗn = 0. (2.28)

These equations indicate that the center part and the rest part move linearly with uniform

acceleration,

X(τ, σ) = X(τ = 0, σ) +
P (σ)

p−
τ, (2.29)

which is expected from the equations of motion before taking the Fourier expansion. It

reflects the fact that the Hamiltonian and the mass squared are independent of τ .

3 Quantization of a 3D tensionless string and Space-time conformal sym-

metry

In this section we first quantize a 3D tensionless string represented in section 2 and next

find that this theory has no anomaly for the space-time conformal symmetry.

3.1 Quantization

In the quantum theory, the canonical variables in the action (2.15) are promoted to oper-

ators with the commutation relations

[x−, p−] = i, [X(σ), P (σ′)] = 2πiδ(σ − σ′) with others vanishing, (3.1)

– 7 –



J
H
E
P
0
2
(
2
0
1
4
)
0
3
8

where we set ~ = 1. In the mode expansion, the last relation indicates

[x, p] = i, [Xn, Pm] = iδn+m,0, (3.2)

where n,m ∈ Z. Using these basic relations, we obtain that Ln andMn satisfy the following

relations:

[Xn,Mm] = (n+m)Xn+m, [Pn,Mm] = nPn+m, [Xn, Lm] = 2nPn+m,

[Pn, Lm] = 0

[Mn,Mm] = (n−m)Mn+m, [Ln,Mm] = (n−m)Ln+m, [Ln, Lm] = 0,

(3.3)

where we use the operator-ordering given in eq. (2.21) and (2.23) . We make a remark that

Ln and Mn satisfy the 2-dimensional Galilean Conformal Algebra (2d GCA).7

The quantum Hamiltonian and the mass suared are then

H =
1

2p−
(p2 +M2),

M2 = 2
∑

n>0

PnP−n,

(3.4)

where there is no constant term arising from ambiguity of the operator ordering because Pn

commute with P−n.
8 On the contrary, the constraint (2.25) has ambiguity of the operator

ordering. This ambiguity is related to the choice of the vacuum. Here we define M0 as

in (2.25) in order that the action of M0 on physical state vanishes.

3.2 Generators

In light-cone gauge quantization, the space-time Lorentz and conformal symmetries are not

clear. Therefore we check whether the generators of these symmetries satisfy the expected

commutation relations (B.7) and (B.11), respectively. In D > 3, we determine the critical

dimension of a bosonic string and the ordering constant in the mass squared to preserve

the Lorentz invariance in quantum theory. In three dimensions, there is only one transverse

direction and the dangerous commutator (1.1) vanishes trivially. Hence we have no Lorentz

anomaly. However the conformal symmetry is not trivial even in three dimensions. We

now investigate whether a 3D tensionless closed string has conformal symmetry.

The conformal group is generated by translations, Lorentz rotations, dilatation and

specail conformal transformations. Now we define these generators in the”reference order,”

which all Pn and p− are to the right of Xn and x− respectively [12]. We shall call the

reference order “R-order”.9 The definitions of Ln and Mn in eq. (2.21) and (2.23) were

7Recently this algebra was investigated in terms of a tensionless string [14].
8In the case of a tensile string, the mass squared has a constant a arising from the operator ordering

ambiguity. To avoid the Lorentz anomaly, we choose the critical dimension of the string theory and the

ordering constant to be D = 26 and a = 1, respectively. However in three dimensions no Lorentz anomaly

exists trivially and then a remains as an arbitrary constant [3].
9We can obtain the R-ordering from the normal ordering in the tensionless limit T → 0. In detail,

the string ground state |0〉T of a tensile string with a tension T is annihilated by positive modes of right-

moving and left-moving oscillators, {αn, α̃n;n > 0}. According to eq. (2.19), this string ground state in

the tensionless limit reduces the vacumm which annihilates all Pn for all non-zero n. However, when we set

T = 0 from the beginning, there is no reason why this state should be chosen.

– 8 –
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already into the R-order. Hereafter, when we want to emphasize operators to be into the

R-order, we specify the R-ordered operator by the subscript R.

We first define the translation generators as

Pµ
R ≡

∮

dσ

2π
Pµ. (3.5)

In the light-cone base, these are

PR = p, P+
R = p−, P−

R = p+ = −H. (3.6)

Second, the Lorentz generators are defined as

J µ
R ≡ ǫµνρ

∮

dσ

2π
XνPρ. (3.7)

In light-cone base, these are written as

JR = x−p− + τH, J +
R = τp− xp−,

J −
R = −x−p− xH +

Λ

p−
,

(3.8)

where

Λ = p−

∮

dσ

2π

[

X̄P̄+ − X̄−P̄
]

=
∑

n 6=0

(

−1

2
XnL−n +

i

n
MnP−n

)

. (3.9)

Next the dilatation generator is defined as

DR =

∮

dσ

2π
XµPµ, (3.10)

and now expressed as

DR = x−p− − τH +
∑

n

XnP−n. (3.11)

At last the generators of the special conformal transformations are defined as

Kµ
R =

∮

dσ

2π

[

Xµ (X · P )− 1

2
(X ·X)Pµ

]

R

, (3.12)

where the subscript R in the right-hand side indicates the reordering into R-order.10 In

light-cone base,

K+
R = − 1

2

∑

n

XnX−np− + τ
∑

n

XnP−n − τ2H

KR = xx−p− +
∑

n 6=0

i

n
XnM−n +

1

2

∑

n

∑

m

XnXmP−n−m + τJ −

K−
R = x−x−p− + x−

∑

n

XnP−n − i

p−

∑

n

∑

m 6=0

(

n

m2
+

1

m

)

XnMmP−n−m

+
1

4p−

∑

n

∑

m

XnXmL−n−m.

(3.13)

10Because K−
R includes a quadratic term of X−, the simply defined K− is not into R-order as it is.

– 9 –
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Physical observables should be represented by Hermitian operators. We require the

conformal generators to be Hermite. In our case the R-ordered definitions of the generators

in (3.8)(3.11)(3.13) are simple but not Hermite.11 Then we introduce the Hermitian version

G of the R-ordered generator GR as follows:

G ≡ 1

2

(

GR + (GR)
†
)

. (3.14)

All Hermitian versions of generators are independent of τ . Hence, when we deal with Hermi-

tian generators, we can use generators to be set τ = 0. Here note that the differences of the

Hermitian version from the R-ordered generators mostly include various divergent terms.

So, if we order generators and commutators into R-order, we need some regularization.

3.3 Anomaly

In the previous subsection, we defined the generators of the space-time conformal symmetry.

In three dimensions, there is the only one transverse direction12 and the dangerous commu-

tator (1.1) vanishes trivially. Therefore all commutation relations of Poincaré group (B.7)

are satisfied. In this subsection, we investigate whether the anomaly arises in the quanti-

zation of a 3D tensionless string, namely whether all commutation relations of conformal

symmetry (B.12) are satisfied.

In [12], J. Isberg et al. showed that in D > 3 anomalies arise from the commutators,

[KI ,J −J ], [K+,K−], [KI ,K−] and [K−,J −I ]. The first commutator of these has the trace-

less part LIJ
t.l. with respect to I, J as well as the trace part. The difference of trace part can

be absorbed in the redefinition of K−, but the traceless part LIJ
t.l. remains as the anomaly.

In three dimensions, this commutator is only one and hence this type of anomaly does

not exist. But we need to calculate other non-trivial commutators to check the space-time

conformal symmetry. In three dimensions, [K,J −] corresponds to [KI ,J −J ] in D > 3.

Though this is slightly different from K− = 1
2
(K−

R +(K−
R)

†), we can interpret that this give

the redefinition as

K̂− = i[K,J −] = K− + δK−, (3.15)

where δK− is a constant times 1
p−

. Note that in the term with M0, we put M0 to the right

of other operators and set zero on physical Hilbert space if we need.

We still have the three “dangerous” commutators. Using the Jacobi identity and

[K, K̂−] = 0 which has no anomaly, we find that [K+, K̂−] has no anomaly, that is,

[K+, K̂−] = 0. On the other hand, it is non-trivial whether the last two “dangerous”

commutators vanish and then we have to check it. Fortunately, because there are the

relations between [KI ,K−] and [K−,J −I ],13 all we have to do is the calculation of one

commutator. We calculate the easier one, [K−,J −I ].

11Of course the translation P = p, the Hamiltonian H and the mass squared M2 are clearly Hermite.

Moreover Λ is Hermite, and if
∑

n
n = 0 the constraint M0 is also Hermite.

12So we omit the label I or J . PI → P, KI → K, J±I → J±. And we define J+− → −J .
13[K, K̂−] = −i[[J−, K̂−],K+] and [K̂−,J−] = −i[P−, [K̂−,K]].
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[K̂−,J −] must be zero:

[K̂−,J −] = 0. (3.16)

This commutator can have parts which are in proportion to (x−)2 , x− 1
p−

and 1

p−2 in the

R-ordering and complicated divergences too. In particular, the part in proportion to 1

p−2

has quintic, qubic and linear terms with respect to Xn and Pn and is complicated. So the

calculation of this commutator needs a lot of labor and care.

Though the calculations of other commutators also have divergences, we can deal with

them without the concrete regularization. However, commutators (3.15) (3.16) have many

types of divergences14 and it is too complicated to calculate them correctly. Moreover

we should take care of the shift of dummy variables in the sum and the termwise re-

summation.15 Then the regularization help us from these divergences.

Cutoff regulerization. We use the cutoff regularization to remove higher modes of X

and P ,

Xn = Pn = 0 for |n| > N, (3.17)

where we assume that N is a large integer. Using this, we obtain

Mn = −i
∑

|m|≤N,|n−m|≤N

mXmPn−m, Ln =
∑

|m|≤N,|n−m|≤N

PmPn−m, (3.18)

and also find Mn = Ln = 0 for |n| > 2N .

Thanks to the cutoff regularization, summations reduce to finite sum and term-wise

treatments are possible. And the error as to the shift of dummy variables will decrease.

Further, because of the symmetric cutoff with respect to positive and negative modes, we

get
∑

n n =
∑

n
1
n
= 0. Thus we resolve many difficulties for the divergence. But we have

to take care of the informations about the range of the summation.

Then there remains only the lengthy calculation for us. After the calculation under

the cutoff regularization, we take the limit N → ∞.

3.4 Check of anomaly free

Our goal is to check a relation

[K̂−,J −] = 0 (3.19)

under the cutoff regularization. We can check that most of other commutation relations are

satisfied without using the cutoff regularization and that the rest of commutation relations

are satisfied by using eq. (3.19).

14For example,
∑

n
1 and

∑

n
n.

15For operators into some order,
∑

n
XnP−n|∗ =

∑

n
Xn+kP−n−k|∗, where the subscripts mean these

terms are into some order. But for the number,
∑

n
n 6=

∑

n
(n+ k) 6=

∑

n
n+ k

∑

n
1.
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We summary steps of the calculation, instead of representing the process of the lengthy

calculation explicitly. We can deform eq. (3.19) to

[K̂−,J −] =

[

1

2

(

K−
R + (K−

R)
†
)

+ δK−,J −

]

=
1

2

(

[K−
R,J −]− [K−

R,J −]†
)

+ [δK−,J −].

(3.20)

If we use Hermitian operators from the beginning, we have more terms than in the case

of R-ordered operators and many divergent terms. Then we first use R-ordered opera-

tor, J −
R , and next consider its Hermite-conjugate and finally add the commutator of the

difference δK−.

First we calculate

[K−
R,J −], (3.21)

and order the result into the R-order except for terms with M0, which is the right of all

other operators. Here note that J − = 1
2

(

J − + (J −)†
)

= J −
R + 1

2
i p
p−

. The calculation of

eq. (3.21) is very lengthy and laborious. The commutator (3.21) can have three parts which

are proportional to (x−)2, x− 1
p−

and 1

p−2 . We can check the vanishing of parts proportional

to (x−)2 and x− 1
p−

easily. The part proportional to 1

p−2 has quintic terms with XXPPP -

form , cubic terms with XPP -form and linear terms with P -form. Maximal quintic terms

are independent of the ordering. Therefore we get the same result as the classical case.

In fact, after the lengthy calculation, we find the absence of quintic terms. However cubic

terms and linear terms do not vanish. So we must consider other parts of (3.20).

Next we consider the Hermite-conjugate of (3.21) and then make the anti-Hermitian

version of (3.21). In the anti-Hermitian version (3.21), we can deform all cubic terms to the

form with [X,P ] because all summations have the symmetry which all dummy variables

invert simultaneously.16 Therefore all cubic terms reduce to the linear term. There is this

symmetry in the R-ordering, but not always in other orderings, like normal ordering.

In this way, all we have to check is the linear terms. The sum of subscripts in each

terms is zero and hence the linear terms with P -form must be the form that a constant

times P0 = p. Because the calculation of only linear terms is the same as calculating cubic

terms, we calculate all terms with p. Though we have more hard work apparently, the

calculation becomes easier because we don’t have to distinguish the degree of operators.

The part with p of (3.21) is17

[K−
R,J −]|p =

1

2
iδK p2

p2−
+ iδK−

R

p

p−
, (3.22)

16For example, its anti-Hermitian version of
∑

|n|≤N

∑

0<|m|≤N
n
m
XnPmP−n−m is

1
2

∑

|n|≤N

∑

0<|m|≤N
n
m
(XnPmP−n−m − Pn+mP−mX−n) = 1

2

∑

|n|≤N

∑

0<|m|≤N
n
m
(XnPmP−n−m −

P−n−mPmXn) =
1
2

∑

|n|≤N

∑

0<|m|≤N
n
m
[Xn, Pm]P−n−m. In the case of quintic terms or linear terms, we

will get anti-commutator.
17If we use the following equations, the calculation may become easier: [K−

R ,J−]|p =
(

[K−
R |p,J

−] + [K−
R ,J−|p]− [K−

R |p,J
−|p]

)

|p and K−
R |p = −KR

p

p
−

+ 1
2
K+ p2

p
−

2 + 2x−xp + x
∑

n
XnP−n

p

p
−

,

[KR,J
−] = −i(K−

R + δK−
R) and [K+,J−] = iK.
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where (· · · )|p represents the part with p of (· · · ) and we define δK ≡ K−KR = x×(constant)

and δK−
R ≡ i[KR,J −]−K−

R.
18 Furthermore we obtain

1

2

(

[K−
R,J −]|p − ([K−

R,J −]|p)†
)

= iδK− p

p−
, (3.23)

where we use δK− = 1
2
(δK−

R + (δK−
R)

†).

Finally we calculate the commutator of the difference δK−.

[δK−,J −] = [δK−,−x−p] = −iδK− p

p−
, (3.24)

where we use δK− = 1
p−

× (constant) and [ 1
p−
, x−] = i 1

p−2 .

Adding (3.23) and (3.24), we can check the commutation relation (3.19). Thus we find

that there is no anomaly of the space-time conformal symmetry in a 3D tensionless bosonic

closed string.

4 Spectrum

In this section, we investigate the spectrum of a 3D tensionless closed string. We deal the

center of mass part and the rest separately and assume that the ground state of the center

is |p, p−〉 like the case of a tensile string. We do not care about the ground state of the

center part so much.

On the other hand, we need the discussion about the rest part, which includes non-zero

modes. First we consider the R-ordered vacuum |0〉R, which satisfy

Pn|0〉R = 0 for all non-zero n, (4.1)

as the string ground state. We can obtain this R-ordered string ground state from the

string ground state in the tensionless limit [12].

When we choose this string ground state, we obtain other states by acting {Xn;n 6= 0}
on |0〉R. The fundamental elements of states are

Xn1Xn2 · · ·Xnl
|0〉R, (4.2)

where ni (i = 1, 2, · · · l) are non-zero integers. We combine these state to obtain the

general states.

Here note that the physical states must satisfy M0 = 0. Therefore the physical states

are the states with the form (4.2) which satisfy

l
∑

i=1

ni = 0. (4.3)

18In the representation without regularization, δK = − 1
2
i(1 +

∑

n
1)x and δK−

R = − i
2
x− + 1

2p
−

+

i
2
(
∑

l 6=0 1)
∑

n 6=0 XnP−n
1

p
−

+ i
2
(
∑

n
1)x p

p
−

+ i
∑

n 6=0

∑

m 6=0
n2

m2XnP−n
1

p
−

+ 2i
∑

n 6=0
1
n
XnP−n

1
p
−

M0.
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The general physical states satisfy this condition in each terms. Under this condition, we

try to make eigenstates of M2. In the case of the R-ordered string ground state, it is

convenient to represent Pn as

Pn = −i ∂

∂X−n
, [Xn, Pm] = iδn+m,0 (4.4)

Using this representation, M2 is expressed as

M2 = −2
∑

n>0

∂

∂X−n

∂

∂Xn
. (4.5)

By the space-time conformal symmetry, we expect that eigenvalues of M2 are contin-

uous or zero. If we find the eigenfunction with the eigenvalue M2, we get an eigenfunction

of M2 with the eigenvalue λ−2M2 by transforming Xn → λXn for all n. Here we are

especially interested in the case of zero eigenvalue, that is massless.

4.1 Mass eigenstate

In this subsection, we use the similar method in [10]. In order to find eigenvalues of M2

and their eigenfunctions, we rewrite eq. (4.5),

M2 = −1

2

∑

n>0

[

∂2

∂rn2
+

1

rn

∂

∂rn
+

1

rn2
∂2

∂θn2

]

(4.6)

where rn and θn are the real operators which are defined byXn = rne
iθn andX−n = rne

−iθn

for all positive n. Because we can separate variables into each n, we consider the following

differential equation:

−1

4

[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

]

ψm(r, θ) = m2ψm(r, θ), (4.7)

where r ≥ 0 and m2 ≥ 0.19 Here we assume ψm,s(r, θ) = φm,s(r)e
isθ, where s is integer

and φm,s(r) is the function which depends on only r. Then we obtain

[

d2

dr2
+

1

r

d

dr
+ 4m2 − s2

r2

]

φm,s(r) = 0. (4.8)

4.1.1 m
2
> 0

For m2 > 0, we replace r with r̂ = 2mr and obtain
[

d2

dr̂2
+

1

r̂

d

dr̂
+ 1− s2

r̂2

]

φm,s

(

r̂

2m

)

= 0, (4.9)

where m > 0. The solution of this equation is expressed in terms of Bessel function

J|s|(r̂). In this way, we get the solution ψm,s(r, θ) = NmJ|s|(2mr)e
isθ, where Nm is the

normalization constant.20

19Because the eigenvalue of the operator AA† is zero or positive number, we consider the case of m2 ≥ 0.

And we also find that the solutions for m2 < 0 have bad behavior in r → ∞ and can not be normalized.
20Note that Jν(r̂) = (−1)νJ−ν(r̂) for integer ν.
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We rewrite the solutions in terms of Xn and X−n with n > 0:

ψmn,±|sn|(rn, θn) =NmnJ|sn|(2mn(XnX−n)
1
2 )

(

Xn

X−n

)
s
2

=Nmn(mnX±n)
|s|

∞
∑

l=0

(−m2
n)

l

l! (l + |s|)! (XnX−n)
l, (4.10)

where we use

Jν(z) =
(z

2

)ν
∞
∑

l=0

(−1)l

l! Γ(l + ν + 1)

(z

2

)2l

. (4.11)

Thus we find that the eigenfunctions are the combinations of positive integer power with

respect to Xn and X−n as in eq. (4.2).

Now we consider the normalization of wave functions. Sincem2 is not discrete valuable,

the wave functions for each m2 can not be normalized to “1” but the wave functions for

different values of m2 must be orthogonal. Here we consider the next scalar product. The

scalar product of two wave functions ψ1(r, θ) and ψ2(r, θ) is

(ψ1, ψ2) =

∫ ∞

0

dr

∫ 2π

0

dθrψ∗
1(r, θ)ψ2(r, θ). (4.12)

Then we obtain for m > 0 and m′ > 0

(ψm,s, ψm′,s′) =
π

2

|Nm|2
m

δ(m−m′)δs,s′ (4.13)

and find the orthogonality. The detail of the normalization is given in appendix.

4.1.2 m
2 = 0

For m2 = 0, eq. (4.8) becomes
[

d2

dr2
+

1

r

d

dr
− s2

r2

]

φ0,s(r) = 0. (4.14)

The solutions of this equation for s 6= 0 are r|s| and r−|s|. For s = 0, the solutions are

constant and log r. Because of the orthogonality between two eigenfunctions with m2 > 0,

r|s| for s 6= 0 and constant for s = 0 are chosen [10].21 In terms of Xn and X−n with n > 0,

the eigenfunctions ψ0,s(r, θ) are (Xn)
s for s > 0, (X−n)

−s for s < 0 and constant for s = 0.

If we collect these three cases, we get

ψ0,±|s|(r, θ) ∝ r|s|e±isθ = (X±n)
|s|. (4.15)

4.1.3 Total eigenfunction

The eigenfunctions of M2 are the product

Ψ =
∏

n>0

ψmn,sn(rn, θn) (4.16)

and their eigenvalues are

M2 = 2
∑

n>0

(mn)
2. (4.17)

21The detail is in appendix.
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4.2 Physical spectrum

The physical state must satisfy the constraint M0 = 0. In terms of rn and θn, M0 becomes

M0 = −i
∑

n

nXnP−n = −
∑

n>0

n

[

Xn
∂

∂Xn
−X−n

∂

∂X−n

]

= i
∑

n>0

n
∂

∂θn
. (4.18)

Then the constraint in the case of (4.16) is
∑

n>0

nsn = 0. (4.19)

As mentioned in the beginning of this section, the eigenvalues of M2 are continuous or

zero. Though this fact is expected by the conformal symmetry, it is understood by the

explicit solution (4.10). We get continuous eigenvalues if m2
n > 0 at least for some n. On

the other hand, we get massless states only if mn = 0 for all n. Since we are interested

in massless states which are expected to preserve the space-time conformal symmetry, we

do not discuss the continuous spectrum anymore. Now we investigate the case of massless

in detail.

Massless states. If we want to get massless states, we have to choose the solution (4.15)

for all positive integer n. In other words, we should choose the states (4.2) such that their

subscripts satisfy

Xn1Xn2 · · ·Xnl
|0〉R with

l
∑

i=1

ni = 0 and ni + nj 6= 0 for ∀i, j. (4.20)

One of the simplest examples is

X2X−1X−1|0〉R. (4.21)

Because a linear term of Xn is prohibited by the constraint
∑l

i=1 ni = 0 and the squared

terms like XnX−n do not create massless states which consist of a single term.

By the way, there are massless states consist of not only a single term,

but also multi terms. For example, states like (X2X−2 − X1X−1)|0〉R or
(

4(X2X−2)(X1X−1)− (X2X−2)
2 − (X1X−1)

2
)

|0〉R are also physical states with M2 = 0.

In the 3d Poincaré group, there are two Lorentz invariant which commute each other:

P2 = −M2 and P · J = Λ. The first invariant is mass squared operator and now we

consider the case of M2 = 0. The second invariant is “spin” operator and represented as

Λ = −1

2

∑

n 6=0

∑

m 6=0

(

1 +
m

n
+
n

m

)

Xn+m
∂

∂Xn

∂

∂Xm
(4.22)

in the X-representation. We find that acting of Λ on states decreases the number of X by

one. Because of [M2,Λ] = 0, we can get another massless states by acting Λ on massless

states of a single term. For example,

ΛX2X−1X−1|0〉R = −3(X2X−2 −X1X−1)|0〉R
ΛX2X2X−1X−1X−1X−1|0〉R ∼ 6(2(X1X−1)− 3(X2X−2))X2X−1X−1|0〉R (4.23)

ΛΛX2X2X−1X−1X−1X−1|0〉R ∼ 54((X1X−1)
2 + (X2X−2)

2 − 4(X2X−2)(X1X−1))|0〉R,
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where ∼ means the omission of massless states of a single term. The first line of (4.24)

is the most simple massless state of multi terms. The second and third line are massless

states of multi terms with fifth and fourth degree of X. Here note that all massless states

with 3rd degree are the single-term type.

Furthermore the inner product of massless states of multi terms and any massive

states, ψm,s, vanish. Because the number of the power of rn in massless states of multi

terms is greater than that in massless states of single term by even number, we will find

this vanishing by using the partial integration.

In this way, we expect that all massless states of multi terms are created from massless

states of single term, though we don’t investigate the action of Λ more in this paper.

Now we consider the theory which consist only of massless states. Such theory is

expected to be space-time conformal invariant. Here we define the “conformal dimension”22

from the dilatation as

∆R ≡ iDR (4.24)

and may use this operator to investigate the properties of the massless states. We find that

∆R count the number of X-type operators by the commutators

[Xn,∆R] = Xn. (4.25)

For example, we can determine that the state (4.20) has ∆R = l and particularly the string

ground state |0〉R has ∆R = 0.

Though we do not investigate massless states anymore, it is interesting to characterize

massless states in terms of the 3d space-time conformal symmetry.

5 Conclusion and outlook

In this paper, we showed that a 3D tensionless bosonic closed string in light-cone gauge

have no anomaly of the space-time conformal symmetry under the Hermitian version of

the R-ordering and the cutoff regularization. Further we investigated the spectrum of a

3D tensionless string, particularly massless states. When we consider the R-ordered string

ground state, we obtained the simple expression.

Note that the results we got is in the case of a single string. We don’t understand

anything about multi-string theories with interactions or string field theories, as well as in

the case of [3–5]. It is interesting to investigate the effects of the interaction. To study

this in detail, we may need the string field theory which reproduces the spectrum of a

tensionless string.

A 3D tensionless string has some of prospects.

First, one may image the open string version of our results. In the open string case, we

must consider the boundary condition at two endpoints. Even if we choose any boundary

conditions, we can fix the gauge in the same way as our case. However we need the caution

about the Fourier expansion. In the case of a tensionless (or tensile) closed string, thanks

22This definition is the inverse of the natural definition of the conformal dimension.
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to the periodicity of σ (or a combination of σ and τ), we can use the Fourier expansion with

respect to σ (or a combination of σ and τ). But in the case of a open string, the way of the

expansion changes according to the boundary condition. If we choose Neumann boundary

condition at two endpoints, the coordinate X(τ, σ) can be represented with a quasi-periodic

function of σ or the combination of τ and σ. If we choose Neumann boundary condition at

one endpoint and Dirichlet boundary condition at other, X(τ, σ) can be represented with

a quasi-antiperiodic function of σ or the combination of τ and σ. If we choose Dirichlet

boundary condition at two endpoints, X(τ, σ) can be represented with a quasi-periodic

function of σ or the combination of τ and σ, but X can have a linear term of σ. Therefore,

in a tensionless open string except for the case of the Neumann-Neumann condition, we

do not know simply whether we obtain the same result as this paper. Furthermore note

that because of the difference of the equation of motion between the tensile case and the

tensionless case, the coordinate X in a tensile open string are essentially periodic but in

a tensionless open string is a formal expedient to represent the zero point of X or its

differential.23 Hence we can not use the Fourier expansion based on the periodicity simply

and may need the discussion in another way. For example, one may deal the functions

X(σ) or P (σ) without using the mode expansions, like the case of [12]. But it may be

difficult to think the concrete regularization.

Next is the relation of the other background metric, which we didn’t comment on this

in this paper. We find the invariance of the action (2.4) under the space-time Weyl trans-

formation with the transformation of V . Then we expect applications to other background

space-times, e.g. AdS3, though we must investigate whether this theory represents a ten-

sionless string on non-Minkowski background space-time like a point particle or whether

this classical fact is satisfied in quantum theory.

As other possibilities there are the supersymmetric version, the membrane version,

the relation of Higher-spin gauge theories and so on. In the case of a tensionless closed

supersymmetric string, we can use the similar way to ours, unlike a tensionless open string.

We expect that the supersymmetric case in light-cone gauge gives the different result from

the case of BRST quantization [15, 16]. And it is interesting to consider not only string

but also two dimensional object, so-called the membrane. Moreover we are interested in

the relation of Higher-spin gauge theories [17, 18], which may be one of the limits of the

string theory.

Of course we are interested in the explanation for the difference between BRST quan-

tization and the light-cone gauge quantization and the covariant method that reproduces

results of the light-cone gauge quantization.

23Here we consider the case of Neumann-Neumann condition as an example. The equation of motion of a

tensile string is
(

∂2
τ − T 2∂2

σ

)

X(τ, σ) = 0 and its general solution is X(τ, σ) = 1
2
(F (Tτ − σ) +G(Tτ + σ)).

In the case of Neumann-Neumann condition such that X ′(τ, 0) = X ′(τ, π) = 0, we obtain F ′(τ) = G′(τ)

and F ′(τ + π) = G′(τ − π). Using these relations, we get G(u) = F (u) + a and F (u+ 2π) = F (u) + 2π · v

where a and v are constant. In this way, we can write X(τ, σ) with the quasi-periodic function of the

combination of τ and σ. On the other hand, the equation of motion of a tensionless string is ∂2
τX(τ, σ) = 0

and its general solution is X(τ, σ) = F (σ) + τG(σ). In the case of Neumann-Neumann condition such that

X ′(τ, 0) = X ′(τ, π) = 0, we get F ′(0) = F ′(π) = 0 and G′(0) = G′(π) = 0. We can choose cos(nσ) with

integer n as the function that satisfy these relations. The case of other sets of boundary conditions at two

endpoints are also discussed in the same way.
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A Light-cone components

We define the components of light-cone base in this paper.

In D dimensions Cartesian coordinates (Xµ ; µ = 0, 1, · · · , D − 1), we define the

Minkowski metric ηµν ; µ, ν = 0, 1, · · · , D − 1 such that

η = diag(−1, 1, · · · , 1). (A.1)

The light-cone components of coordinates are

X± ≡ 1√
2

(

X
1 ± X

0
)

, XI ≡ X
I (I = 2, · · · , D − 1). (A.2)

Similarly, the light-cone components of an arbitrary vector (Vµ ; µ = 0, 1, · · · , D − 1) are

V± ≡ 1√
2
(V1 ± V0) = V ∓, VI ≡ VI (I = 2, · · · , D − 1). (A.3)

The indices are raised and lowered with metric η. Moreover the inner product is given as

−V
2
0 +

D−1
∑

i=1

V
2
i ≡ V

2 = 2V+V− +
D−1
∑

I=2

V 2
I (A.4)

In three dimensions, the two rank anti-symmetric tensor is rewritten as the vector. For

example Sµν = −Sνµ is represented as

Sµ ≡ ǫµνρSνρ, (A.5)

where ǫµνρ is the totally antisymmetric tensor such that ǫ012 = 1 in Minkowski base and

ǫ+−2 = 1 in light-cone base. Furthermore we emphasize that in three dimensions the

transverse direction (I = 2, · · · , D − 1) is only one (I = 2).

B Generators

B.1 Poincaré group

We expect string theory to have the Poincaré symmetry. The quantization can induce

Lorentz anomaly, and the cancellation of this anomaly determines the critical dimension

and the ordering constant. First we consider in general dimensions D and next restrict

ourselves to three dimensions.

The generators of Poincaré group are translationsPµ, Lorentz rotationsJ µν such that

[Pµ,Pν ] = 0, [Pµ,J ρσ] = i (ηµσPρ − ηµρPσ) ,

[J µν ,J ρσ] = i (ηνσJ µρ − ηνρJ µσ − ηµσJ νρ + ηµρJ νσ) .
(B.1)
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In light-cone base, minding η+− = η+− = 1 and ηIJ = δIJ , we find the following commu-

tation relations:

[P±,J +−] = ±iP±, [P±,J ∓I ] = −iPI ,

[PI ,J ±J ] = iδIJP±, [PI ,J JK ] = i
(

δIKPJ − δIJPK
)

,

[J +−,J ±I ] = ∓iJ ±I , [J +I ,J −K ] = i
(

J IK + δIKJ +−
)

,

[J ±I ,JKL] = i
(

δILJ ±K − δIKJ ±L
)

,

[J IJ ,JKL] = i
(

δJLJ IK − δJKJ IL − δILJ JK + δIKJ JL
)

,

with others vanishing,

(B.2)

where I, J,K,L = 2, · · · , D − 1. Among commutators which must be zero, particularly

[J −I ,J −J ]
?
= 0 (B.3)

cannot be satisfied when we quantize the string theory except for in three dimensions. This

is so called a “dangerous commutator”.

3D. In three dimensions Lorentz generators are rewritten as J ± = ∓J ±2, J = −J +−

like eq. (A.5). Hence the commutation relations (B.1) become simple as follows,

[Pµ,Pν ] = 0, [J µ,Pν ] = iǫµνρPρ, [J µ,J ν ] = iǫµνρJρ. (B.4)

Moreover we can make two Poincaré Casimir operators easily as follow,

M2 = −P2, Λ = PµJ µ (B.5)

Unitary irreducible representations of Poincaré group are labeled by the value of these two

Casimirs [19] and particularly irreps. with M2 ≥ 0 are only physical. When M2 > 0 we

define relativistic helicity by

s =
Λ

M
(B.6)

This may take either sign, and parity flips the sign of s. Further we call |s| “spin”. If

Lorentz group is SO(1, 2), its double cover SL(2;R) or its universal cover, s is an integer,

half-integer or any real number.

In light-cone base commutation relations of 3d Poincaré group are

[J ±,P∓] = ±iP, [J ,P±] = ±iP±, [J ±,P] = ∓iP±,

[J ,J ±] = ±iJ ±, [J +,J −] = iJ , with others vanishing.
(B.7)

In three dimensions the commutator [J −,J −], corresponding to a dangerous commuta-

tor (B.3), vanish trivially because the transverse direction is only one. Therefore the 3d

string theory in Light-cone gauge has no Lorentz anomaly and is thought of preserving the

Poincaré symmetry.
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B.2 Conformal group

We expect a tensionless string to have the space-time conformal symmetry. First we con-

sider in general dimensions D and next in three dimensions.

The generators of the space-time conformal group are dilatation D and special confor-

mal transformation Kµ, additional to translationsPµ and Lorentz rotationsJ µν , such that

[D,Pµ] = iPµ, [D,J µν ] = 0, [D,Kµ] = −iKµ, [Kµ,Kν ] = 0,

[Kµ,Pν ] = i (ηµνD + J µν) , [Kµ,J ρσ] = i (ηµσKρ − ηµρKσ) .
(B.8)

In light-cone base,

[D,P±] = iP±, [D,PI ] = iPI ,

[D,K±] = −iK±, [D,KI ] = −iKI ,

[K±,P∓] = i
(

D ± J +−
)

, [K±,PI ] = −[KI ,P±] = iJ ±I ,

[KI ,PJ ] = i
(

δIJD + J IJ
)

,

[K±,J +−] = ±iK±, [K±,J ∓I ] = −iKI ,

[KI ,J ±J ] = −iδIJK±,

[KI ,J JK ] = i
(

δILKK − δIKKL
)

, with others vanishing.

(B.9)

A tensionless string in generic dimensions can have a dangerous commutator as well as the

case of Lorentz anomaly. That is as follows:

[KI ,J −J ]
?
= −iδIJK−. (B.10)

The right hand side of this commutator has the off-diagonal, traceless part with respect

to I, J as well as the trace part. The difference of trace part can be absorbed in the

redefinition of K−. However the traceless part remain as anomaly [12].

3D. In three dimensions the commutation relations (B.8) become simple a little as follows,

[D,Pµ] = iPµ, [D,J µ] = 0, [D,Kµ] = −iKµ, [Kµ,Kν ] = 0,

[Kµ,Pν ] = i (ηµνD − ǫµνρJρ) , [Kµ,J ν ] = iǫµνρKρ.
(B.11)

In light-cone base,

[D,P±] = iP±, [D,P] = iP, [D,K±] = −iK±,

[D,K] = −iK
[K±,P∓] = i (D ∓ J ) , [K±,P] = −[K,P±] = ±iJ ±, [K,P] = iD,
[K±,J ∓] = ±iK, [K±,J ] = ∓iK±, [K,J ±] = ±iK±,

with others vanishing.

(B.12)

In three dimensions the commutator [K,J −], corresponding to a dangerous commuta-

tor (B.10), is only one commutator and is regarded as the redefinition of K−. Therefore

this type of anomaly does not exist. However there are many commutators not to be
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thought in tensile string theory and we must check that they satisfy the expected commu-

tation relations of the conformal group. The calculation of them is very complicated and

lengthy, in particular the next commutation relation is very troublesome;

[K−,J −] = 0. (B.13)

A check of this relation is the main result of this paper.

C Normalization of the wave functions

In section 4 we have investigated eigenfunctions of mass squared operator M2. In this

section we give the detail with respect to the normalization of the wave functions [10]. The

inner product of two total eigenfunctions (4.16) are defined with the following definition

for each n.

First we check eq. (4.13). By the definition (4.12), the scalar product of ψm,s and

ψm′,s′ is

(ψm,s, ψm′,s′) = 2πδs,s′N
∗
mNm′

∫ ∞

0

drrJs(2mr)Js(2m
′r). (C.1)

The integral in (C.1) can be computed by using the following result
∫ y

0

dxxJl(ax)Jl(bx) =
y

a2 − b2
[aJl+1(ay)Jl(by)− bJl(ay)Jl+1(by)] , (C.2)

where a and b are positive. We take a limit y = Λ → ∞ of eq. (C.2) and obtain
∫ ∞

0

dxxJl(ax)Jl(bx) = lim
Λ→∞

Λ

a2 − b2
[aJl+1(aΛ)Jl(bΛ)− bJl(aΛ)Jl+1(bΛ)]

=
1

π

1√
ab

lim
Λ→∞

[

sin(a− b)Λ

a− b
− (−1)l

cos(a+ b)Λ

a+ b

]

=
1

a
δ(a− b) for a > 0 and b > 0, (C.3)

where we used Jl(0) = 0 for l > 0 and the Hankel asymptotic form

Jν(x) =

√

2

πx

[

cos

(

x− 2ν + 1

4
π

)

+O(x−1)

]

as x→ ∞ (C.4)

and the delta function defined by the weak limit24

lim
Λ→∞

sin(Λx)

πx
≡ δ(x). (C.5)

Thus we obtain

(ψm,s, ψm′,s′) =
π

2
δs,s′

|Nm|2
m

δ(m−m′). (C.6)

24Note that the delta function defined in this way makes sense only for the smooth function with

compact support. In other word, on the interval of integration with zero,
∫

dx limΛ→∞
sin(Λx)

πx
f(x) =

∫

dx limΛ→∞
eiΛx−e−iΛx

2πix
f(x) = f(0) for any smooth functions f(x) with compact support. In our case, we

suppose that this delta function and the smooth function together will be integrated.
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If |Nm| =
√

2m
π
, we get (ψm,s, ψm′,s′) = δs,s′δ(m−m′).

Next we check the orthogonality between massive eigenfunctions and massless eigen-

functions. For massless m = 0, we consider the s 6= 0 case and the s = 0 case separately.

The general solution of eq. (4.14) for s 6= 0 is

ψ0,s(r, θ) = (Ar−|s| +Br|s|)eisθ, (C.7)

where A and B are constants. For simplicity, we consider the s > 0 case. The s < 0 case

is also discussed similarly. The scalar product of ψ0,s and ψm,s′ for s > 0 is

(ψ0,s, ψm,s′) = 2πδs,s′Nm

∫ ∞

0

dr r (A∗r−s +B∗rs)Js(2mr) (C.8)

= 2πδs,s′Nm

[

A∗ ms−2

2(s− 1)!
+B∗

√

2

π
lim
Λ→∞

Λs+ 1
2

(2m)
3
2

cos

(

2mΛ− 2s+ 3

4
π

)

]

,

where we use the asymptotic form (C.4) and the following results for positive integer l

∫ y

0

dxxl+1Jl(x) = yl+1Jl+1(y)

∫ y

0

dxx−l+1Jl(x) = −y−l+1Jl−1(y) +
1

2l−1(l − 1)!
.

(C.9)

For m 6= 0, the second term of eq. (C.8) is zero because of the same reason as the definition

of the delta function using sinc function. Thus the r.h.s. of eq. (C.8) vanishes only if A = 0.

Therefore, the solution eq. (4.14) for s > 0 is ψ0,s = rseisθ. In the same way, we find that

the solution for s < 0 is ψ0,s = r−seisθ.

The general solution of eq. (4.14) for s = 0 is

ψ0,0(r, θ) = A log r +B, (C.10)

where A and B are constants. The scalar product of ψ0,0 and ψm,s is

(ψ0,0, ψm,s) = 2πδs,0Nm

∫ ∞

0

dr r (A∗ log r +B∗)Js(2mr) (C.11)

= 2πδs,s′Nm

[

− A∗

(2m)2
+ lim

Λ→∞
(A∗ log Λ +B∗)

√

2

π

Λ
1
2

(2m)
3
2

cos

(

2mΛ− 3

4
π

)

]

,

where we use the asymptotic form (C.4) , eq. (C.9) and the following result

∫ y

0

dx x log x J0(x) = yJ1(y) + J0(y)− 1. (C.12)

For m 6= 0, the second term of eq. (C.11) is zero again and the r.h.s. of eq. (C.11) vanishes

only if A = 0. Therefore the solution of eq. (4.14) for s = 0 is a constant.

If we collect these three cases, we obtain

ψ0,s(r, θ) = Br|s|eisθ. (C.13)
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