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1 Introduction

It is often believed that the virtual corrections are the most complicated piece of higher-

order perturbative computations, but in general this is not true. Beyond next-to-leading

order (NLO), the real-emission corrections typically present the main difficulty. For ex-

ample, because of the complicated structure of the real emissions, the NNLO corrections

to W , Z and photon production in association with an energetic jet are currently still

unknown, despite the fact that the two-loop virtual corrections to these processes have

been available for more than ten years [1, 2]. Over the past years, a number of techniques

have been developed to isolate the soft and collinear singularities at NNLO so that the re-

maining phase-space integrations can be performed numerically, see e.g. [3–5]. Using these

methods, the NNLO corrections for dijet production [6] and for Higgs-boson production in
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association with a jet [7] have recently been obtained for the dominant, purely gluonic, par-

tonic channel. While these computations are very challenging, we can expect that NNLO

results for all electroweak bosons will become available in the not too distant future.

Soft and collinear singularities complicate the numerical evaluation of phase-space

integrals, but the amplitudes themselves greatly simplify in the singular regions. In the

present paper we will use this simplification to obtain an approximate NNLO result for

Higgs-boson, W , Z and photon production in association with an energetic jet. To do so,

we will consider the production of an electroweak boson V near the partonic threshold.

Near threshold, the electroweak boson recoils against a low-mass hadronic jet, and the real

radiation is either soft, or collinear to the jet or the incoming partons. As a consequence,

the partonic cross section in the channel a+ b → V + jc factorizes

ŝ
dσ̂

dû dt̂
= σ̂

(0)
ab (û, t̂, µ) Ĥab(û, t̂, µ)

∫

dk Jc(m
2
X − 2EJk, µ)Sab(k, µ) , (1.1)

where σ̂
(0)
ab is the Born cross section and the partonic Mandelstam variables are ŝ = (pa +

pb)
2, t̂ = (pa − q)2 and û = (pb − q)2, with q the vector-boson momentum, and q2 = M2

V .

The jet functions Jq and Jg describe the collinear radiation initiated by an energetic quark

or gluon, respectively. The two-loop quark jet function was computed in [8], and the two-

loop gluon result was obtained in [9]. Last year, also the two-loop soft function Sab was

computed [10]. Here, we will determine the final NNLO ingredient, the two-loop hard

function Ĥab, for all partonic channels for both vector-boson and Higgs-boson production.

The hard function contains the virtual corrections which were computed in [1, 2, 11–13].

We will convert these results into an infrared-subtraction scheme that is compatible with

the jet and soft function calculations. Our paper completes the construction of the two-

loop cross section near the partonic threshold. Since the threshold terms usually amount

to the bulk of the cross section, we expect that our result is a good approximation to the

full NNLO result.

The derivation of the factorization formula (1.1) in Soft-Collinear Effective Theory

(SCET) [14–16] was given in [17] for photon production and generalized to theW and Z case

in [18, 19]. An interesting new feature, which first arises at NNLO is the presence of a purely

gluonic channel gg → V g in Z-boson and photon production. This was already pointed out

in [17], but here we explicitly give the relevant SCET operators and determine their Wilson

coefficients using the results [12] for the corresponding loop amplitudes. Numerically,

however, we find that this channel only gives a negligible contribution. The factorization

formula (1.1) can also be used to resum the threshold terms to all orders. For W and Z

production at large transverse momentum, this resummation was performed at next-to-

leading logarithmic (NLL) accuracy in [20–22] and to NNLL in [17, 18, 23, 24]. With all

two-loop ingredients in place, we can extent the resummation to N3LL accuracy since the

necessary anomalous dimensions are known. We have implemented the N3LL resummation,

as well as the NNLO fixed-order expansion of the threshold cross section into a public code

PeTeR (”large-pT Resummation”) [25]. Numerically, we find that the resummation effects

are small and the N3LL resummed results are close to the NNLO threshold results.
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Our paper is organized as follows. In section 2 we show how to extract the Wilson

coefficients of the SCET operators describing V + jet production from the results for four-

point amplitudes in the literature. The construction of the associated hard functions is

then detailed in section 3. We first treat the vector-boson case, where we discuss the

qq̄ → V g and qg → V q channels in section 3.2 and the gg → V g process in section 3.3.

After this, we construct the hard functions for Higgs production in section 3.4. With all

the ingredients in place, we then compute the two-loop threshold cross section in section 4

and study the numerical impact of the corrections in section 5.

2 On-shell matching and renormalization

The hard functions in SCET are obtained by performing a matching calculation, i.e. by

computing the same quantity in QCD and in the effective theory, and then fixing the Wilson

coefficients of the SCET operators in such a way that the QCD result is reproduced. The

Wilson coefficients are independent of the process and the external states used to perform

the matching. By far the simplest possibility is to use on-shell amplitudes, in our case

qq̄ → V g, qg → V q and gg → V g, since the loop integrals in the effective theory are

scaleless for on-shell momenta and vanish in dimensional regularization. The relevant two-

loop QCD amplitudes were obtained in [2, 11–13]. We now explain how the SCET operators

are constructed and how their bare Wilson coefficients are obtained from QCD results for

the on-shell amplitudes, and then perform the renormalization of these coefficients.

The SCET operators mediating the production of an electroweak boson at large trans-

verse momentum pT involve collinear fields associated with the two beam directions and

the direction of the associated jet. At leading power in the effective theory, they involve a

single collinear field for each of the three directions. To construct the collinear Lagrangians,

one introduces a light-cone reference vector for each direction. The vectors n1 and n2 point

in the beam directions, while nJ is along the jet direction. Each reference vector ni has

a conjugate light-cone vector n̄i, with ni · n̄i = 2. Quarks collinear to the direction i are

described by a field χi, which fulfills the condition ni/ χi = 0, so that this field is effectively

a two-component field. Also, at leading power, only the components of the gluon field Aν,a
i⊥

transverse to its light-cone direction can contribute. Because of these conditions, there

is a one-to-one correspondence between helicity states and associated operators. Helicity

amplitudes are therefore particularly well suited to extract the SCET matching coefficients,

as stressed in [26–28].

We will now explain the relation between helicity amplitudes and Wilson coefficients in

detail, using the example of the purely gluonic channel which arises for Z and γ production

at one-loop and contributes at NNLO to the cross section. The presence of SCET operators

mediating the gg → V g process was pointed out in [17], but in contrast to the operators

for qq̄ → V g and qg → V q, the purely gluonic operators were not explicitly given since

they are not needed at NNLL accuracy. According to our considerations from above, the

leading-power operators for gg → V g (and for gg → Hg) have the form

Oνρσ
abc (x; t1, t2, tJ) = Aν,a

1⊥(x+ t1n̄1)Aρ,b
2⊥(x+ t2n̄2)Aσ,c

J⊥(x+ tJ n̄J) . (2.1)
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The operators for the quark channels such as qq̄ → V g have the same structure, but involve

a quark field, an anti-quark field and a gluon. In SCET the collinear operators are smeared

over the directions associated with the large external momenta, and the associated hadronic

vector current Jµ(x) mediating gg → V g consists of a convolution of the Wilson coefficients

with the smeared operators

Jµ(x) =

∫

dt1 dt2 dtJ C
abc
µνρσ(t1, t2, tJ)Oνρσ

abc (x; t1, t2, tJ) . (2.2)

Because we have left the color and Lorentz structure of the fields in the operators open,

the Wilson coefficients have Lorentz and color indices, too. These are contracted with the

operators to ensure that J µ(x) transforms as a singlet under color and a vector (or axial-

vector) under the Lorentz group. The color structure of the Wilson coefficients can be either

symmetric or antisymmetric. In the first case, it is proportional to dabc, in the second case

proportional to the structure constants fabc. Working with open Lorentz and color indices

is convenient because the coefficients Cabc
µνρσ are directly related to helicity amplitudes in

color space. To see this, we perform the matching using on-shell gg → V g amplitudes. Since

the loop integrals in the effective theory are all scaleless for on-shell external momenta, the

effective theory amplitudes reduce to tree-level matrix elements multiplied by the Wilson

coefficients. Furthermore, because the different collinear sectors no longer interact after

soft-collinear decoupling, the matrix element factorizes into individual collinear matrix

elements, which in a given sector have the form

〈0| Aν,a
j⊥(tjn̄j) |pi; ai, λi〉 = δij δaia e

−itin̄i·pi ǫν(pi, λi) (2.3)

for an incoming transverse gluon field. Performing the integrations over the variables ti, one

then finds that the Fourier transforms of the Wilson coefficients Cabc
µνρσ(t1, t2, tJ), contracted

with the external polarization vectors, are equal to the helicity amplitudes.

The vanishing of the loop corrections in the effective theory implies that in the relevant

integrals, the infrared (IR) and ultraviolet (UV) singularities exactly cancel each other.

Since the IR singularities of QCD and SCET are the same, this further implies that the

UV singularities of SCET Wilson coefficients are identical to the IR singularities of QCD

amplitudes. As a consequence the IR singularities of n-point amplitudes in d = 4 − 2ǫ

dimensions can be renormalized multiplicatively [26, 27]

|Mren({p}, µ)〉 = lim
ǫ→0

Z−1(ǫ, {p}, µ) |M(ǫ, {p})〉 , (2.4)

where the renormalization factor Z is a matrix in color space. It is spin-independent, but

depends logarithmically on the external momenta {p} ≡ p1, . . . , pn. The renormalized am-

plitude |Mren({p}, µ)〉 is equal to the renormalized Wilson coefficient of the leading-power

SCET operator with the same quantum numbers as the external states in the amplitude.

The inverse of the Z-factor can be written in terms of the anomalous dimension matrix [26]

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs) , (2.5)
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where the sum runs over unordered tuples (i, j) of distinct partons, Ti is the color generator

associated with the i-th parton in the scattering amplitude, which acts on the color index

of that parton, and sij ≡ 2σijpi · pj + i0, where the sign factor σij = +1 if the momenta

pi and pj are both incoming or outgoing, and σij = −1 otherwise. The product Ti · Tj ≡
T a
i T a

j is summed over a. Generators associated with different particles trivially commute,

Ti · Tj = Tj · Ti for i 6= j, and T 2
i = Ci is given in terms of the quadratic Casimir operator

of the corresponding color representation, i.e. Cq = Cq̄ = CF and Cg = CA. For more

details on the color-space formalism, see [29, 30].

In [2, 11–13] the results were given in terms of finite helicity amplitudes obtained after

removing the IR singularities using Catani’s subtraction formula [31]. In the following,

we will relate these expressions to the renormalized SCET Wilson coefficients. The entire

procedure can be viewed as a scheme change from Catani’s subtraction scheme to a standard

MS subtraction of the singularities.

2.1 Conversion to MS scheme

We first reconstruct the IR-divergent part of the two-loop amplitudes and will then perform

the renormalization. We write the expansion of the UV-renormalized, on-shell n-parton

scattering amplitude with IR singularities regularized in d = 4− 2ǫ dimensions as

|M(ǫ, {p})〉 ≡ M(0) +
αs

2π
M(1)(ǫ) +

(αs

2π

)2
M(2)(ǫ) +O(α3

s) , (2.6)

where αs ≡ αs(µ) is the renormalized coupling constant. Note that the superscript (i)

refers in this section to an expansion in units of αs/2π, which is the notation adopted

in the literature on two-loop four-point functions [2, 11–13]. In the SCET literature, the

perturbative expansion is usually written in αs/4π. Throughout this section, we will expand

in αs/2π to be compatible with the literature on the amplitudes, but we will switch to the

standard SCET notation when we present our result for the cross section in section 4 and

in the appendices.

The helicity amplitudes in [2, 11–13] were constructed using Catani’s IR-subtraction

formula [31], which states that the product

|Mfin({p}, µ)〉 =
[

1− αs

2π
I(1)(ǫ)−

(αs

2π

)2
I(2)(ǫ) + . . .

]

|M(ǫ, {p})〉 (2.7)

is free of IR poles through O(α2
s). The amplitudes are however different from the

MS-renormalized amplitudes |Mren({p}, µ)〉 in (2.4), because the subtraction operators

I(n)(ǫ) ≡ I(n)(ǫ, {p}, µ) contain terms of arbitrarily high orders in ǫ. The explicit form of

the I(n)(ǫ) can be found in appendix A. The above relation can be inverted to reconstruct

the expansion coefficients of the IR-divergent amplitude |M(ǫ, {p})〉 as

M(1)(ǫ) = M(1), fin + I(1)(ǫ )M(0) ,

M(2)(ǫ) = M(2),fin + I(1)(ǫ)
(

M(1),fin + I(1)(ǫ )M(0)
)

+ I(2)(ǫ)M(0) . (2.8)
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The SCET Wilson coefficient is now obtained by multiplying the IR-divergent amplitude

with the inverse of the Z-factor. With a slight abuse of notation, we write the expansion

of the inverse Z-factor in the form

Z−1(ǫ, {p}, µ) = 1 +
αs

2π
Z(1)(ǫ) +

(αs

2π

)2
Z(2)(ǫ) +O(α3

s) . (2.9)

The explicit form of the coefficients Z(n)(ǫ) is given in appendix A. The above relations

can be used to express the MS-renormalized amplitude |Mren({p}, µ)〉 in terms of the

IR-finite amplitude |Mfin({p}, µ)〉 given in [2, 11–13]. At one-loop order, the conversion

relation reads

M(1),ren = M(1),fin +
(

I(1)(ǫ) +Z(1)(ǫ)
)

M(0)

= M(1),fin + C0M(0) , (2.10)

where C0 is the finite term of Catani’s one-loop subtraction operator I(1)(ǫ),

C0 =
∑

(i,j)

Ti · Tj

16

[

γcusp0 ln2
µ2

−sij
− 4γi0

Ci
ln

µ2

−sij

]

− π2

96
Γ′
0 , (2.11)

with one-loop anomalous dimensions γcusp0 = 4, γq0 = −3CF , γg0 = −β0 and Γ′
0 =

−γcusp0

∑

iCi. At two-loop order, the conversion relation takes the form

M(2),ren = M(2),fin +
(

I(1)(ǫ) +Z(1)(ǫ)
)

M(1),fin

+
(

I(2)(ǫ) +
(

I(1)(ǫ) +Z(1)(ǫ)
)

I(1)(ǫ) +Z(2)(ǫ)
)

)M(0)

= M(2),fin + C0M(1),fin +

{

1

2
C
2
0
+

γcusp1

8

(

C0 +
π2

128
Γ′
0

)

+
β0
2

(

C1 +
π2

32
Γ0 +

7ζ3
96

Γ′
0

)

− 1

8

[

Γ0,C1

]

}

M(0) , (2.12)

and the corresponding expression for C1 and the two-loop anomalous dimensions are sum-

marized in appendix A. In the appendix, we also give an explicit formula for the commutator

[Γ0,C1] in terms of three-particle correlations.

The above relations are valid for general n-parton scattering amplitudes. For n = 3

colored partons, which is the relevant case here, one can use color conservation to express

the dipoles in terms of the Casimir operators associated with the three external legs,

T1 · T2 = −1

2
(C1 + C2 − C3) ≡ C12 , etc. (2.13)

The color structure then becomes trivial, and the one-loop conversion factor (2.11) simpli-

fies to

C0 =
C12

8

[

γcusp0

(

ln2
µ2

−s12
− π2

6

)

− 2

(

γ10
C1

+
γ20
C2

)

ln
µ2

−s12

]

+ (cyclic permutations) . (2.14)
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The two-loop relation (2.12) contains in addition the structure

C1 +
π2

32
Γ0 +

7ζ3
96

Γ′
0

=
C12

24

[

γcusp0

(

ln3
µ2

−s12
+

π2

4
ln

µ2

−s12
+

3ζ3
2

)

−
(

γ10
C1

+
γ20
C2

)(

3 ln2
µ2

−s12
+

π2

4

)]

+ (cyclic permutations) , (2.15)

as well as a commutator [Γ0,C1], which vanishes in the three-parton case because of the

trivial color structure.

3 Hard functions from helicity amplitudes

The two-loop four-point helicity amplitudes with one external electroweak boson and three

colored particles were computed in [2, 11–13]. Having discussed how the amplitudes ob-

tained in these papers can be converted to the MS scheme, we will now show how the hard

functions can be assembled from the squared amplitudes. To obtain the result one needs to

analytically continue the amplitudes to crossed channels and use parity and charge conju-

gation symmetry to obtain all helicity configurations from a minimal set. The amplitudes

and their analytic continuation to different channels are appended in electronic form to

the arXiv submissions of the papers [2, 11–13], since the expressions are too lengthy to be

given explicitly in a paper.

3.1 Kinematics and analytic continuation

We first specify the kinematics and the analytic continuation of the amplitudes, which are

common to all channels. For concreteness, we consider the specific process

V (q) → q(p1) + q̄(p2) + g(p3) , (3.1)

where the vector boson can be off the mass shell. All parton momenta are outgoing and

we have

s12 = (p1+ p2)
2, s13 = (p1+ p3)

2, s23 = (p2+ p3)
2, q2 = (p1+ p2+ p3)

2 ≡ s123 . (3.2)

The kinematic region which describes the decay of the electroweak boson to three partons

is called region (1) in [32] and corresponds to the inside of the Mandelstam triangle shown

in figure 1. The amplitudes for vector-boson production can be obtained from the result

for V → qq̄g using crossing symmetry and analytic continuation. The kinematic regions

relevant for the considered processes in this paper are (2), (3) and (4) in figure 1. In the

crossed channels, the incoming momenta will enter with a minus sign in the definitions (3.2).

The helicity amplitudes for a given process are written in terms of spinor products

multiplied by coefficient functions which depend on the invariants sij . In the following,

we will denote these coefficient functions by the Greek letters αn, βn, γn, δn, where the

subscript indicates the kinematic region, and use the letter Ω to denote a generic coefficient

– 7 –
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s12 ≥ 0

s13 ≥ 0

s23 ≥ 0

V → qq̄g

(1)

(2)

qq̄ → V g

(3)

q̄g → V q̄

(4)

qg → V q

Figure 1. Different channels of the V → qq̄g amplitude. The amplitudes in regions (2), (3) and

(4) can be obtained by analytic continuation of the result in region (1). The numbering of regions

is the same as in [32], where these four regions are denoted by (1a+), (2a+), (3a+), (4a+).

function. It is convenient to express the functions in terms of dimensionless invariants. A

suitable choice for kinematic region (1) is1

region (1): u1 =
s13
q2

, v1 =
s23
q2

. (3.3)

The coefficient functions are given in [2, 11–13] in terms of two-dimensional harmonic

polylogarithms (TDHPLs) [33, 34] in the variables u1 and v1 defined in (3.3). In region (1)

these variables fulfill the conditions

0 < u1 ≤ 1 , 0 ≤ v1 ≤ 1− u1 , (3.4)

and the TDHPLs are analytic and real for these values of the arguments. Since some of

the invariants sij will become negative under crossing, the condition (3.4) is violated in the

regions (2), (3), (4) and one has to analytically continue the amplitudes and the associated

TDHPLs. A systematic algorithm for this continuation was given in [32]. In each region,

one defines variables which fulfill conditions analogous to (3.4) and rewrites the amplitudes

in terms of TDHPLs in these variables. They are

region (2): u2 = −s13
s12

, v2 =
q2

s12
,

region (3): u3 = −s23
s13

, v3 =
q2

s13
,

region (4): u4 = −s13
s23

, v4 =
q2

s23
. (3.5)

1In reference [32] the notation y ≡ u1 and z ≡ v1 is used. We use the subscript to distinguish the

variables relevant in the different kinematic regions shown in figure 1.
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V γ Z W+ W−

LV
ij eiδij

I3i −sin2(θW )ei
sin θW cos θW

δij
1√

2 sin θW
I+ijV

∗
ij

1√
2 sin θW

I−ijVji

RV
ij eiδij

− sin θW ei
cos θW

δij 0 0

Table 1. Couplings of quarks with flavors i and j to electroweak vector bosons in the final state.

The charges of up-type and down-type quarks are eu = 2
3
, ed = − 1

3
, electroweak isospin I3u = 1

2
,

I3d = − 1
2
, I+ud = I−du = 1, I±uu = I±dd = 0. Vij is the CKM matrix.

To compute the hard functions, we then first take the IR-finite amplitude coefficients in

region (i), Ωfin
i (ui, vi) for i = 2, 3, 4 included in the arXiv submissions of [2, 11–13]. Using

the conversion formulae derived in section 2, these results can then be converted into

the MS-renormalized coefficicients Ωren
i (ui, vi). Note that also the conversion terms (2.10)

and (2.12) need to be continued appropriately, but the continuation is trivial, since these

terms only contain logarithms of the invariants sij ≡ sij + i0. To evaluate the TDHPLs

numerically, we use the programs [35, 36].

3.2 The qq̄ → V g and qg → V q channels

The amplitudes for qq̄ → V g and qg → V q can be obtained from the V → qq̄g amplitude

using crossing symmetry and analyticity. Note that particles turn into anti-particles under

the crossing operation pi → −pi. To obtain the amplitude with a W+ in the final state, one

therefore needs to cross the W− decay amplitude. The hadronic current Sµ mediating the

V → qq̄g decay was given in [2] in the spinor-helicity formalism [37–39]. Here, we will use

the same spinor notation as [40] (see e.g. [41, 42] for overviews of the various types of spinor

notations in the literature). The spinor-helicity formalism is a four-dimensional method.

The reason it can be applied here is that the Z-factor is independent of the helicities of the

partons. The infrared singularities are thus an overall factor in helicity space, which can

be removed after which the formalism can be applied to infrared-finite amplitudes. In [2],

the fixed-helicity current Sµ(q+, g+, q̄−) is written in the form

Sµ(q+, g+, q̄−)=
√
2RV

f1f2

{

α1(u1, v1)
〈12〉[1γµ2〉
〈13〉〈32〉 + β1(u1, v1)

[3γµ2〉
〈13〉 + γ1(u1, v1)

[31][3γµ1〉
〈13〉[23]

+ δ1(u1, v1)
[31]

〈13〉 [21] ([1 γµ 1〉+ [2 γµ 2〉+ [3 γµ 3〉)
}

, (3.6)

where RV
f1f2

is the right-handed coupling of the vector boson to the quarks. The electroweak

couplings are given explicitly in table 1. The coefficients α1, β1, γ1, δ1 are expanded as

Ω = e gs (t
a)ij

(

Ω(0) +
αs

2π
Ω(1) +

(αs

2π

)2
Ω(2) + . . .

)

, (3.7)

where i, j and a are the color indices of the quark, anti-quark and gluon. We note that the

coefficient δ1(u1, v1) is not independent, as it is linked to the other functions by current

conservation. To obtain the SCET hard functions, we need to evaluate the amplitudes with
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the renormalized coefficients Ωren in the MS scheme. The conversion from the IR-finite am-

plitudes of [2, 11] to the MS scheme was discussed in detail in the previous section. Since

the IR singularities are independent of the spin of the particles, the coefficients are con-

verted using the same expressions (2.10) and (2.12). We will suppress the superscript Ωren

on the amplitude coefficients in the following, but it is understood that the renormalized

quantities are used to obtain the hard functions.

The remaining helicity configurations follow from (3.6) by using parity conservation

and charge conjugation symmetry of the strong interaction. Parity yields the relation

Sµ(q−, gλ, q̄+) = S∗
µ(q+, g(−λ), q̄−)

∣

∣

RV
f1f2

→LV
f1f2

, (3.8)

and charge conjugation

Sµ(qλq, gλ, q̄λq̄) = (−1)Sµ(q̄λq̄, gλ, qλq) . (3.9)

To obtain the hard functions in a given channel, we need to square the helicity ampli-

tudes. Summing the contribution of different helicities, we then get the hadronic tensor

Hµν =
∑

helicities

Sµ S∗
ν . (3.10)

By contracting this with the appropriate lepton tensor, one could obtain the vector-boson

production cross section with an arbitrary set of cuts on the leptons arising in the vector-

boson decay. Here, we will only be interested in the total vector-boson production rate

and we thus only need the hard function

H = −gµν Hµν . (3.11)

The contribution of the helicity configuration Sµ(q+, g+, q̄−) to the hard function in the

process V → qq̄g, for example, is obtained from the representation (3.6) and has the form

− S∗
µ(q+, g+, q̄−)Sµ(q+, g+, q̄−) = 2|RV

f1f2
|2 h1(s12, s23, s13) . (3.12)

The subscript on the quantity h1 denotes the region in which the amplitudes are evaluated.

In region (n), we obtain

hn(s12, s23, s13) =
1

s13 s23 q2

{

|αn(un, vn)|2 s12
(

2s12q
2 + s13s23

)

+ |βn(un, vn)|2 s23
(

2s23q
2 + s12s13

)

+ |γn(un, vn)|2 s13
(

2s13q
2 + s12s23

)

+ 2Re [αn(un, vn)β
∗
n(un, vn)] s12s23

(

2q2 − s13
)

− 2Re [αn(un, vn) γ
∗
n(un, vn)] s12s13s23

− 2Re [βn(un, vn) γ
∗
n(un, vn)] s13s23

(

2q2 − s12
)

}

. (3.13)

It is understood that the variables un ≡ un(s12, s23, s13) and vn ≡ vn(s12, s23, s13) in the

amplitude coefficients are expressed in the invariants sij via the relations (3.5) valid in

region (n).
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The full hard function is obtained by summing over all helicities. Since the other

helicity configurations can be obtained by applying parity and charge conjugation to

Sµ(q+, g+, q̄−), see (3.8) and (3.9), the result can be expressed using the same function

h1. For V → qq̄g, one then finds

HV→qq̄g = 2
(

|RV
f1f2

|2 + |LV
f1f2

|2
)

[h1(s12, s23, s13) + h1(s12, s13, s23)] . (3.14)

The contribution with s13 ↔ s23 arises from charge conjugation. For the channel qq̄ → V g,

one obtains the same expression, but the amplitudes now have to be continued to region

(2) and evaluated with the variables u2 and v2,

Hqq̄→V g = 2
(

|RV
f1f2

|2 + |LV
f1f2

|2
)

[h2(s12, s23, s13) + h2(s12, s13, s23)] . (3.15)

Finally, for region (4), qg → V q, we need

Hqg→V q = −2
(

|RV
f1f2

|2 + |LV
f1f2

|2
)

[h4(s12, s23, s13) + h3(s12, s13, s23)] . (3.16)

The extra minus sign in front of (3.16) compensates the minus sign which arises when

crossing a fermion from the final to the initial state. The other difference to the previous

two cases is that charge conjugation maps region (4) onto region (3), while (1) and (2) map

onto themselves. For this reason, the result (3.16) involves the amplitude in both regions.

Note that the variables sij ≡ 2σijpi · pj are the same in all kinematic regions. They stay

invariant under crossing because of the sign factor which is σij = +1 if the momenta pi and

pj are both incoming or outgoing, and σij = −1 otherwise. For qq̄ → V g they relate to the

usual partonic Mandelstam variables in equation (1.1) via ŝ = s12, t̂ = s13 and û = s23,

while the relations are ŝ = s23, t̂ = s13 and û = s12 for qg → V q. The hard function for

Hgq→V q is obtained from Hqg→V q by exchanging t̂ and û. The hard functions for anti-quark

channels are equal to the ones for the quarks, Hq̄g→V q̄ = Hqg→V q and Hgq̄→V q̄ = Hgq→V q.

3.3 The gg → V g channel

In section 2 the SCET operators for the partonic channel gg → V g were given and we now

extract their Wilson coefficients from the helicity amplitudes provided in [12]. Since we

only need the leading-order amplitude, which is free of infrared divergences, we can directly

use the result presented in [12]. In analogy to [2], the helicity amplitudes are first given

in region (1), corresponding to V → ggg and then analytically continued into the other

regions. However, instead of the hadronic current, [12] provides the result after contraction

with the lepton tensor

l−(p5) + l+(p6) → V (q) → g(p1) + g(p2) + g(p3) , (3.17)

which for a right-handed lepton has the form

Lµ
R(p

+
5 , p

−
6 ) = [6γµ5〉 . (3.18)

This contraction then gives a set of helicity amplitudes. Denoting the vector part of the

coupling of the boson V to the quarks inside the loop by

Qg
V =

1

2

∑

q

(LV
qq +RV

qq) , (3.19)
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the amplitudes for the configurations (p+1 , p
−
2 , p

−
3 ) and (p+1 , p

+
2 , p

+
3 ) have the form

A
(+−−)
R (p5, p6; p1, p2, p3) = Lµ

R(p
+
5 , p

−
6 )Sµ(p

+
1 , p

−
2 , p

−
3 ) =

eQg
V√
2

〈2 3〉
〈1 2〉〈1 3〉[2 3] (3.20)

×
{

〈2 5〉〈3 5〉[5 6]αa
n(un, vn) + 〈2 3〉〈2 5〉[2 6]αb

n(un, vn) + 〈2 3〉〈3 5〉[3 6]αc
n(un, vn)

}

,

and

A
(+++)
R (p5, p6; p1, p2, p3) = Lµ

R(p
+
5 , p

−
6 )Sµ(p

+
1 , p

+
2 , p

+
3 ) =

eQg
V√
2

(3.21)

×
{

[1 3]〈1 5〉[1 6]
〈1 2〉〈2 3〉 βa

n(un, vn) +
[2 3]〈2 5〉[2 6]
〈1 2〉〈1 3〉 βb

n(un, vn) +
[2 3]〈2 5〉[1 6]
〈1 2〉〈2 3〉 βc

n(un, vn)

}

,

where the coefficients αi
n and βi

n can be found in the electronic appendix to the arXiv

submission of [12].2 Their expansion is written in the form

Ω = gs d
abc

(

αs

2π
Ω(1) +

(αs

2π

)2
Ω(2) + . . .

)

. (3.22)

The color factor of the hard function, obtained from the squared amplitudes, is (dabc)2 =

40/3. Let us note that there is also an axial-vector contribution for the case V = Z at

leading order [43, 44], which is not given in [12] and will not be included in the following.

All other helicity amplitudes follow from (3.20), (3.21) by permutation of the external legs,

parity conjugation, and the relation A
(i)
L (p5, p6; p1, p2, p3) = A

(i)
R (p6, p5; p1, p2, p3), see [12].

To obtain the hard function for vector-boson production, we first square the amplitudes

and then integrate over the angle of the leptons in the rest frame of the vector boson to

remove the lepton tensor. The integral of the lepton tensor over the direction of the leptons

takes the form
∫

dΩ

4π
Lµ
R(p

+
5 , p

−
6 )L

ν
R
∗(p+5 , p

−
6 ) =

∫

dΩ

4π
[6γµ5〉 [5γν6〉 = −2

3
q2
(

gµν − qµqν

M2
V

)

. (3.23)

The same result is obtained for the left-handed current Lµ
L(p

−
5 , p

+
6 ) = Lµ

R(p
+
6 , p

−
5 ). Due

to current conservation, the contraction of qµ with the hadron tensor vanishes so that, up

to a prefactor, the integration over the direction is the same as contracting with gµν . The

contribution of the right-handed lepton to the hard function in region (1) for the helicity

configuration (+−−), for example, is obtained from

h
(+−−)
1 (s12, s23, s13) = −S∗

µ(p
+
1 , p

−
2 , p

−
3 )S

µ(p+1 , p
−
2 , p

−
3 )

=
3

2q2

∫

dΩ

4π

∣

∣

∣
A

(+−−)
R (p5, p6; p1, p2, p3)

∣

∣

∣

2
, (3.24)

and the full hard function is obtained by summing over the helicities. To perform the

angle integrations, we first rewrite the product of spinor products in terms of traces, using

2In [12] the coefficients αa
n, αb

n and αc
n are denoted by α1, α2 and α3, and analogously for the β-

coefficients. As before, we use the subscript to denote the kinematic region. In addition [12] does not

include the prefactor eQg
V in the definition of the amplitudes AR.
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identities such as

[i, j]〈j, k〉[k, l]〈l, i〉 = Tr

[

1 + γ5
2 ✁pi✁pj✁pk✁pl

]

. (3.25)

Since the result after the angle average only depends on the three gluon momenta, the γ5
term in the trace does not contribute. We then obtain the following results for the two

helicity configurations h
(+−−)
n and h

(+++)
n expressed in terms of the coefficients αi

n and βi
n

defined in equations (3.20) and (3.21),

h(+−−)
n (s12, s23, s13) =

(eQg
V )

2

8q2 s12s13

{

|αa
n(un, vn)|2 q2 (s23 q2 + 2s12 s13)

+ |αb
n(un, vn)|2 s23 (s12 + s23)

2 + |αc
n(un, vn)|2 s23 (s13 + s23)

2

− 2Re
[

αa
n(un, vn)α

b∗
n (un, vn)

]

s23 (s12 + s23) q
2

+ 2Re [αa
n(un, vn)α

c∗
n (un, vn)] s23 (s13 + s23) q

2

− 2Re
[

αb
n(un, vn)α

c∗
n (un, vn)

]

s23
(

s23 q
2 − s12s13

)

}

(3.26)

and

h(+++)
n (s12, s23, s13) =

(eQg
V )

2

8q2 s12

{

|βa
n(un, vn)|2

s13 (s12 + s13)
2

s23
+ |βb

n(un, vn)|2
s23 (s12 + s23)

2

s13

+ |βc
n(un, vn)|2

(

2 s12 q
2 + s13 s23

)

− 2Re
[

βa
n(un, vn)β

b∗
n (un, vn)

]

(

s12 q
2 − s13 s23

)

+ 2Re [βa
n(un, vn)β

c∗
n (un, vn)] s13 (s12 + s13)

+ 2Re
[

βb
n(un, vn)β

c∗
n (un, vn)

]

s23 (s12 + s23)

}

. (3.27)

As before, the subscript on h
(i)
n indicates that this is the result in the kinematic region (n).

Opposite helicity configurations give identical contributions, and the remaining con-

figurations are obtained by permuting the gluon momenta. Using these relations, the full

hard function in region (1) is obtained as

HV→ggg = −gµνH
µν = 2

[

h
(+++)
1 (s12, s23, s13) + h

(+−−)
1 (s12, s23, s13)

+h
(−+−)
1 (s12, s23, s13) + h

(−−+)
1 (s12, s23, s13)

]

= 2
[

h
(+++)
1 (s12, s23, s13) + h

(+−−)
1 (s12, s23, s13)

+h
(+−−)
1 (s12, s13, s23) + h

(+−−)
1 (s23, s12, s13)

]

. (3.28)

The factor 2 accounts for the opposite helicity contributions.
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We are interested in the result in the kinematic region (2), which corresponds to the

process g(p1) + g(p2) → g(p3) + V (q). Proceeding exactly as discussed in the previous

subsection, one first analytically continues the amplitudes αi
1 and βi

1 to region (2) and

expresses them in the kinematic variables u2 and v2 relevant in this region. The last

term in equation (3.28) requires to exchange p1 and p3, and one therefore also needs the

amplitude in region (4), which describes the process g(p2) + g(p3) → g(p1) + V (q). The

result for the full hard function in region (2) then reads

Hgg→V g = −gµνH
µν =2

[

h
(+++)
2 (s12, s23, s13) + h

(+−−)
2 (s12, s23, s13)

+h
(+−−)
2 (s12, s13, s23) + h

(+−−)
4 (s23, s12, s13)

]

. (3.29)

The analytically continued amplitudes are included in the arXiv submission of [12].

To get the lowest-order cross section in the gg → V g channel, we need to average over

the spins and colors of the incoming gluons. This gives

ŝ
dσ̂

dû dt̂
=

1

16πŝ

1

256
Hgg→V g(û, t̂, µ) δ(m

2
X) ≡ σ̂(0)

gg (û, t̂, µ) Ĥgg→V g(û, t̂, µ) δ(m
2
X) . (3.30)

In the resummed cross section, the hard function will be multiplied by a convolution of

the gluon jet function Jg with the soft function Sgg, see (1.1). To write the factorization

theorem in the form (1.1), we have introduced a hard function Ĥgg→V g, which is normalized

to one at lowest order. However, the leading-order cross section σ̂
(0)
gg is of O(α3

s) instead of

O(αs) as in the other channels.

3.4 Hard functions for Higgs production

The main focus of our paper is on vector-boson production, but for completeness we now

also provide the hard functions for Higgs production in association with a jet, since the

construction is completely analogous to the vector-boson case. The factorization theo-

rem (1.1) is valid also for Higgs production and it involves the same jet and soft functions

as in the vector-boson case. With the hard functions given here, the resummation can be

extended to N3LL accuracy also for Higgs production.

Since the infrared singularities of the amplitudes are independent of the spin, the

conversion from Catani’s subtraction scheme to MS is obtained with exactly the same

formulae (2.10) and (2.12) as in the vector-boson case. The two-loop helicity amplitudes

for Higgs production in the heavy top-quark limit were given in [13]. For H → g(p1) +

g(p2) + g(p3), one has

M+++
ggg (p1, p2, p3) =

1√
2

M4
H

〈12〉〈23〉〈31〉 α1(u1, v1) ,

M++−
ggg (p1, p2, p3) =

1√
2

[12]3

[23] [13]
β1(u1, v1) . (3.31)

The dimensionless variables un and vn relevant in the different kinematic regions were

defined in (3.3) and (3.5) and the expansion of the coefficient functions αn, βn is now

written as

Ω =
αsCt

3πv
gs f

abc

(

Ω(0) +
αs

2π
Ω(1) +

(αs

2π

)2
Ω(2) + . . .

)

, (3.32)

– 14 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
4

where Ct is the Wilson coefficient of the effective Lagrangian

Leff = Ct
αs

12π

H

v
Ga

µνG
µµ,a , (3.33)

which mediates Higgs production in the large mt-limit and v is the vacuum expectation

value of the Higgs field. The two-loop value of Ct is listed in appendix B. When squaring

the amplitudes, the color factor is (fabc)2 = CA dA, where dA = N2
c − 1 is the dimension

of the adjoint representation. We obtain

h(+++)
n (s12, s23, s13) =

∣

∣M+++
ggg (p1, p2, p3)

∣

∣

2
=

M8
H

2s12s23s13
|αn(un, vn)|2 , (3.34)

h(++−)
n (s12, s23, s13) =

∣

∣M++−
ggg (p1, p2, p3)

∣

∣

2
=

s312
2s23s13

|βn(un, vn)|2 . (3.35)

The remaining amplitudes follow by using parity conservation and symmetry under the

exchange of the final state gluons. Summing over all helicities, the hard function for Higgs

production in the gluonic channel gg → Hg becomes

Hgg→Hg = 2
[

h
(+++)
2 (s12, s23, s13) + h

(++−)
2 (s12, s23, s13)

+h
(++−)
4 (s23, s12, s13) + h

(++−)
4 (s13, s12, s23)

]

. (3.36)

The factor of two accounts for the equal opposite-helicity contributions. This result looks

different than the hard function for gg → V g in (3.29) because the corresponding hard

function was obtained from the helicity configuration (+ − −) instead of (+ + −). The

one-loop hard function Hgg→Hg was also given in [45]; we agree with this result.

For the quark channel, H → q(p1) + q̄(p2) + g(p3), there is a single independent

amplitude,

M−++
qq̄g (p1, p2, p3) =

1√
2

[23]2

[12]
γ1(u1, v1) . (3.37)

The expansion of the coefficient γn is written in the form (3.32), but with color structure

(ta)ij instead of fabc. This yields a factor (ta)ij(t
a)ji = CF dF (where dF = Nc is the

dimension of the fundamental representation) in the squared amplitude, which has the form

hn(s12, s23, s13) =
∣

∣M−++
qq̄g (p1, p2, p3)

∣

∣

2
=

s223
2s12

|γn(un, vn)|2 . (3.38)

Using parity and charge conjugation, one derives the other helicity configurations. For the

full hard functions, we then obtain, in analogy to (3.15) and (3.16),

Hqq̄→Hg = 2 [h2(s12, s23, s13) + h2(s12, s13, s23)] , (3.39)

Hqg→Hg = −2 [h4(s12, s23, s13) + h3(s12, s13, s23)] , (3.40)

where the factor 2 accounts for the identical, parity-opposite contributions, and the crossed

terms arise from charge conjugation. The coefficients αn, βn and γn can be obtained in

electronic form from the source files of the arXiv version of [13].
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4 Two-loop cross section near threshold

The singular threshold cross section can be obtained by performing the fixed-order expan-

sion of the resummed partonic cross sections, whose explicit expressions are given in [17, 19].

In these papers, the resummation is achieved by solving renormalization group (RG) equa-

tions for the hard, jet and soft functions and evolving them to the factorization scale µf ,

where they can then be combined with the PDFs. This allows one to evaluate each contribu-

tion at its characteristic scale. For example, to avoid large logarithms in the hard function,

the starting scale µh of the RG evolution is chosen to be µh ≈ pT . For the jet and soft

functions lower starting scales µj and µs are appropriate, as discussed in detail in [17, 19].

The simplest way of going back to the fixed-order expressions is to switch off the re-

summation by taking the limit where the scales µh, µj , µs and µf all become equal. In

Laplace space, where the cross section factors into a product of the hard, jet and soft

functions, taking the limit is completely trivial. All the RG-evolution factors switch off

and the fixed-order result is simply the product of the Laplace-transformed functions. In

momentum space, the limit is a bit more delicate since the cross section becomes distribu-

tion valued in this limit. Starting with (20) in [19] and taking the limit in which all scales

coincide whenever it is trivial, we are left with

d2σ̂sing
abc

dy dp2T
= lim

η→0
σ̂
(0)
ab (û, t̂, µ) Ĥab(û, t̂, µ)j̃c(∂η, µ)s̃ab

(

∂η + ln
µ

pT
, µ

)

1

m2
X

(

m2
X

µ2

)η
e−γEη

Γ(η)
,

(4.1)

for the channel a + b → V + jc. To factor out the tree-level cross section σ̂
(0)
ab , we have

normalized the hard functions Ĥab to one at the lowest order and have indicated this by

putting a hat on the normalized functions. The jet function j̃c and the soft function s̃ab
appearing here are the Laplace-transformed functions. Their explicit form can be found

in appendix B. At the n-th order in perturbation theory, the functions are polynomials

of order 2n in logarithms of the Laplace variables. In the above representation, these

logarithms are replaced by derivatives acting on an mX -dependent kernel. This type of

solutions for the RG equations of the jet and soft functions was introduced in [46]. To take

the limit η → 0, we first need to expand this kernel in a series of distributions

1

m2
X

(

m2
X

µ2

)η

=
1

η
δ(m2

X) +
∞
∑

n=0

ηn

n!





lnn
m2

X

µ2

m2
X





⋆

. (4.2)

The ⋆-distributions appearing on the right-hand side are generalizations of the usual plus-

distributions to dimensionful variables. Their explicit form can be obtained by rewriting

the integration over the invariant mass mX in the form

∫ m2
max

0
dm2

X

1

m2
X

(

m2
X

µ2

)η

f(m2
X)

=
1

η

(

m2
max

µ2

)η

f(0) +

∫ m2
max

0
dm2

X

1

m2
X

(

m2
X

µ2

)η
[

f(m2
X)− f(0)

]

(4.3)

– 16 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
4

and expanding the right-hand side in powers of η, which yields

∫ m2
max

0
dm2

X





lnn
m2

X

µ2

m2
X





⋆

f(m2
X) =

f(0)

n+ 1
lnn+1 m

2
max

µ2
+

∫ m2
max

0
dm2

X

lnn
m2

X

µ2

m2
X

[

f(m2
X)− f(0)

]

.

(4.4)

The expansion of the cross section is now straightforward. To present the result, we

write the perturbative expansion of the normalized hard function in the form

Ĥab(û, t̂, µ) = 1 +
∞
∑

n=1

(αs

4π

)n

h(n) (4.5)

and also introduce expansion coefficients p
(n)
i which capture the contribution of the product

of the jet and soft function at the n-th order in perturbation theory. The coefficients p
(n)
0

multiply δ(m2
X) and the higher coefficients 0 < i ≤ 2n the ⋆-distributions arising in the

expansion (4.2). The coefficients h(n) and p
(n)
i depend on the partonic channel, but in the

following we suppress the channel indices a, b and c for better readability. To two-loop

order, the cross section then has the structure

d2σ̂sing

dy dp2T
= σ̂(0)

{

δ(m2
X) +

αs

4π

[

δ(m2
X)
(

p
(1)
0 + h(1)

)

+

[

1

m2
X

]

⋆

p
(1)
1 +





ln
m2

X

µ2

m2
X





⋆

p
(1)
2

]

+
(αs

4π

)2
[

δ(m2
X)
(

h(2) + h(1) · p(1)0 + p
(2)
0

)

+

[

1

m2
X

]

⋆

(

h(1) · p(1)1 + p
(2)
1

)

+





ln
m2

X

µ2

m2
X





⋆

(

h(1) · p(1)2 + p
(2)
2

)

+





ln2
m2

X

µ2

m2
X





⋆

p
(2)
3 +





ln3
m2

X

µ2

m2
X





⋆

p
(2)
4

]}

. (4.6)

The explicit form of the one-loop coefficients in the above formula is

p
(1)
0 = −π2 γcusp0

12
(CJ + 4CS) + cJ1 + cS1 + 2 γS0 ln

µ

pT
+ 2 γcusp0 CS ln2

µ

pT
, (4.7)

p
(1)
1 = γJ0 + 2γS0 + 4 γcusp0 CS ln

µ

pT
, (4.8)

p
(1)
2 = γcusp0 (CJ + 4CS) . (4.9)

The lengthy two-loop coefficients p
(2)
i are listed in appendix C. The Casimir operators

relevant for the different channels are

CSqq̄ = CF − CA

2
, CSqg =

CA

2
, CSgg =

CA

2
, CJg = CA , CJq = CF , (4.10)

and the anomalous dimension coefficients are given by

γ
Jg
0 = −β0 , γ

Jq
0 = −3CF , γ

Sqq̄

0 = 0 , γ
Sqg

0 = 0 , γ
Sgg

0 = 0 . (4.11)
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The nonlogarithmic one-loop coefficients of the gluon [17] and quark [47, 48] jet func-

tions read

c
Jg
1 = CA

(

67

9
− 2π2

3

)

− 20

9
TF nf , c

Jq
1 =

(

7− 2π2

3

)

CF , (4.12)

while the coefficients for the soft function read [17]

c
Sqq̄

1 =

(

CF − CA

2

)

π2 , c
Sqg

1 =
π2CA

2
, c

Sgg

1 =
π2CA

2
. (4.13)

The two-loop coefficient for the quark jet function has been calculated in [8], for the gluon

jet function in [9], and the two-loop coefficients for the soft functions have been calculated

in [10]; they are listed in appendix B.

5 Numerical studies

With all the ingredients in place, we now study the numerical size of the two-loop correc-

tions. Before evaluating the full cross section, let us start by providing the numerical value

of the two-loop hard functions at a fixed kinematic point. This only gives a rough esti-

mate on the size of the corrections, but it also provides the reader with a numerical check

should he or she implement the expressions obtained in the previous sections. We choose

ŝ = 1TeV2, t̂ = −0.4TeV2 and MV = 0.1TeV. These values imply that the transverse

momentum is p2T = t̂û/ŝ ≈ (0.5TeV)2. For the renormalization scale, we use µ = 0.6TeV

and obtain

Ĥqq̄→V g(û, t̂, µ) = 1 + (1.47009− 0.138371Na
V )αs + (3.89803 − 0.03923Nv

V )α
2
s ,

Ĥqg→V q(û, t̂, µ) = 1 + (1.59193 + 0.114478Na
V )αs + (2.45463 − 0.02594Nv

V )α
2
s ,

Hgg→V g(û, t̂, µ) =
(

gs eQ
g
V dabc

)2
1.19687α2

s . (5.1)

To show the relative size of the corrections, we have normalized the hard functions for the

qq̄ and qg channels to one at the lowest order, as indicated by the hat on the normalized

functions. With αs(µ) ≈ 0.09, the corrections are moderate, of the order of a few per

cent. The contribution proportional to Nv,a
V arises from diagrams where the vector boson

couples to an internal quark loop instead of the external quarks. By charge conservation,

such contributions do not arise for W -bosons, so that Nv,a

W± = 0. For photons, we have

Nv
γ =

1

eq

∑

q

eq , Na
γ = 0 , (5.2)

where the sum runs over the quark flavors in the loop and the denominator arises because

we have factored out the charge in the definition of the hard function. For Z-bosons,

there are contributions from both the vector and the axial part of the coupling. The axial-

vector part at one-loop order can be found in [49]. In references [2, 11] the two-loop vector

– 18 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
4

part was computed, but the two-loop axial part is at present still unknown. The relevant

couplings are

Nv
Z =

(

LZ
qq +RZ

qq

)

|LZ
qq|2 + |RZ

qq|2
1

2

∑

q

(LV
qq +RV

qq) , Na
Z =

(

LZ
qq −RZ

qq

)

|LZ
qq|2 + |RZ

qq|2
1

2

∑

q

(LV
qq −RV

qq) . (5.3)

Note that the contributions proportional to Nv,a
V are numerically very small. The normal-

ization of the constant Nv
Z differs from NF,Z in [2, 11] because we consider the squared

amplitude instead of the amplitude itself.

Let us also evaluate the Higgs-boson hard functions with the same scale choice and

the same kinematic point, with MH = 0.1TeV. In this case, we find3

Ĥgg→Hg(û, t̂, µ) = 1 + 6.02164αs + 24.2724α2
s ,

Ĥqq̄→Hg(û, t̂, µ) = 1 + 1.85023αs + 8.15565α2
s ,

Ĥqg→Hq(û, t̂, µ) = 1 + 2.77875αs − 12.0751α2
s . (5.4)

These numbers do not include the small perturbative corrections to the Wilson coefficient

[Ct(mt, µ)]
2 in (3.33). We observe that the higher-order terms are dramatically larger than

in the vector-boson case, in line with the findings of [7]. Larger corrections are expected

since the higher-order contributions to gluonic quantities are enhanced by factors of CA/CF

and also because the leading cross section is O(α3
s) for the Higgs case instead of O(αs) as

in vector-boson production. However, for a meaningful assessment of the size of the higher-

order corrections, one will need to evaluate the full cross section. Also, to make reliable

predictions, one should check how large the corrections to the heavy top-quark limit are.

The above values correspond to pT ≈ 0.5TeV for which the effective theory treatment is

no longer appropriate. We will study the Higgs case in more detail in the future and will

restrict ourselves to vector-boson production in the following.

In our previous work [18, 19], we have used a Mathematica code to compute the

cross sections. With the large size of the expressions for the two-loop hard functions, this

code becomes prohibitively slow and we have now developed a C++ code PeTeR [25] to

compute the cross section, which will be made public in the future. The code computes the

resummed cross section near the partonic threshold as well as its fixed-order expansion. In

addition, it also computes the full NLO fixed-order cross section. In a future paper, we will

present a detailed phenomenological study of vector-boson production, including the two-

loop corrections as well as electroweak Sudakov effects, which were recently treated using

the same threshold-resummation framework [50]. For the moment, we focus on the size

of the two-loop QCD corrections and check how much they change the cross section. To

do so, we use the same input parameters as in our previous paper [19], namely the NNLO

MSTW 2008 PDF set and its associated αs(MZ) = 0.1171 [51] with three-loop running,

and MZ = 91.1876GeV, MW = 80.399GeV, αe.m. = 127.916−1, sin2 θW = 0.2226, |Vud| =
0.97425, |Vus| = 0.22543, |Vub| = 0.00354, |Vcd| = 0.22529, |Vcs| = 0.97342, |Vcb| = 0.04128.

3In order to make the quark-channel amplitudes included in electronic form in the arXiv submission

of [13] consistent with the notation used in the paper, one has to change p1 ↔ p2 and switch the sign of

the amplitudes. We thank the authors for confirming this point.
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σ(pT > 200GeV) [pb]
LHC at 7TeV LHC at 8TeV LHC at 13TeV

W± Z W± Z W± Z

LO 34.6+6.3
−5.0 14.1+2.5

−2.0 47.4+8.1
−6.5 19.4+3.3

−2.7 133+15
−18 55.7+7.3

−6.2

NLOsing. 47.2+2.8
−3.1 19.2+1.1

−1.2 64.6+3.6
−4.0 26.5+1.4

−1.6 181+8
−9 76.1+3.0

−3.5

NNLOsing. 50.3+0.7
−0.5 20.5+0.2

−0.2 68.9+0.9
−0.6 28.3+0.3

−0.2 194+2
−1 81.3+0.5

−0.1

NLL 35.9+5.6
−4.8 14.7+2.3

−2.0 48.8+7.7
−6.6 20.1+3.2

−2.7 133+22
−19 56.1+9.4

−8.2

N2LL 47.6+3.3
−2.9 19.4+1.4

−1.2 65.0+4.6
−4.1 26.7+1.9

−1.7 180+15
−13 75.7+6.3

−5.4

N3LL 50.5+2.1
−1.1 20.6+0.9

−0.4 69.1+2.9
−1.5 28.3+1.3

−0.6 193+10
−5 81.1+4.4

−2.3

NLO 53.5+5.2
−4.8 21.5+2.0

−1.9 73.5+7.0
−6.3 29.7+2.7

−2.5 209+19
−16 86.3+7.4

−6.4

NNLOsing.+NLO 56.6+3.1
−2.2 22.8+1.1

−0.8 77.8+4.3
−2.9 31.5+1.6

−1.1 221+13
−7 91.5+4.9

−2.6

N3LL+NLO 56.8+2.2
−1.2 22.9+0.8

−0.4 77.9+3.1
−1.7 31.6+1.1

−0.6 220+10
−6 91.3+3.7

−2.2

Table 2. The cross section σ(pT > 200GeV) and its scale uncertainty using different approxima-

tions, see text. The columns labeled W± contain the result for the sum of the cross sections for

W+ and W− production.

We treat all partons as massless except for the top quark, which is integrated out from

the theory. The hard function for Z-boson production receives tiny contributions from the

axial-vector coupling, see (5.1). At one-loop order they are due to triangle diagrams. A

similar contribution is present for the gg channel [43, 44], which is not included so far but

might be of a similar order of magnitude as the NLO triangle contribution. For simplicity,

and because the two-loop axial corrections are not known, we set Nv
V = 0. Numerically

the two-loop Nv
V terms are negligibly small.

A list of values for the integrated cross section σ(pT > 200GeV) is shown in table 2

for different LHC center-of-mass energies. The table presents three different approxima-

tions i) the fixed-order threshold cross section ii) the resummed results, and iii) the results

obtained after matching to the known NLO fixed-order result. The entries LO, NLOsing.,

NNLOsing. show the perturbative expansion of the threshold cross section, which consists

of the singular distributions defined in (4.2). Since the LO partonic cross section is pro-

portional to δ(m2
X) it is purely singular. Beyond leading order, the cross section also has

regular pieces not associated with soft and collinear radiation. As the table shows, the reg-

ular pieces obtained from the difference NLO−NLOsing are of moderate size. For example,

for Z-production at
√
s = 8TeV, the singular pieces amount to about 70% of the NLO

correction. The fact that the singular pieces amount to the bulk of the cross section is true

in many other cases as well, and we therefore expect that the singular pieces will provide a

good approximation to the full NNLO correction. The column NNLOsing.+NLO shows the

result obtained if both the full NLO result and the singular pieces at NNLO are included.

For the factorization and renormalization scales, we use

µ = µr = µf =
13pT + 2MV

12
− p2T√

s
. (5.5)
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Figure 2. Scale uncertainty bands relative to the NLO result for Z production at the LHC with√
s = 8TeV (left) and for combined W± production at the LHC with

√
s = 13TeV (right) for NLO

and NNLOsing+NLO.

This value is close to pT and was adopted as the default scale µh for the hard function after

a numerical study in [19]. The scale uncertainty is obtained by varying the scale µ by a

factor two around the default value. Figure 2 shows the resulting uncertainty bands for Z

and for W+ or W− production at NLO and NNLOsing+NLO. The results are normalized

to the NLO result at the default scale choice. We find that including the two-loop singular

terms corresponds to a shift of about +5% of the cross section and decreases the scale

uncertainty by a factor of two, compared to NLO.

The factorization formula (1.1) can be used to resum the singular pieces to all orders

using RG evolution in SCET. ForW and Z production, this was done in [18, 19]. To perform

the resummation, we evolve the hard, jet and soft functions from their characteristic scales

to the factorization scale. We adopt here the same default scales as in the papers [18, 19].

Resummation to Nn+1LL accuracy requires the hard, jet and soft functions at NnLO.

Comparing the resummed Nn+1LL and the threshold fixed-order results NnLOsing., we find

that they are numerically very similar. Resummation is thus not a large effect, since the

characteristic scales for the jet and soft functions are not much below the hard scale. Their

numerical values depend on the fall-off of the PDFs towards larger x, which enhances the

threshold region. After a numerical study, following [52], the values

µj =
pT
2

(

1− pT√
s

)

(5.6)

and µs = µ2
j/µh were adopted in [19]. Since the numerical values of the jet and soft

scales are not much lower than the hard scale, the logarithms which are resummed are of

moderate size.

The highest order result obtained in [18, 19] was denoted by N3LLp where the label “p”

(for partial) indicated that the two-loop hard function was missing. With this ingredient

in place, our results now have full N3LL accuracy.4 However, since all the logarithmic

pieces of the hard function follow from RG-invariance, they were already included in N3LLp

of [18, 19]. The logarithms were introduced such that their contribution vanishes at µ = pT ,

4Strictly speaking, there is one more unknown ingredient, namely the four-loop cusp anomalous dimen-

sion, but its numerical impact is negligibly small.
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Figure 3. Left: relative change of the NNLOsing cross section compared with an approximation

used in [18, 19], in which the two-loop constant was chosen to vanish at µ = pT . Right: relative

contribution of triangle diagrams at NLO (red line) and of the gluon-gluon channel at NNLO (times

5, blue dashed line).

i.e. the two-loop constant was defined as the value of the hard function at µ = pT . To see

how much the results in [18, 19] change due to presence of the two-loop constant, we plot

its value compared to the cross section without the two-loop constant. The size of the effect

depends on the transverse momentum. As shown in the left panel of figure 3, it reduces the

cross section by about two per cent at pT ≈ 100GeV and enhances it by a similar amount

at large pT ≈ 2TeV. The change is within the scale uncertainties of the N3LLp results and

smaller than the total two-loop effect, which is of order +5%, see figure 2.

There are two more effects, which we briefly address. The first is the contribution

of the gluon-gluon channel in Z production, which first arises at NNLO and is shown

by the blue dashed line in the right panel of figure 3. The channel gives a very small

positive contribution to the cross section. It peaks around pT = 50GeV and is smaller

than 1‰. The second effect, shown by the red line in the right panel of the figure is the

triangle contribution at NLO which arises due to the axial coupling of the Z boson. This

contribution is mostly negative and smaller than 3‰. As we stressed earlier, there are

also axial contributions at NNLO, in particular also in the gluon-gluon channel, which

were obtained in [43, 44] but are not included here. According to these papers, the axial

corrections to the gluon-gluon channel are bigger than the vector contributions and could

be comparable in size to the (very small) axial contributions at NLO.

6 Conclusion

Radiative corrections to hard-scattering processes simplify considerably near the partonic

threshold. In this work, we have used these simplifications to obtain the NNLO corrections

to transverse-momentum spectra of photons, W , Z and Higgs bosons. Our results are valid

at large transverse momentum pT of the electroweak boson, where the invariant mass of

the recoiling jet is small compared to pT . As the threshold terms often capture the bulk of

the radiative corrections, we expect that our results are a good approximation to the exact

NNLO results. In addition, the threshold terms can serve as a check on the full NNLO

results, once they become available.
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The starting point of our analysis is the threshold factorization of the cross section

into hard, jet and soft functions. Building on earlier work, in which we computed the

two-loop collinear and soft functions, we computed the last missing NNLO ingredient, the

hard functions, in this work. To this end, we converted known results for on-shell V+jet

amplitudes into MS-subtracted hard functions defined in Soft-Collinear Effective Theory.

The conversion procedure presented in sections 2 and 3 is completely general, and applies

similarly to other processes. Our calculation also provides the last missing ingredient to

resum the threshold terms to N3LL accuracy.

We have implemented the NNLO threshold corrections and the N3LL resummed results

into a C++ code PeTeR [25], which will be made public in the future. For W and Z

production, we find that the NNLO threshold corrections are moderate. They enhance

the cross section by about 5%, and they reduce the scale uncertainty by about a factor

of two. In addition, we have also given resummed results at N3LL accuracy, matched to

NLO fixed-order results. Numerically, we find that the resummation effects, i.e. terms

beyond NNLO, are not very important. Our final results for the integrated cross sections

with pT > 200GeV are given in the last two lines of table 2. For Higgs production,

the corrections to the hard functions are much larger than in the vector-boson case and

resummation will likely be more important. We will present numerical results for the Higgs

cross section in the future.

For an accurate description of LHC data for vector-boson production at high-pT , one

also needs to implement electroweak corrections which are large and negative. These

Sudakov-type corrections have recently been studied using the same threshold-resummation

formalism. In a next step, we will perform a detailed phenomenological analysis of vector-

boson production, including both electroweak and QCD corrections. The hard functions

determined in the present paper are relevant not only for hadronically inclusive boson

production, but are also needed for resummations of more exclusive one-jet observables

such as jet-mass spectra or jet-veto cross sections.
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A Anomalous dimensions and IR-subtraction terms

In the following, we give explicit expressions for the two-loop coefficients needed for the

renormalization of the hard function. For all the anomalous dimensions below also the

three-loop result is known and can be found, for example in [27].
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We define the QCD β-function and its expansion as

β(αs) =
dαs

d lnµ
= −2αs

[

(αs

4π

)

β0 +
(αs

4π

)2
β1 + . . .

]

, (A.1)

so that the lowest two coefficients have the explicit form

β0 =
11

3
CA − 4

3
TF nf , β1 =

34

3
C2
A − 20

3
CA TF nf − 4CF TF nf .

In the following, we will expand all anomalous dimensions in units of αs/4π, and we denote

the expansion coefficients in the form

γ(αs) =
(αs

4π

)

γ0 +
(αs

4π

)2
γ1 + . . . . (A.2)

Up to two-loop order, the cusp anomalous dimension γcusp is given by

γcusp0 = 4 , γcusp1 =

(

268

9
− 4π2

3

)

CA − 80

9
TF nf , (A.3)

and the collinear anomalous dimensions γq and γg are

γq0 = −3CF ,

γq1 = C2
F

(

−3

2
+ 2π2 − 24ζ3

)

+ CFCA

(

−961

54
− 11π2

6
+ 26ζ3

)

+ CFTFnf

(

130

27
+

2π2

3

)

,

γg0 = −β0 , (A.4)

γg1 = C2
A

(

−692

27
+

11π2

18
+ 2ζ3

)

+ CATFnf

(

256

27
− 2π2

9

)

+ 4CFTFnf .

The renormalization factor Z is obtained by solving its RG equation, which is driven

by the anomalous dimension matrix Γ in (2.5). The two-loop expression has the form

lnZ =
αs

4π

[

Γ′
0

4ǫ2
+

Γ0

2ǫ

]

+
(αs

4π

)2
[

−3β0Γ
′
0

16ǫ3
+

Γ′
1 − 4β0Γ0

16ǫ2
+

Γ1

4ǫ

]

+O(α3
s) (A.5)

with

Γ′(αs) ≡
∂

∂ lnµ
Γ({p}, µ) = −γcusp(αs)

∑

i

Ci . (A.6)

Expanding the inverse Z-factor in units of αs/2π,

Z−1(ǫ, {p}, µ) = 1 +
αs

2π
Z(1)(ǫ) +

(αs

2π

)2
Z(2)(ǫ) +O(α3

s) , (A.7)

one obtains

Z(1)(ǫ) = − Γ′
0

8ǫ2
− Γ0

4ǫ
,

Z(2)(ǫ) =
Γ′2
0

128ǫ4
+

3β0Γ
′
0 + 2Γ′

0Γ0

64ǫ3
+

4β0Γ0 + 2Γ2
0 − Γ′

1

64ǫ2
− Γ1

16ǫ
. (A.8)
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The one-loop subtraction operator appearing in Catani’s formula for the IR divergences is

I(1)(ǫ) =
eǫγE

Γ(1− ǫ)

∑

i

(

1

ǫ2
− γi0

2ǫ

1

Ci

)

∑

j 6=i

Ti · Tj

2

(

µ2

−sij

)ǫ

(A.9)

≡ Γ′
0

8ǫ2
+

Γ0

4ǫ
+

∞
∑

n=0

Cnǫ
n . (A.10)

Apart from the pole terms, we will need the explicit expressions for the first two coefficients

C0 =
∑

(i,j)

Ti · Tj

16

[

γcusp0 ln2
µ2

−sij
− 4γi0

Ci
ln

µ2

−sij

]

− π2

96
Γ′
0 , (A.11)

and

C1 =
∑

(i,j)

Ti · Tj

48

[

γcusp0 ln3
µ2

−sij
− 6γi0

Ci
ln2

µ2

−sij

]

− π2

48
Γ0 −

ζ3
24

Γ′
0 . (A.12)

The two-loop subtraction operator is defined as

I(2)(ǫ)=
e−ǫγEΓ(1−2ǫ)

Γ(1− ǫ)

(

γcusp1

8
+

β0
2ǫ

)

I(1)(2ǫ)− 1

2
I(1)(ǫ)

(

I(1)(ǫ) +
β0
ǫ

)

+H
(2)
R.S.(ǫ), (A.13)

where the last term has not been specified in [31], but is was stated that it only con-

tains single poles. Using the expression for the Z-factor (A.7) one can derive this term.

Explicitly, we find

H
(2)
R.S.(ǫ) =

ifabc

384ǫ
(γcusp0 )2

∑

(i, j, k)

T a
i T b

j T
c
k ln

−sij
−sjk

ln
−sjk
−ski

ln
−ski
−sij

− ifabc

128ǫ
γcusp0

∑

(i, j, k)

T a
i T b

j T
c
k

(

γi0
Ci

− γj0
Cj

)

ln
−sij
−sjk

ln
−ski
−sij

+
Γ1

16ǫ
− γcusp1 Γ0

64ǫ
− π2β0Γ

′
0

256ǫ
, (A.14)

where the two sums run over all unordered triplets of distinct parton indices. The terms

in the first two lines are equal to 1
8

[

Γ0,C0

]

. This commutator can be simplified by noting

that the contributions which involve four different partons vanish because the color gener-

ators associated with different partons commute. This expression for H
(2)
R.S.(ǫ) was derived

in [26, 27], but the term in the second line, which involves the collinear anomalous dimen-

sions γi0 was missed. This extra contribution was discussed in appendix D of [53], where it

was shown that it can only contribute for amplitudes with more than four external particles.

The two-loop conversion relation in (2.12) involves a commutator of the one-loop

anomalous dimension Γ0 with the O(ǫ) term in the expansion of I(1)(ǫ). This commu-
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tator can be simplified to

[

Γ0,C1

]

=
ifabc

144
(γcusp0 )2

∑

(i, j, k)

T a
i T b

j T
c
k ln

−sij
−sjk

ln
−sjk
−ski

ln
−ski
−sij

ln
µ6

(−sij)(−sjk)(−ski)

− ifabc

48
γcusp0

∑

(i, j, k)

T a
i T b

j T
c
k

{(

γi0
Ci

− γj0
Cj

)

ln
−sij
−sjk

ln
−ski
−sij

ln
µ6

(−sij)(−sjk)(−ski)

+

(

γi0
Ci

+
γj0
Cj

)

ln
−sij
−sjk

ln
−sjk
−ski

ln
−ski
−sij

}

. (A.15)

B Hard, jet and soft functions at two-loop order

B.1 Hard function

The helicity amplitudes in [2, 11–13] were only given for the choice µ2 = q2. The full µ

dependence can be reconstructed by solving the associated RG equation [26], driven by the

anomalous dimension Γ in (2.5). One finds [17]

Ĥ
(

û, t̂, µ
)

=1 +
(αs

4π

)

{

−ΓH
0

L2

2
− γH0 L+ cH1

}

(B.1)

+
(αs

4π

)2
{

(

ΓH
0

)2 L4

8
+
(

β0 + 3γH0
)

ΓH
0

L3

6

+
[

γH0 (β0 + γH0 )− ΓH
1 − ΓH

0 cH1
] L2

2

+
[

−cH1 (β0 + γH0 )− γH1
]

L+ cH2

}

+O(α3
s) .

The logarithms for the different channels are

Lqq̄ = Lgg = ln
ŝ

µ2
, Lqg = ln

−û

µ2
. (B.2)

The anomalous dimensions can be extracted from the general result [27], explicitly,

ΓHqq̄(αs) = ΓHqg(αs) =

(

CF +
CA

2

)

γcusp(αs) ,

ΓHgg(αs) =
3CA

2
γcusp(αs) ,

γHqq̄(αs) = 2γq(αs) + γg(αs)−
CA

2
γcusp(αs) ln

ŝ2

t̂û
− β(αs)

2αs
,

γHqg(αs) = 2γq(αs) + γg(αs)−
CA

2
γcusp(αs) ln

û2

−ŝt̂
− β(αs)

2αs
,

γHgg(αs) = 3γg(αs)−
CA

2
γcusp(αs) ln

ŝ2

t̂û
− 3β(αs)

2αs
. (B.3)

The results for the other crossed channels like gq can be obtained as usual by replacing

t̂ ↔ û.
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For Higgs production, the last term of γHqq̄(αs) and γHqg(αs) must be changed to

−3β(αs)
2αs

because the leading-order cross sections start at O(α3
s). Also, the above result is

relevant for the full hard function, which includes the factor [Ct(m
2
t , µ

2)]2, from the Wilson

coefficient of the operator (3.33) which mediates Higgs production in the large-mt limit.

The NNLO value of this coefficient is [54, 55]

Ct(m
2
t , µ

2) = 1 +
αs

4π
(5CA − 3CF )

+
(αs

4π

)2
[

27

2
C2
F +

(

11 ln
m2

t

µ2
− 100

3

)

CFCA −
(

7 ln
m2

t

µ2
− 1063

36

)

C2
A

−4

3
CFTF − 5

6
CATF −

(

8 ln
m2

t

µ2
+ 5

)

CFTFnf − 47

9
CATFnf

]

. (B.4)

If the scale-dependent factor [Ct(m
2
t , µ

2)]2 is divided out, the anomalous dimension of the

hard function changes by ∆γHab(αs) = −2γt(αs), where

d

d lnµ
Ct(m

2
t , µ

2) = γt(αs)Ct(m
2
t , µ

2) , with γt(αs) = α2
s

d

dαs

β(αs)

α2
s

. (B.5)

The anomalous dimension γt(αs) is related to the QCD β-function [56, 57] since the oper-

ator is proportional to the Yang-Mills Lagrangian.

B.2 Jet function

The expression for the Laplace-transformed jet function j̃c(L, µ), with c = q or c = g, reads

j̃c(L, µ) = 1 +
αs

4π

[

ΓJc
0

2
L2 + γJc0 L+ cJc1

]

+
(αs

4π

)2
[

(ΓJc
0 )2

8
L4 +

ΓJc
0

6

(

3γJc0 −β0

)

L3 +
1

2

(

γJc0 (γJc0 −β0) + cJc1 ΓJc
0 + ΓJc

1

)

L2

+
(

cJc1 (γJc0 − β0) + γJc1

)

L+ cJc2

]

+O(α3
s) . (B.6)

This expression is obtained by solving the associated RG equation, which is governed by

the anomalous dimensions

ΓJq(αs) = CF γcusp(αs) ,

γ
Jq
0 = −3CF , (B.7)

γ
Jq
1 = C2

F

(

−3

2
+2π2−24ζ3

)

+ CFCA

(

−1769

54
− 11π2

9
+40ζ3

)

+ CFTFnf

(

242

27
+
4π2

9

)

,

in the quark case and

ΓJg(αs) = CA γcusp(αs) ,

γ
Jg
0 = −β0 , (B.8)

γ
Jg
1 = C2

A

(

−1096

27
+

11π2

9
+ 16ζ3

)

+ CAnfTF

(

368

27
− 4π2

9

)

+ 4CFTFnf ,
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for the gluon jet function. The nonlogarithmic coefficients are

c
Jq
1 = CF

(

7− 2π2

3

)

,

c
Jg
1 = CA

(

67

9
− 2π2

3

)

− 20

9
TF nf ,

c
Jq
2 = C2

F

(

205

8
− 97π2

12
+

61π4

90
− 6ζ3

)

+ CFCA

(

53129

648
− 155π2

36
− 37π4

180
− 18ζ3

)

+ CFTFnf

(

−4057

162
+

13π2

9

)

, (B.9)

c
Jg
2 = C2

A

(

20215

162
− 362π2

27
− 88 ζ3

3
+

17π4

36

)

+ CA TF nf

(

−1520

27
+

134π2

27
− 16 ζ3

3

)

+ CF TF nf

(

−55

3
+ 16 ζ3

)

+ T 2
F n2

f

(

400

81
− 8π2

27

)

.

B.3 Soft function

The Laplace-transformed soft function reads

s̃ab(L, µ) = 1 +
αs

4π

[

2ΓSab

0 L2 + 2γSab

0 L+ cSab

1

]

+
(αs

4π

)2
[

2(ΓSab

0 )2L4 +
4ΓSab

0

3
(3γSab

0 − β0)L
3 + 2

(

γSab

0

(

γSab

0 − β0

)

+ ΓSab

0 cSab

1 + ΓSab

1

)

L2

+ 2
(

cSab

1

(

γSab

0 − β0

)

+ γSab

1

)

L+ cSab

2

]

+O(α3
s) . (B.10)

The anomalous dimensions in the above expression are

ΓSab(αs) = CSab
γcusp(αs) ,

γSab

0 = 0 , (B.11)

γSab

1 = CSab

((

28 ζ3 −
808

27
+

11π2

9

)

CA +

(

224

27
− 4π2

9

)

TF nf

)

,

and the constants are given by

cSab

1 =CSab
π2 ,

cSab

2 =
1

2

(

CSab
π2
)2

+ CSab
CA

(

2428

81
+

335π2

54
− 22 ζ3

9
− 14π4

15

)

(B.12)

+ CSab
nf TF

(

−656

81
− 50π2

27
+

8 ζ3
9

)

.

The Casimir operators CSab
for the different channels are

CSqq̄ = CF − CA

2
, CSqg =

CA

2
, CSgg =

CA

2
. (B.13)
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C Coefficients of the two-loop threshold cross section

Here we list the expansion coefficients that appear in the two-loop threshold cross sec-

tion (4.6). The one-loop coefficients p
(1)
i read

p
(1)
0 = −π2 γcusp0

12
(CJ + 4CS) + cJ1 + cS1 + 2 γS0 ln

µ

pT
+ 2 γcusp0 CS ln2

µ

pT
,

p
(1)
1 = γJ0 + 2γS0 + 4 γcusp0 CS ln

µ

pT
, (C.1)

p
(1)
2 = γcusp0 (CJ + 4CS) ,

where the lower index indicates the distribution which the coefficients multiply. The two-

loop coefficients p
(2)
i are

p
(2)
0 = − (CJ + 4CS)

(

π2

12
(γcusp1 + γcusp0 (cJ1 + cS1 )) +

γcusp0 ζ3
3

(β0 − 3(γJ0 + 2γS0 ))

)

+
π4 (γcusp0 )2

480
(CJ + 4CS)

2 +
π2

12

(

γJ0 + 2γS0
) (

β0 − (γJ0 + 2γS0 )
)

+
β0
6

(

π2 γS0 − 8γcusp0 CS ζ3
)

+ cJ1 c
S
1 + cJ2 + cS2

+ ln
µ

pT

{

− π2 γcusp0

6

(

(CJ + 4CS) γ
S
0 + 4CS

(

γJ0 + 2γS0
))

+ 2
(

γS1 − β0 c
S
1

)

+
2γcusp0 CS

3

(

π2 β0 + 6γcusp0 ζ3 (CJ + 4CS)
)

+ 2γS0
(

cJ1 + cS1
)

}

+ ln2
µ

pT

{

− π2 (γcusp0 )2CS

6
(CJ + 4CS) + 2CS γcusp0

(

cJ1 + cS1
)

− 2γS0
(

β0 − γS0
)

− 1

3
CS

(

4π2 (γcusp0 )2CS − 6γcusp1

)

}

+ ln3
µ

pT

{

4γcusp0 CS

3

(

3γS0 − β0
)

}

+ ln4
µ

pT

{

2(γcusp0 )2C2
S

}

, (C.2)

p
(2)
1 =

π2 γcusp0

12
(CJ + 4CS)

(

β0 − 3(γJ0 + 2γS0 )
)

+ (γcusp0 )2 ζ3 (CJ + 4CS)
2

+
(

γJ0 + 2γS0
) (

cJ1 + cS1
)

− β0
(

cJ1 + 2cS1
)

+ γJ1 + 2γS1 +
π2 β0 γ

cusp
0 CS

3

+ ln
µ

pT

{

− π2 (γcusp0 )2CS (CJ + 4CS) + 2γS0
(

γJ0 + 2γS0
)

+ 4γcusp0 CS

(

cJ1 + cS1
)

+ 4
(

CS γcusp1 − β0 γ
S
0

)

}

+ ln2
µ

pT

{

2γcusp0 CS

(

γJ0 + 6γS0 − 2β0
)

}

+ ln3
µ

pT

{

8(γcusp0 )2C2
S

}

, (C.3)
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p
(2)
2 =− π2 (γcusp0 )2

4
(CJ + 4CS)

2 + (CJ + 4CS)
(

γcusp0 (cJ1 + cS1 ) + γcusp1

)

+
(

γJ0 + 2γS0
)2

− β0
(

γJ0 + 4γS0
)

+ ln
µ

pT

{

2γcusp0 γS0 (CJ + 4CS) + 8γcusp0 CS

(

γJ0 + 2γS0
)

− 8β0 γ
cusp
0 CS

}

+ ln2
µ

pT

{

2(γcusp0 )2CS (CJ + 12CS)
}

, (C.4)

p
(2)
3 =

3γcusp0

2
(CJ + 4CS)

(

γJ0 + 2γS0
)

− β0 γ
cusp
0

2
(CJ + 8CS)

+ ln
µ

pT

{

6(γcusp0 )2CS (CJ + 4CS)
}

, (C.5)

p
(2)
4 =

(γcusp0 )2

2
(CJ + 4CS)

2 . (C.6)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] L. Garland, T. Gehrmann, E.N. Glover, A. Koukoutsakis and E. Remiddi, The two loop

QCD matrix element for e+e− → 3 jets, Nucl. Phys. B 627 (2002) 107 [hep-ph/0112081]

[INSPIRE].

[2] L. Garland, T. Gehrmann, E.N. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD

helicity amplitudes for e+e− → three jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067]

[INSPIRE].

[3] C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO,

Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

[4] A. Gehrmann-De Ridder, T. Gehrmann and E.N. Glover, Antenna subtraction at NNLO,

JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

[5] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO,

Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

[6] A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and J. Pires, Second order QCD

corrections to jet production at hadron colliders: the all-gluon contribution,

Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].

[7] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in

association with a jet at next-to-next-to-leading order in perturbative QCD,

JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].

[8] T. Becher and M. Neubert, Toward a NNLO calculation of the B̄ → Xsγ decay rate with a

cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251

[hep-ph/0603140] [INSPIRE].

[9] T. Becher and G. Bell, The gluon jet function at two-loop order,

Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].

[10] T. Becher, G. Bell and S. Marti, NNLO soft function for electroweak boson production at

large transverse momentum, JHEP 04 (2012) 034 [arXiv:1201.5572] [INSPIRE].

– 30 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/S0550-3213(02)00057-3
http://arxiv.org/abs/hep-ph/0112081
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112081
http://dx.doi.org/10.1016/S0550-3213(02)00627-2
http://arxiv.org/abs/hep-ph/0206067
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206067
http://dx.doi.org/10.1103/PhysRevD.69.076010
http://arxiv.org/abs/hep-ph/0311311
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0311311
http://dx.doi.org/10.1088/1126-6708/2005/09/056
http://arxiv.org/abs/hep-ph/0505111
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0505111
http://dx.doi.org/10.1016/j.physletb.2010.08.036
http://arxiv.org/abs/1005.0274
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.0274
http://dx.doi.org/10.1103/PhysRevLett.110.162003
http://arxiv.org/abs/1301.7310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7310
http://dx.doi.org/10.1007/JHEP06(2013)072
http://arxiv.org/abs/1302.6216
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6216
http://dx.doi.org/10.1016/j.physletb.2006.04.046
http://arxiv.org/abs/hep-ph/0603140
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603140
http://dx.doi.org/10.1016/j.physletb.2010.11.036
http://arxiv.org/abs/1008.1936
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1936
http://dx.doi.org/10.1007/JHEP04(2012)034
http://arxiv.org/abs/1201.5572
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5572


J
H
E
P
0
2
(
2
0
1
4
)
0
0
4

[11] T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for qq̄ → W±γ and

qq̄ → Z0γ, JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].

[12] T. Gehrmann, L. Tancredi and E. Weihs, Two-loop QCD helicity amplitudes for g g → Z g

and g g → Z γ, JHEP 04 (2013) 101 [arXiv:1302.2630] [INSPIRE].

[13] T. Gehrmann, M. Jaquier, E. Glover and A. Koukoutsakis, Two-loop QCD corrections to the

helicity amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].

[14] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear

and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]

[INSPIRE].

[15] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,

Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

[16] M. Beneke, A. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and

heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431

[hep-ph/0206152] [INSPIRE].

[17] T. Becher and M.D. Schwartz, Direct photon production with effective field theory,

JHEP 02 (2010) 040 [arXiv:0911.0681] [INSPIRE].

[18] T. Becher, C. Lorentzen and M.D. Schwartz, Resummation for W and Z production at large

pT , Phys. Rev. Lett. 108 (2012) 012001 [arXiv:1106.4310] [INSPIRE].

[19] T. Becher, C. Lorentzen and M.D. Schwartz, Precision Direct Photon and W-Boson Spectra

at High pT and Comparison to LHC Data, Phys. Rev. D 86 (2012) 054026

[arXiv:1206.6115] [INSPIRE].

[20] N. Kidonakis and V. Del Duca, Electroweak boson hadroproduction at large transverse

momentum: Factorization, resummation and NNLO corrections,

Phys. Lett. B 480 (2000) 87 [hep-ph/9911460] [INSPIRE].

[21] N. Kidonakis and A. Sabio Vera, W hadroproduction at large transverse momentum beyond

next-to-leading order, JHEP 02 (2004) 027 [hep-ph/0311266] [INSPIRE].

[22] R.J. Gonsalves, N. Kidonakis and A. Sabio Vera, W production at large transverse

momentum at the large hadron collider, Phys. Rev. Lett. 95 (2005) 222001 [hep-ph/0507317]

[INSPIRE].

[23] N. Kidonakis and R.J. Gonsalves, Higher-order QCD corrections for the W-boson transverse

momentum distribution, Phys. Rev. D 87 (2013) 014001 [arXiv:1201.5265] [INSPIRE].

[24] N. Kidonakis and R.J. Gonsalves, Two-Loop Corrections to W and Z Boson Production at

High pT , arXiv:1109.2817 [INSPIRE].

[25] Ch. Lorentzen, http://peter.hepforge.org.

[26] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative

QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

[27] T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory

amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126]

[INSPIRE].

[28] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Combining fixed-order helicity amplitudes

with resummation using SCET, PoS(LL2012)058 [arXiv:1211.2305] [INSPIRE].

– 31 –

http://dx.doi.org/10.1007/JHEP02(2012)004
http://arxiv.org/abs/1112.1531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1531
http://dx.doi.org/10.1007/JHEP04(2013)101
http://arxiv.org/abs/1302.2630
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2630
http://dx.doi.org/10.1007/JHEP02(2012)056
http://arxiv.org/abs/1112.3554
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3554
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://arxiv.org/abs/hep-ph/0011336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0011336
http://dx.doi.org/10.1103/PhysRevD.65.054022
http://arxiv.org/abs/hep-ph/0109045
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109045
http://dx.doi.org/10.1016/S0550-3213(02)00687-9
http://arxiv.org/abs/hep-ph/0206152
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206152
http://dx.doi.org/10.1007/JHEP02(2010)040
http://arxiv.org/abs/0911.0681
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0681
http://dx.doi.org/10.1103/PhysRevLett.108.012001
http://arxiv.org/abs/1106.4310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4310
http://dx.doi.org/10.1103/PhysRevD.86.054026
http://arxiv.org/abs/1206.6115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6115
http://dx.doi.org/10.1016/S0370-2693(00)00356-7
http://arxiv.org/abs/hep-ph/9911460
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911460
http://dx.doi.org/10.1088/1126-6708/2004/02/027
http://arxiv.org/abs/hep-ph/0311266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0311266
http://dx.doi.org/10.1103/PhysRevLett.95.222001
http://arxiv.org/abs/hep-ph/0507317
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507317
http://dx.doi.org/10.1103/PhysRevD.87.014001
http://arxiv.org/abs/1201.5265
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5265
http://arxiv.org/abs/1109.2817
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2817
http://peter.hepforge.org
http://dx.doi.org/10.1103/PhysRevLett.102.162001
http://arxiv.org/abs/0901.0722
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0722
http://dx.doi.org/10.1088/1126-6708/2009/06/081
http://arxiv.org/abs/0903.1126
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LL2012)058
http://arxiv.org/abs/1211.2305
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2305


J
H
E
P
0
2
(
2
0
1
4
)
0
0
4

[29] S. Catani and M. Seymour, The dipole formalism for the calculation of QCD jet

cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277]

[INSPIRE].

[30] S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO

QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323]

[INSPIRE].

[31] S. Catani, The Singular behavior of QCD amplitudes at two loop order,

Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

[32] T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point

functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].

[33] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: the planar

topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

[34] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Nonplanar

topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

[35] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms,

Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].

[36] T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic

polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].

[37] H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig Germany (1928).

[38] B.L. van der Waerden, Spinoranalyse, Nachrichten von der Gesellschaft der Wissenschaften

zu Göttingen, Mathematisch-Physikalische Klasse (1929), pg. 100.

[39] F.A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der

Waerden Spinor Calculus, Nucl. Phys. B 294 (1987) 700 [INSPIRE].

[40] M.E. Peskin, Simplifying Multi-Jet QCD Computation, arXiv:1101.2414 [INSPIRE].

[41] L.J. Dixon, Scattering amplitudes: the most perfect microscopic structures in the universe,

J. Phys. A 44 (2011) 454001 [arXiv:1105.0771] [INSPIRE].

[42] R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field

theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141

[arXiv:1105.4319] [INSPIRE].

[43] J. van der Bij and E.N. Glover, Z Boson Production and Decay via Gluons,

Nucl. Phys. B 313 (1989) 237 [INSPIRE].

[44] R. Hopker and J. van der Bij, Z0 decay into three gluons, Phys. Rev. D 49 (1994) 3779

[INSPIRE].

[45] T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet Mass Spectra in

Higgs + One Jet at NNLL, Phys. Rev. D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].

[46] T. Becher and M. Neubert, Threshold resummation in momentum space from effective field

theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

[47] C.W. Bauer and A.V. Manohar, Shape function effects in B → Xsγ and B → Xulν̄ decays,

Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [INSPIRE].

[48] S. Bosch, B. Lange, M. Neubert and G. Paz, Factorization and shape function effects in

inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].

– 32 –

http://dx.doi.org/10.1016/0370-2693(96)00425-X
http://arxiv.org/abs/hep-ph/9602277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9602277
http://dx.doi.org/10.1016/S0550-3213(96)00589-5
http://arxiv.org/abs/hep-ph/9605323
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9605323
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9802439
http://dx.doi.org/10.1016/S0550-3213(02)00569-2
http://arxiv.org/abs/hep-ph/0207020
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207020
http://dx.doi.org/10.1016/S0550-3213(01)00057-8
http://arxiv.org/abs/hep-ph/0008287
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0008287
http://dx.doi.org/10.1016/S0550-3213(01)00074-8
http://arxiv.org/abs/hep-ph/0101124
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0101124
http://dx.doi.org/10.1016/S0010-4655(01)00411-8
http://arxiv.org/abs/hep-ph/0107173
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0107173
http://dx.doi.org/10.1016/S0010-4655(02)00139-X
http://arxiv.org/abs/hep-ph/0111255
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0111255
http://dx.doi.org/10.1016/0550-3213(87)90604-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B294,700
http://arxiv.org/abs/1101.2414
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2414
http://dx.doi.org/10.1088/1751-8113/44/45/454001
http://arxiv.org/abs/1105.0771
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0771
http://dx.doi.org/10.1016/j.physrep.2012.01.008
http://arxiv.org/abs/1105.4319
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4319
http://dx.doi.org/10.1016/0550-3213(89)90317-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B313,237
http://dx.doi.org/10.1103/PhysRevD.49.3779
http://inspirehep.net/search?p=find+J+Phys.Rev.,D49,3779
http://dx.doi.org/10.1103/PhysRevD.88.054031
http://arxiv.org/abs/1302.0846
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0846
http://dx.doi.org/10.1103/PhysRevLett.97.082001
http://arxiv.org/abs/hep-ph/0605050
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605050
http://dx.doi.org/10.1103/PhysRevD.70.034024
http://arxiv.org/abs/hep-ph/0312109
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312109
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.041
http://arxiv.org/abs/hep-ph/0402094
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0402094


J
H
E
P
0
2
(
2
0
1
4
)
0
0
4

[49] R.J. Gonsalves, J. Pawlowski and C.-F. Wai, QCD Radiative Corrections to Electroweak

Boson Production at Large Transverse Momentum in Hadron Collisions,

Phys. Rev. D 40 (1989) 2245 [INSPIRE].

[50] T. Becher and X. Garcia i Tormo, Electroweak Sudakov effects in W, Z and γ production at

large transverse momentum, Phys. Rev. D 88 (2013) 013009 [arXiv:1305.4202] [INSPIRE].

[51] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC,

Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

[52] T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in

Drell-Yan production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

[53] S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix

and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309] [INSPIRE].
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