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Abstract
Background: When predictive survival models are built from high-dimensional data, there are
often additional covariates, such as clinical scores, that by all means have to be included into the
final model. While there are several techniques for the fitting of sparse high-dimensional survival
models by penalized parameter estimation, none allows for explicit consideration of such
mandatory covariates.

Results: We introduce a new boosting algorithm for censored time-to-event data that shares the
favorable properties of existing approaches, i.e., it results in sparse models with good prediction
performance, but uses an offset-based update mechanism. The latter allows for tailored
penalization of the covariates under consideration. Specifically, unpenalized mandatory covariates
can be introduced. Microarray survival data from patients with diffuse large B-cell lymphoma, in
combination with the recent, bootstrap-based prediction error curve technique, is used to
illustrate the advantages of the new procedure.

Conclusion: It is demonstrated that it can be highly beneficial in terms of prediction performance
to use an estimation procedure that incorporates mandatory covariates into high-dimensional
survival models. The new approach also allows to answer the question whether improved
predictions are obtained by including microarray features in addition to classical clinical criteria.

Background
For models built from high-dimensional data, e.g. arising
from microarray technology, often survival time is the
response of interest. What is wanted then, is a risk predic-
tion model that predicts individual survival probabilities
based on the covariates available. Because of the typically
large number of covariates, techniques have been devel-
oped that result in sparse models, i.e., models where only
a small number of covariates is used. In modern
approaches, such as boosting [1] and the Lasso-like path
algorithms [2], it is avoided to discard covariates before

model fitting, and parameter estimation and selection of
covariates is performed simultaneously. This is imple-
mented by (explicitly or implicitly) putting a penalty on
the model parameters for estimation. The structure of this
penalty is chosen such that most of the estimated param-
eters will be equal to zero, i.e., the value of the corre-
sponding covariates does not influence predictions
obtained from the fitted model.

Often there are clinical covariates, such as a prognostic
index, available in addition to microarray features. The
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former could be incorporated into the model just like an
additional microarray feature, but due to the large
number of microarray features compared to the typically
small number of clinical covariates there is the danger,
that the clinical covariates might be dominated, even
when they carry important information. Therefore man-
datory inclusion for such covariates is needed. When it is
also of interest whether use of microarray features can
improve over models based solely on the clinical covari-
ates, i.e., the latter are not only included for increasing
prediction performance, the parameters of the clinical
covariates have to be estimated unpenalized. Only then
the resulting model can be fully compared to models
based only on clinical covariates, where typically unpenal-
ized estimates are used.

To our knowledge, existing techniques for estimating
sparse high-dimensional survival models do not naturally
allow for unpenalized mandatory covariates. In contrast,
for the generalized linear model class there is a recent
approach that fits this need [3]. We therefore extend this
one to survival models. As will be shown, this new
approach is closely related to the existing high-dimen-
sional survival modeling techniques when no mandatory
covariates are present. Therefore, we first review some of
the latter, before developing the extension.

Given observations (ti, di, xi), i = 1, ..., n, where ti is the
observed time to the event of interest for individual i, δi
takes the value 1 if an event occurred at that time and 0 if
the observation has been censored, and xi = (xi1, ..., xip)' is
a vector of covariates obtained at time zero, many
approaches for high-dimensional survival data are based
on the Cox proportional hazards model for the hazard

λ(t|xi) = λ0(t)exp(F(xi;β)), (1)

where λ0(t) is the baseline hazard and F (x; β) is a function

of the covariates, depending on a parameter vector β.

When a linear predictor of the form F(x; β) = x'β is used,

each element of the parameter vector β = (β1, ..., βp)' spec-

ifies the influence of a single covariate. For estimation, the

baseline hazard λ0(t) is left unspecified and an estimate

 is obtained by maximizing the partial log-likelihood

where I() is an indicator function taking value 1 if its argu-
ment is true, i.e., if individual j is still under risk just
before time ti, and value 0 otherwise.

When the number of covariates is large, maximization of
(2) can no longer be carried out by standard techniques.
In Lasso-like approaches (using a linear predictor) [2,4] a

penalty term λ∑j|βj| is added to the partial log-likelihood

(2). The resulting penalized partial log-likelihood then is
maximized by quadratic programming techniques or by
the more efficient path algorithms [2]. The penalty param-

eter λ can be determined e.g. by cross-validation. Due to
penalizing the absolute value, many elements of the

resulting estimate  will be equal to zero, i.e., the solu-

tion will be sparse, larger values of λ leading to more
sparseness. Lasso-like approaches have in addition been
developed for additive risk models [5] and accelerated
failure time models [6].

An alternative approach for fitting of sparse high-dimen-
sional models is provided by gradient boosting tech-
niques [1,7]. The underlying principle is that of stepwise

optimization of a function F(x; β) in function space by
minimizing a loss function. For fitting a Cox model, the
negative partial log-likelihood is used as a loss function
[8]. In each step k = 1, ..., M the negative gradient of the
loss function, evaluated for the current estimate Fk-1(x;

k-1) at the observations, is fitted e.g. by standard least

squares techniques. The resulting fit fk(x; k), which

depends on some parameter vector γk, then is used to

updated the overall fit via Fk(x; k) = Fk-1(x; k-1) +

ε k(x; k), where ε is some small positive value.

In componentwise boosting a linear predictor of the form

Fk(x; k) = x' k is used and only one element of k is

updated in each boosting step [9]. The parameter to be
updated in step k is determined by evaluating fits to the

gradient kj(xi; j) = jxij, j = 1, ..., p, where j is deter-

mined by least-squares, and selecting that one that
improves the overall fit the most. This results in sparse fits
similar to Lasso-like approaches, with many of the esti-
mated coefficients being equal to zero.

For linear models with squared-error loss function, gradi-
ent boosting is equivalent to iterative fitting of residuals.
This idea has been adapted to the generalized linear
model setting as an alternative to the gradient approach
[3]. In each boosting step, estimation is performed by a
standard Newton-Raphson step, based on a penalized
likelihood, where previous boosting steps are incorpo-
rated as an offset. An advantage of this offset-based boost-
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ing approach is that it allows for very flexible penalty
structure, including unpenalized mandatory covariates.
Adapting it for survival models would help to resolve the
highlighted issues arising when clinical covariates should
be included in high-dimensional survival models.

One could also try to adapt existing gradient boosting
techniques to allow for unrestricted mandatory compo-
nents, but we think the offset-based approach is a more
natural starting point. Alternatively, approaches such as
the grouped Lasso [10,11], which allow for groups of cov-
ariates with varying penalization, could potentially be
adapted by introducing groups with no penalization. As
this has not yet been considered by their authors, and also
the group Lasso approach for the Cox model [12] no
longer uses simultaneous estimation of all parameters, we
do not follow this route here.

In the following will therefore adapt the offset-based
boosting approach from [3] for estimating Cox propor-
tional hazards models. The resulting advantage of allow-
ing for unpenalized mandatory components for clinical
covariates will be illustrated with data from patients with
diffuse large B-cell lymphoma.

Results and discussion
Algorithm

The aim of the new CoxBoost approach is to estimate the

parameter vector β for a linear predictor F(x; β) = x'β in the
Cox proportional hazards model (1). Typical gradient
boosting approaches either use all covariates for the fitting
of the gradient in each step, e.g. based on regression trees,
or, in componentwise boosting, update only one element

of the estimate of β, corresponding to only one covariate.
The flexibility of the offset-based approach in [3] partly is
due to considering a flexible set of candidate sets, i.e., a set
of sets of covariates, for updating in a specific boosting
step. This is adapted for the CoxBoost approach. In boost-
ing step k = 1, ..., M there are qk predetermined candidates

sets of covariates with indices kl ⊆ {1, ..., p}, l = 1, ..., qk.

For each of these qk sets a simultaneous update of the

parameters for the corresponding covariates is evaluated.
The candidate set that improves the overall fit the most
will then be selected for the update.

With  being the actual estimate of the

overall parameter vector β after step k - 1 of the algorithm,

and  being the corresponding linear predic-

tors, potential updates for the elements of k-1 corre-

sponding to kl are obtained by maximizing the

penalized partial log-likelihood

with respect to the parameter vector γkl of size | kl|, where

kl is the covariate vector for subject i containing only

those covariates with indices in kl. The penalty parame-

ter λ which has to be selected, results in a cautious update,
if it is large enough. The penalty matrices Pkl can be speci-

fied separately for each boosting step and each candidate
set, which provides considerable flexibility of the Cox-
Boost approach. Typically these will be diagonal matrices,
for penalizing each covariate separately, but by varying
the size of the diagonal elements, differential penalization
is introduced. In contrast, for gradient boosting
approaches the fitting in each step is performed unpenal-
ized and only afterwards the update is multiplied by a

small shrinkage factor ε, thus applying equal penalization
to all covariates. For the present application of the Cox-
Boost approach we will use only diagonal elements 1 and
0, for "penalization" and "no penalization".

The parameter estimates kl for evaluating the candidate

sets are obtained by penalized partial likelihood tech-

niques [13]. Using the starting value , the first

Newton-Raphson step is

where U(γ) = (∂l/∂γ)(γ) is the score function and Ipen(γ) =
(∂2l/∂γ∂γ')(γ) + λPkl is the information matrix, obtained
from the first and second derivatives of the unpenalized
partial log-likelihood l(γkl), i.e., (3) without the penalty
term. As further updates can take place in later boosting
steps, only one Newton-Raphson step is performed.

Given the sets of sets of indices , corre-

sponding penalty matrices Pkl, k = 1, ..., M, and the penalty

parameter λ, the general CoxBoost algorithm is as follow-
ing:

1. Initialize i, 0 = 0, i = 1, ..., n, and 0 = (0, ..., 0)'.

2. Repeat for k = 1, ..., M
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(a) Obtain potential updates kl for the candidate sets

kl, l = 1, ..., qk, via (4).

(b) Determine the best update l* which maximizes the
penalized partial log-likelihood (3).

(c) Obtain the updated parameter vector k vector via

where kl(j) is that element of kl that corresponds to k,

j, and update , i = 1,..., n.

Note that the step size for the updates in part 2c) of the
algorithm is 1. This is in contrast to gradient boosting

algorithms, where the fits  to the gradient are

multiplied by some small positive value ε before updat-

ing. In the CoxBoost algorithm the role of ε is taken by the

penalty parameter λ during estimation. In the following,
for unpenalized mandatory components the correspond-
ing elements of the penalty matrix Pkl are taken to be zero,

resulting in fast building up of coefficient estimates.

Componentwise CoxBoost with mandatory covariates

Componentwise CoxBoost, similar to componentwise
ridge boosting [3], is obtained when in each boosting step
only one element of the overall parameter vector is
updated, i.e., k = {{1}, ..., {p}}, k = 1, ..., M . In this

setup CoxBoost is very similar to the idea of stagewise
regression described in [14]. Based on the results given
there and in [3] we expected the resulting coefficient
paths, i.e., the estimated parameters in the course of the
boosting steps, to be very similar to Lasso-like approaches.
For strong correlations between covariates, again due to
its similarity to stagewise regression, it is expected that the
coefficient paths of componentwise CoxBoost are even
more stable, i.e., more monotone, than that of Lasso-like
approaches [15].

There are two approaches for incorporating mandatory
covariates into the CoxBoost algorithm. Given the indices
of the mandatory covariates mand, the indices from com-

ponentwise CoxBoost can be augmented via k = {{1} ∪

mand, ..., {p} ∪ mand}, omitting components {j} ∪

mand where j ∈ mand. This allows for simultaneous esti-

mation of the parameters of mandatory and optional cov-
ariates. When the diagonal elements of the penalty
matrices Pkl corresponding to mand are set to zero, while

the others still have a value larger than zero, this further-
more leads to unpenalized estimation of the parameters
of the mandatory covariates. When one wants to evaluate
whether the optional covariates provide additional pre-
dictive power compared to the mandatory covariates, this
is the appropriate penalty structure. Alternatively, manda-
tory covariates can be introduced by updating their
parameters before each step of componentwise CoxBoost.
This corresponds to 2k-1 = { mand}, 2k = {{1}, ...,

{p}} (omitting components {j} where j ∈ mand), k = 1,

..., M. Again, for evaluating the additional predictive per-
formance obtained from the optional covariates we sug-
gest to use penalty equal to zero for the mandatory
covariates.

Implementation
There are several implementation decisions to be made
for the CoxBoost algorithm. At the lowest level, a criterion
for selecting the best update l* in each step has to be cho-
sen. Ideally, the penalized partial log-likelihood (3) or
some variant of it that incorporates model complexity
(such as AIC) would be used. While for a small number of
covariates, say p < 100, this is computationally unprob-
lematic, for large p it is no longer feasible to evaluate this
criterion for each candidate set in each step. As an approx-
imation, we therefore propose to employ a penalized ver-
sion of the score statistic

evaluated at  This is based on a low-order Taylor

expansion of the penalized partial log-likelihood (3) and
requires no extra computation. In our experiments, select-
ing boosting step updates by the largest value of this score
statistic was very close to selecting by the penalized partial
log-likelihood itself, but considerably reduced computa-
tion time.

For including mandatory covariates, computational con-
siderations led us to use the CoxBoost variant with sepa-
rate updating of the mandatory parameters. This avoids
frequent inversion of Ipen(γ), because in the component-
wise updating step of this variant for the optional covari-
ates this reduces to a simple division. The CoxBoost
algorithm has two tuning parameters, the penalty param-
eter λ and number of boosting steps M. While selection of
the latter is critical to avoid overfitting, the penalty param-
eter is of minor importance, as long as it is large enough.
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We therefore suggest to select only the number of boost-
ing steps by a procedure such as cross-validation. The pen-
alty parameter λ is selected only very coarsely such that
the corresponding selected number of boosting steps M is
larger than 50. This approach was seen to work well for
offset-based boosting for generalized linear models [3].

The algorithm has been implemented in the statistical
environment R [16] in the package "CoxBoost", which is
available from the authors.

Example
We illustrate the CoxBoost algorithm with the diffuse
large B-cell lymphoma data from the study in [17]. A
review of attempts to build predictive survival models
from such data is found in [18]. There is a potentially cen-
sored survival time response for 240 patients with a
median follow up of 2.8 years, where 57% of the patients
died during that time. For prediction there are 7399
microarray features available. In addition, the Interna-
tional Prognostic Index (IPI), a well-established prognos-
tic score derived from five clinical covariates [19], is
available for 222 patients. As we want to investigate
whether the microarray features increase predictive per-
formance compared to a purely clinical model based on
the IPI, analyses are restricted to this smaller set of
patients. Missing values for the microarray features were
imputed as described in [20].

In [17] the data is split into a training set where the
parameters are estimated, and a test set where prediction
performance is evaluated. The disadvantage of this is that
not all data is available for model building and parameter
estimation. We employ an alternative approach [20],
based on bootstrap samples, which allows to use all
observations for model fitting, but nevertheless results in
accurate prediction error estimates. For evaluation of pre-
diction performance the Brier score is used, i.e., the
(expected) squared difference between predicted survival
probability at a time t and the true state (1 for being still
under risk, and 0 if an event occurred). This can be be
plotted as a function of time, resulting in prediction error
curves. For estimation of the latter, prediction error esti-
mates obtained from single bootstrap samples are aggre-
gated into a .632+ estimate. An additional summary
measure is obtained when for every single bootstrap sam-
ple a .632+ prediction error curve is calculated and inte-
grated (in our case up to time 10). See the Methods
section for more details.

As a conservative reference for performance comparison
the Kaplan-Meier prediction is used, a non-parametric
estimate of the survival probability over time. That way it
can be checked whether procedures potentially perform
worse than a prediction that does not use any covariate

information at all. The performance of componentwise
CoxBoost is furthermore compared to that of gradient
boosting for the Cox model [1] (R package "mboost"
[21]) and that of CoxPath, a Lasso-like path algorithm for
fitting the Cox model [2] (R package "glmpath" [22]). For
fitting models with these procedures only the microarray
features (i.e., not the IPI) are used. In addition, compo-
nentwise CoxBoost with the IPI as an additional optional
and as an unpenalized mandatory covariate is compared
to a simple Cox model that has the IPI as its only covari-
ate. The tuning parameters, i.e., the number of boosting
steps and the number of path algorithm steps, are chosen
by 5-fold cross-validation with respect to the partial log-
likelihood. All other settings are at the default values of
the respective implementations.

Before looking at prediction performance, we investigate
the influence of unpenalized mandatory covariates on the
coefficient paths, i.e., the parameter estimates for the indi-
vidual covariates plotted against the norm of the parame-
ter vector (which increases in the course of the CoxPath/
boosting steps). Figure 1 shows the coefficient paths for
CoxPath, gradient boosting, componentwise CoxBoost,
and componentwise CoxBoost with the IPI as a manda-
tory covariate (where the parameter estimates for the IPI
are not shown). The estimates corresponding to the
number of CoxPath steps and the number of boosting
steps selected by cross-validation are indicated by vertical
lines. Covariates that receive non-zero parameter esti-
mates by all four approaches in that cross-validation solu-
tions are indicated by solid curves, the others by dashed
curves. For the former, and other microarray features with
corresponding parameter estimates that are large in abso-
lute value, the UNIQIDs are given in the right margins of
the plots.

It is seen that the coefficients paths for componentwise
CoxBoost, gradient boosting and CoxPath are very simi-
lar. For the latter they are a bit more unstable, in the sense
that they are not monotone, which is to be expected based
on the results in [15]. Nevertheless, the six microarray fea-
tures with the largest absolute value of the parameter esti-
mates are the same for all three approaches.

The coefficient paths of CoxBoost with the IPI as a man-
datory covariate are different, with only a small number of
distinct covariates receiving large parameter estimates.
The reason for this might be that the mandatory covariate
already explains much of the variation in the response and
there is less incentive to boost a large number of parame-
ters to fit the remaining variability. The number of boost-
ing steps selected by cross-validation (indicated by vertical
lines) also supports this, as it is smaller compared to sim-
ple componentwise CoxBoost when IPI is present as a
mandatory covariate. In this example, including an unpe-
Page 5 of 10
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nalized mandatory covariate also changes the ranking of
the microarray features with respect to the absolute values
of the parameter estimates. After inclusion of the IPI the
microarray feature with UNIQID 27774 is associated with
a strong protective effect, while it seemed to be of minor
importance judged by the other fits. In contrast, the fea-
ture with UNIQID 32679 is deemed to be less important
when the IPI is included as an unpenalized mandatory

covariate. So the latter clearly changes the interpretation
of the fitted models.

The left panel of Figure 2 shows the .632+ prediction error
estimates for all models that incorporate only microarray
features, i.e., CoxPath (dotted curve), gradient boosting
(dash-dotted curve), and componentwise CoxBoost (solid
curve). It is seen that all three perform very similar. The
prediction error is well below the Kaplan-Meier bench-

Coefficient paths for CoxBoostFigure 1
Coefficient paths for CoxBoost. Estimated parameters plotted against the norm of the parameter vector for CoxPath (top 
left), gradient boosting (top right), componentwise CoxBoost (bottom left), and CoxBoost with a mandatory covariate (bot-
tom right). CoxPath steps and boosting steps selected by cross-validation are indicated by vertical lines. Covariates selected by 
all approaches up to this number of steps are indicated by solid curves, the others by dashed curves. For them and other 
strong covariates the UNIQID is given.
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mark (gray curve), which does not employ any covariate
information. This is not self-evident, as for example in the
evaluation in [20] some other procedures failed with
respect to this criterion. So the offset-based boosting
approach does not seem to result in a loss of prediction
performance and it therefore is a reasonable basis for an
approach incorporating unpenalized mandatory covari-
ates. While according to the prediction error curve esti-
mates there seems to be no disadvantage for CoxPath, the
out-of-bag partial log-likelihood, i.e., the mean partial
log-likelihood evaluated for the observations not in the
respective bootstrap samples, is the smallest for this pro-
cedure (-183.8). For gradient boosting and component-
wise CoxBoost it is -181.5 (with standard errors of about
1.4), i.e., also with respect to this error measure there
seems to be no disadvantage of using the CoxBoost
approach. A similar pattern is seen for models that incor-
porate the IPI as an optional covariate in addition to
microarray features (middle panel of Figure 2). There is a
general improvement over models that did not include
the IPI, with all procedures again performing very similar.
According to the prediction error curve estimates there
may be a slight advantage for CoxPath, which seems to
gain the most prediction performance. However, the out-
of-bag partial log-likelihood is again the smallest for this

procedure (-180.3), while for gradient boosting it is -
180.0, and for CoxBoost it is even -177.8.

The effect of various ways for dealing with clinical covari-
ates is illustrated in the right panel of Figure 2. There the
.632+ prediction error estimate for componentwise Cox-
Boost is given, together with prediction error curves for
CoxBoost approaches that incorporate the IPI, either as an
optional (curve with plus symbols) or as a mandatory cov-
ariate (curve with triangles). In addition, the estimated
prediction error curve for a standard Cox model that
incorporates only the IPI is given (dashed curve). The per-
formance of a microarray-only CoxBoost fit (solid curve)
is roughly similar to the Cox model that includes only the
clinical information from the IPI (out-of-bag partial log-
likelihood: -177.8), with an advantage for the latter for
early prediction times. So both types of model might con-
tain the same amount of information. The question
whether the microarray features contain information that
is different from that of clinical covariates is therefore still
unanswered. When, as a first step, the IPI is included as an
additional optional covariate for componentwise Cox-
Boost, as already noted, there is a distinct increase in pre-
diction performance compared to componentwise
CoxBoost based only on microarray features. So the two
types of covariates seem to contain (at least partially) dif-

.632+ prediction error estimatesFigure 2

.632+ prediction error estimates. .632+ prediction error curve estimates for microarray-only models (left panel) fitted by 
CoxPath, gradient boosting, and componentwise CoxBoost, for models including the IPI as an additional optional covariate 
(middle panel), and for the CoxBoost fit that incorporates the IPI as a mandatory covariate (right panel). The Kaplan-Meier 
benchmark is indicated by gray curves.
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ferent information. When the IPI is included as an unpe-
nalized mandatory covariate the performance increases
even more (out-of-bag partial log-likelihood: -175.3).
This shows that it is really necessary to assign the IPI this
special role, as otherwise it cannot exert its full predictive
potential. Here the flexibility of the CoxBoost approach
allows to incorporate subject matter knowledge, i.e.,
knowing that the IPI is a good predictor, to increase pre-
dictive performance. CoxBoost with the IPI as a manda-
tory covariate also allows for a valid comparison to the
Cox model that contains IPI as its only covariate. As in
both models the parameters for the IPI are estimated
unpenalized, the exact additional value of the microarray
features in terms of predictive performance can be seen
from the difference between the two curves.

Figure 3 shows boxplots of the integrated prediction error
estimates (up to time 10) calculated for the single boot-
strap samples, to convey an impression of the variability
underlying the estimates in Figure 2. It is seen that the
conclusions drawn from the prediction error curve esti-
mates hold, even when variability is taken into account.
For microarray-only models and models that incorporate

the IPI only as an optional covariate, CoxPath, gradient
boosting, and CoxBoost perform very similar, but when
the IPI is incorporated as an unpenalized mandatory cov-
ariate, there is an advantage in terms of prediction per-
formance for CoxBoost.

Conclusion
Modern techniques for the fitting of predictive survival
models, such as Lasso-like approaches and boosting, are
capable of handling the large number of covariates often
arising in bioinformatics applications, e.g. from microar-
rays. What has been missing is an approach for incorpo-
rating mandatory covariates into such models. We
therefore adapted an offset-based boosting approach,
which allows for flexible penalization of covariates, for
the estimation of Cox proportional hazard models.

The flexible penalty structure of the new approach allows
for unrestricted estimation of the parameters for manda-
tory covariates. As seen in an example application, this
also influences the coefficient paths for the optional cov-
ariates, in this case resulting in a more transparent struc-
ture. The main benefit, on the one hand, was increased
prediction performance by combining clinical and micro-
array information. On the other hand, the increase of pre-
diction performance over a microarray-only model and a
purely clinical predictive model helped to answer the
question about the additional benefit arising from micro-
array technology for predicting survival. In the example,
including a mandatory covariate also affected the ranking
of microarray features with respect to absolute value of the
parameter estimates and therefore potentially changed the
clinical implications of the result.

Componentwise gradient boosting approaches could
potentially also be adapted for incorporating unpenalized
mandatory covariates. However, simply augmenting the
componentwise base learners by mandatory components
would not be sufficient, as in gradient boosting the base
learner fits are multiplied by some small constant ε before
adding them to the overall fit. Therefore the building up
of the coefficient estimates for mandatory covariates
would still be rather slow. Introducing intermediate steps
with ε = 1, where only mandatory covariates are updated,
could address this. However, the offset-based boosting
approach, which we used as a basis for the CoxBoost algo-
rithm, more naturally allows for unpenalized mandatory
components.

Incorporating unpenalized mandatory covariates is only
one of the many possible ways of leveraging clinical infor-
mation and subject matter knowledge using the proposed
boosting approach. For example, information from clus-
tering of the microarray features could be incorporated, by
distributing boosting steps over a set of clusters. Further

Variability of the .632+ prediction error estimatesFigure 3
Variability of the .632+ prediction error estimates. 
Integrated prediction error curve estimates from single 
bootstrap samples for CoxPath, gradient boosting, compo-
nentwise CoxBoost, and an IPI-only Cox model ("IPI"), for 
corresponding models where the IPI is included as a an addi-
tional optional covariate ("...+IPI"), and for CoxBoost fits that 
incorporate the IPI as a mandatory covariate ("IPI manda-
tory"). The Kaplan-Meier benchmark value is indicate by a 
horizontal line.
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refinements of the boosting scheme and the penalization
structure could be devised, for further increasing predic-
tion performance and to more generally increase the use-
fulness of the resulting predictive model.

Methods
Measures of prediction error

By estimating the parameter vector  of a Cox model (1),

a risk prediction model

is obtained, where 0(t) denotes the Breslow estimator of

the cumulative baseline hazard . It pre-

dicts the event status

Yi(t) = I(Ti > t),

where I() takes the value 1 if its argument is true and 0
otherwise. Ti is the survival time of subject i, that is unob-
served in case of censoring. The observed time ti therefore
is ti = min(Ti, Ci), where Ci is the censoring time.

The true prediction error curve then is

It can be estimated from a sample via

where weights W(t; ) have to be introduced to account
for censoring. To obtain a consistent estimate of the true
prediction error curve they have to be chosen to be

where (t|x) is a consistent estimate of P(C > t|x). We use
a Kaplan-Meier estimator for the latter. For more details
see [23].

.632+ prediction error estimates

Evaluating (5) with the data that was used for estimating

 potentially underestimates the prediction error. We

therefore generate sets of indices b ⊂ {1, ..., n}, b = 1, ...,

B, for B = 100 bootstrap samples, each of size 0.632n.
Sampling without replacement is used to avoid a poten-

tial complexity selection bias (i.e., for selecting the
number of boosting steps or CoxPath steps) indicated e.g.
in [24]. The bootstrap cross-validation error estimate is
then obtained by

where b0 is the number of observations not in b, i.e.,

0.368n, and b is the model fitted to the observations

with indices in b.

As (6) is known to be biased upwards, we use the .632+
estimate

with (t) = .632/(1 - .368 (t)), where (t) is the rela-

tive overfitting rate , with

. For

more details see [25].

As a summary measure we propose to use the integrated
prediction error estimate

For getting and impression of the variability underlying
(7) and (8), (7) is calculated separately for every bootstrap
sample, i.e., the outer sum in (6) reduces to one term, and
the corresponding integrated prediction error estimates
are obtained. The variability of the resulting B = 100 indi-
vidual integrated prediction error estimates can then be
compared between different prediction models, e.g. by
boxplots.
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Ĝ

W t G
I ti t i
G ti xi

I t i t

G t xi
( ; )

( )

( | )

( )

( | )
,= ≤

−
+ >δ

Ĝ
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