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Abstract

In this paper, a scalarization result of ε-weak efficient solution for a vector equilibrium
problem (VEP) is given. Using this scalarization result, the connectedness of ε-weak
efficient and ε-efficient solutions sets for the VEPs are proved under some suitable
conditions in real Hausdorff topological vector spaces. The main results presented in
this paper improve and generalize some known results in the literature.
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1 Introduction
Let K be a nonempty subset of a real Hausdorff topological vector space E, and f : K ×

K ® R a bifunction such that f(x, x) ≥ 0 for all x Î K. Then, the scalar equilibrium

problem consists in finding x̄ ∈ K such that

f (x̄, y) ≥ 0, ∀y ∈ K.

It provides a unifying framework for many important problems, such as optimization

problems, variational inequality problems, complementary problems, minimax inequal-

ity problems, Nash equilibrium problems, and fixed point problems, and has been

widely applied to study problems arising in economics, mechanics, and engineering

science (see [1]). On the other hand, several operations research problems are formu-

lated with a multicriteria consideration. These are vector optimization problems, vector

variational inequality and complementarity problems and vector equilibrium problems

(VEPs). Recently, the VEP has received much attention by many authors because it

provides a unified model including vector optimization problems, vector variational

inequality problems, vector complementarity problems and vector saddle point pro-

blems as special cases (see, for example, [2-24] and the references therein).

It is well known that another important problem for VEPs is to study the topological

properties of solutions set. Among its topological properties, the connectedness is of

interest. Recently, Lee et al. [25], Cheng [26] have studied the connectedness of weak

efficient solutions set for vector variational inequalities in finite dimensional Euclidean

space. Gong [27-29] has studied the connectedness of the various solutions set for

VEPs in infinite dimension space. Chen et al. [30] studied the connectedness and the
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compactness of the weak efficient solutions set for set-valued VEPs and the set-valued

vector Hartman-Stampacchia variational inequalities in normed linear space. Gong and

Yao [31] have studied the connectedness of the set of efficient solutions for generalized

systems. Zhong et al. [32] have studied the connectedness and path-connectedness of

solutions set for symmetric VEPs. However, the connectedness of approximate solu-

tions set for VEPs remained unstudied.

In this paper, we show a scalarization result of ε-weak efficient solution for a VEP.

Using this scalarization result, we discuss the connectedness of ε-weak efficient and

ε-efficient solutions sets for VEPs under some suitable conditions in real Hausdorff

topological vector spaces. The main results presented in this paper generalize some

known results due to Gong [27] and Gong and Yao [31].

2 Preliminaries
Throughout this paper, let X and Y be two real Hausdorff topological vector spaces

and A a nonempty subset of X. Let F : A × A ® Y be a mapping and C be a closed

convex pointed cone in Y. The cone C induces a partial ordering in Y, defined by

z1 ≤ z2 if and only if z2 − z1 ∈ C.

Let

C∗ = {f ∈ Y∗ : f (y) ≥ 0 for all y ∈ C}

be the dual cone of C.

Denote the quasi-interior of C* by C#, that is,

C# = {f ∈ Y∗ : f (y) > 0 for all y ∈ C\{0}}.

Let D be a nonempty subset of Y. The cone hull of D is defined as

cone (D) = {td : t ≥ 0, d ∈ D}.

A nonempty convex subset B of the convex cone C is called a base of C if

C = cone (B) and 0 �∈ cl(B).

It is easy to see that C# ≠ ∅ if and only if C has a base.

Throughout this paper, we always assume that intC ≠ ∅. Let e be a fixed point in

intC and we set

C′ = {f ∈ C∗\{0} : f (e) = 1},
C′′ = {f ∈ C# : f (e) = 1}.

Now, we give the concepts of ε-weak efficient solution, ε-efficient solution, and ε-f

efficient solution for the VEP.

Definition 2.1. A vector x Î A satisfying

F(x, y) �∈ −intC − εe for all y ∈ A,

is called a ε-weak efficient solution to the VEP. Denote by Vε-W (A, F) the set of all ε-

weak efficient solutions to the VEP.

Definition 2.2. A vector x Î A satisfying

F(x, y) �∈ −C\{0} − εe for all y ∈ A,
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is called a ε-efficient solution to the VEP. Denote by Vε (A, F) the set of all ε-efficient

solutions to the VEP.

Definition 2.3. Let f Î C*\{0}. A vector x Î A is called a ε-f efficient solution to the

VEP if

f (F(x, y)) ≥ −ε for all y ∈ A,

Denote by Vε-f (A, F) the set of all ε-f efficient solutions to the VEP.

Definition 2.4. [33] Let G be a set-valued map from a topological space W to

another topological space Q. We say that G is

(i) upper semicontinuous at x0 Î W if, for any neighborhood U(G(x0)) of G(x0),

there is a neighborhood U (x0) of x0 such that G(x) ⊂ U (G(x0)) for all x Î U(x0);

(ii) upper semicontinuous on W if it is upper semicontinuous at each x Î W;

(iii) lower semicontinuous at x0 Î W if, for any net {xa : a Î I} converging to x0
and for any y0 Î G(x0), there exists a net ya Î G(xa) that converges to y0;

(iv) lower semicontinuous on W if it is lower semicontinuous at each x Î W;

(v) continuous on W if it is both upper semicontinuous and lower semicontinuous

on W;

(vi) closed if Graph(G) = {(x, y) : x Î W, y Î G(x)} is a closed subset in W × Q.

3 Scalarization
Lemma 3.1. Suppose F (x, A) + C is a convex set for each x Î A. Then,

Vε−W(A, F) =
⋃

f∈C′ Vε−f (A, F).

Proof. We first prove that⋃
f∈C′ Vε−f (A, F) ⊂ Vε−W(A, F).

In fact, letting x0 ∈ ⋃
f∈C′ V∈−f (A, F), then there exists f Î C’,

f (F(x0, y)) ≥ −ε, for all y ∈ A. (3:1)

We claim that x0 Î Vε-W (A, F). If not, then there exists y0 Î A such that F (x0, y0) Î
-intC - εe. Thus, we have

f (F(x0, y0) + εe) < 0

and so

f (F(x0, y0)) < −f (εe) = −ε,

which is a contradiction to (3.1).

We next prove that

Vε−W(A, F) ⊂
⋃

f∈C′ Vε−f (A, F).

Let x Î Vε-W (A, F). Then, F (x, A) ∩ (-intC - εe) = ∅. Since C is a pionted convex

cone, we have

(F(x, A) + C + εe) ∩ (−intC) = ∅.
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By assumption, we know that F (x, A) + C is a convex set. Using the separation theo-

rem for convex sets, there exists some g Î Y *\{0}, such that

inf{g (F(x, y) + c + εe) : y ∈ A, c ∈ C} ≥ sup {g (−c) : c ∈ C}. (3:2)

From (3.2), we get g Î C*\{0} and so

g(F(x, y)) ≥ −g(εe) for all y ∈ A,

where e Î intC with g (e) >0. Letting f =
g

g(e), then f (F (x, y)) ≥ -ε, for all y Î A and

f (e) = 1. Thus, f Î C’ and so

x ∈
⋃

f∈C′ Vε−f (A, F).

This completes the proof.

Remark 3.1 When ε = 0, it is easy to see that

Vε−W(A, F) =
⋃

f∈C′ Vε−f (A, F) =
⋃

f∈C∗\{0} Vε−f (A, F).

Therefore, Lemma 3.1 generalizes Lemma 2.1 in [27].

4 Existence of the solutions
Definition 4.1. The bifunction F : A × A ® Y is concave-like with respect to the first

variable, if for t Î [0, 1], the following condition is satisfied: For x1, x2 Î A, there exists

x3 Î A, such that

F(x3, y) ∈ tF(x1, y) + (1 − t)F(x2, y) + C, for all y ∈ A.

The bifunction F : A×A ® Y is convex-like with respect to the second variable, if for

t Î [0, 1], the following condition is satisfied: for y1, y2 Î A, there exists y3 Î A, such

that

F(x, y3) ∈ tF(x, y1) + (1 − t)F(x, y2) − C, for all x ∈ A.

Theorem 4.1. Let A be a nonempty compact subset of X, and f Î C’. Assume that

the following conditions are satisfied:

(i) F (x, x) Î C - εe, for all x Î A;

(ii) F : A × A ® Y is concave-like with respect to the first variable and convex-like

with respect to the second variable;

(iii) For each fixed y Î A, the function x ↦ f (F (x, y)) is upper semicontinuous on A.

Then, Vε-f (A, F) ≠ ∅.

Proof. Define the set-valued map G : A ® 2A by

G(y) = {x ∈ A, f (F(x, y)) ≥ −ε}

By assumption, y Î G (y), for all y Î A, so G (y) ≠ ∅. By assumption, we can see that

G (y) is a closed subset of A. Next, we prove that ∩{G (y) : y Î A} ≠ ∅. Since A is a

compact, we need to show that
n⋂
i=1

G(yi) �= ∅ for any arbitrary chosen y1,..., yn in A.

Suppose it is not true. Then, there exists a set B = {y1,..., yn} ⊂ A such that
n⋂
i=1

G(yi) �= ∅. Thus, for any x Î A, there exists yi Î B such that x ∉ G (yi). It follows
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that

f (F(x, yi)) + ε < 0

and so there exists hi >0 such that

f (F(x, yi)) + ε < −ηi, i = 1, 2, . . . , n.

Since x ↦ f (F (x, y)) is upper semicontinuous on A, we can choose h >0 such that,

for any x Î A, there exists yi Î B satisfying

f (F(x, yi)) + ε + η < 0.

Define g : A ® Rn by

g(x) = (−f (F(x, y1)) − ε − η, −f (F(x, y2)) − ε − η, ..., −f (F(x, yn)) − ε − η),

where x Î A. We get

g(x) �∈ intRn
+, for all x ∈ A. (4:1)

Since f Î C’ and F (x, y) is concave-like with respect to the first variable, we can see

that, for t Î [0, 1], x1, x2 Î A, there exists x3 Î A such that

g(x3) ∈ tg(x1) + (1 − t)g(x2) − C.

This shows that g(A) + Rn
+ is a convex set. It follows from (4.1) that

0 /∈ g(A) + intRn
+.

By the separation theorem of convex sets (see, for example, [34]), we can find t1,..., tn

≥ 0 with
n∑
i=1

ti = 1 such that

0 ≤
n∑
i=1

ti(−f (F(x, yi)) − ε − η), for all x ∈ A.

It follows that

n∑
i=1

tif (F(x, yi)) ≤ −ε − η, for all x ∈ A.

By assumption, there exists y Î A such that

F(x, y) ∈
n∑
i=1

ti(F(x, yi)) − C, for all x ∈ A.

Since f Î C’, we have

f (F(x, y)) ≤ f

(
n∑
i=1

ti(F(x, yi))

)
, for all x ∈ A.

So f (F (x, y)) ≤ -ε - h <-ε, for all x Î A. Setting x = y, it follows that

f (F(y, y)) < −ε.
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On the other hand, by the assumption,

f (F(y, y)) ≥ −ε.

This is a contradiction. Therefore, ∩{G (y) : y Î A} ≠ ∅, and so there exists x Î ∩{G
(y) : y Î A}. This means that Vε-f (A, F) ≠ ∅. This completes the proof.

5 Connectedness of the solutions set
In this section, we discuss the connected results of ε-weak efficient solutions set and ε-

efficient solutions set.

Definition 5.1. Let A be a convex set. The bifunction F : A × A ® Y is C-concave

with respect to the first variable, if for t Î [0, 1], x1, x2 Î A,

F(tx1 + (1 − t)x2, y) ∈ tF(x1, y) + (1 − t)tF(x2, y) + C.

It is clear that when A is a convex set, F : A×A ® Y is C-concave with respect to the

first variable, then it is concave-like about the first variable.

Theorem 5.1 Let A be a nonempty compact convex subset of X, and f Î C’. Assume

that the following conditions are satisfied.

(i) F (x, x) Î C - εe, for all x Î A;

(ii) F : A × A ® Y is C-concave with respect to the first variable and convex-like

with respect to the second variable;

(iii) For each fixed y Î A, the function x ↦ f (F (x, y)) is upper semicontinuous on A;

(iv) D = {F (x, y) : x, y Î A} is a bounded set of Y.

Then, Vε-W (A, F) is a connected set.

Proof. Define a set-valued mapping H : C’ ® 2A by

H(f ) = V∈−f (A, F), f ∈ C′.

By Theorem 4.1, we know that, for each f Î C’, Vε-f (A, F) ≠ ∅. It is easy to see that

C’ is a convex set and so is connected. Next, we prove that, for each f Î C’, H (f) is a

connected set. Let x1, x2 Î H (f), we have x1, x2 Î A, and

f (F(xi, y)) ≥ −ε, ∀y ∈ A, i = 1, 2. (5:1)

Because F : A ×A ® Y is C-concave with respect to the first variable, for each fixed y

Î A, t Î [0, 1],

F(tx1 + (1 − t)x2, y) ∈ tF(x1, y) + (1 − t)F(x2, y) + C.

Hence

tf (F(x1, y)) + (1 − t)f (F(x2, y)) ≤ f (F(tx1 + (1 − t)x2, y)).

It follows from (5.1) that

f (F(tx1 + (1 − t)x2, y)) ≥ −ε.

Hence

tx1 + (1 − t)x2 ∈ H(f )

and so H (f) is a convex set. Thus, it is a connected set.
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Next, we show that H is upper semicontinuous on C’. Since A is compact, we only

need to show that H is closed. Let {(fa, xa) : a Î I} ⊂ Graph (H) be a net such that (fa,

xa) ® (f, x), where fa ® f means that {fa} converges to f with respect to the strong

topology b (Y*, Y) in Y*. Since C’ is a closed set and A is a compact set, we know that

(f, x) Î C’ × A. From xa Î H (fa) = Vε- fa (A, F), we have

fα(F(xα, y)) ≥ −ε. (5:2)

For any δ >0,

U =
{
y∗ ∈ Y∗ : sup

u∈D
|y∗(u)| < δ

}

is a neighborhood of 0 with respect with to b (Y *, Y). Since fa ® f, there exists a0 Î
I such that fa - f Î U, for all a ≥ a0. It follows that

sup
u∈D

|(fα − f )(u)| < δ, whenever α ≥ α0.

Therefore, for any y Î A,

|(fα − f )(F(xα, y))| < δ, whenever α ≥ α0

and so

lim
α
(fα(F(xα, y)) − f (F(xα, y))) = 0, for all y ∈ A. (5:3)

Because x ↦ f (F (x, y)) is upper semicontinuous on A, then

lim supf (F(xα, y)) ≤ f (F(x, y)). (5:4)

From (5.2), (5.3) and (5.4), we have

−ε ≤ lim supfα(F(xα, y))

≤ lim
α
(fα(F(xα , y)) − f (F(xα, y))) + lim sup f (F(xα, y))

≤ f (F(x, y)).

Hence, x Î H (f) = Vε-f (A, F). By Theorem 3.1 in [35],
⋃

f∈C′ Vε−f (A, F) is a con-

nected set. Because F : A × A ® Y is convex-like with respect to the second variable,

we have F (x, A) + C is a convex set, by Lemma 3.1,

Vε−W(A, F) =
⋃

f∈C′ Vε−f (A, F)

is a connected set. This completes the proof.

Next, we give an example to illustrate Theorem 5.1.

Example 5.1 Let X = R, Y = R2, C = R2
+ = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}, ε = 2, e = (2, 3),

and A = [0, 2]. Let

F(x, y) = (y − x2 − 2, y − x2 − 4), ∀x, y ∈ A.

Then, F satisfies all conditions of Theorem 5.1. It is easy to see that

Vε−W(A, F) =
[
0,

√
2
]
. Clearly, Vε-W (A, F) is a nonempty connected set.

Definition 5.2. The bifunction F : A ×A ® Y is ε-C strictly monotone if, for any x, y

Î A, x ≠ y,
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F(x, y) + F(y, x) ∈ −int C − 2εe.

Theorem 5.2 Suppose that all conditions of Theorem 5.1 are satisfied and F : A × A

® Y is ε-C strictly monotone. Then, Vε-W (A, F) is a path connected set.

Proof. Define the set-valued mapping H : C’ ® 2A by

H(f ) = Vε−f (A, F), f ∈ C′.

By Theorem 4.1, we know that, for each f Î C’, Vε-f (A, F) ≠ ∅. Furthermore, because

F : A × A ® Y is ε-C strictly monotone, it is easy to see that, for each f Î C’, H (f) =

Vε-f (A, F) is a single point set. From the proof of Theorem 5.1, we know that H is

upper semicontinuous on C’ and so it is continuous on C’. Since C’ is a convex set, so

it is a path connected set. Hence,

Vε−W(A, F) = H(C′) =
⋃

f∈C′ H(f ) =
⋃

f∈C′ Vε−f (A, F)

is a path connected set. This completes the proof.

Next, we give an example to illustrate Theorem 5.2.

Example 5.2 Let X = R, Y = R2, C = R2
+ = {(x1, x2) : x1 ≥ 0, x2 ≥ 0}, ε = -1, e = (1,

2), and A = [-1, 1]. Let

F(x, y) = (x(y − x) + 1, x(y − x) + 2), ∀x, y ∈ A.

Then, F satisfies all the conditions of Theorem 5.2. It is easy to see that Vε-W (A, F) =

{0}. Clearly, Vε-W (A, F) is a nonempty path connected set.

Next, we give a lemma before we give the connectedness theorem of ε-efficient solu-

tions set.

Lemma 5.1. Suppose that all conditions of Theorem 5.2 are satisfied, then

⋃
f∈C′′ Vε−f (A, F) ⊂ Vε(A, F) ⊂ cl

(⋃
f∈C′′ Vε−f (A, F)

)
.

Proof. By Theorem 4.1, we know that, for each f Î C’, Vε-f (A, F) ≠ ∅. By definition,

we have⋃
f∈C′ Vε−f (A, F) ⊂ Vε(A, F) ⊂ Vε−W(A, F). (5:5)

From Lemma 3.1, we have

Vε−W(A, F) =
⋃

f∈C′ Vε−f (A, F). (5:6)

By (5.5) and (5.6), we have⋃
f∈C′′ Vε−f (A, F) ⊂ Vε(A, F) ⊂

⋃
f∈C′ Vε−f (A, F).

Next, we prove that

⋃
f∈C′ Vε−f (A, F) ⊂ cl

(⋃
f∈C′′ Vε−f (A, F)

)
.

Define the set-valued mapping: H : C’ ® 2A by

H(f ) = Vε−f (A, F), f ∈ C′.
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From Theorem 5.2, we know that H (f) is a single-valued mapping, and H is continu-

ous on C’.

Let x ∈ ⋃
f∈C′ Vε−f (A, F). Then, there exists f Î C’, such that

{x} = Vε−f (A, F) = H(f ).

Let g Î C“, and set

fn =
n − 1
n

f +
1
n
g = f +

1
n
(g − f ).

Then, fn Î C# and fn (e) = 1. Thus, fn Î C“.

Next, we show that {fn} converges to f with respect to the topology b (Y*, Y). For any

neighborhood of 0 with respect to b (Y*, Y), there exist bounded subsets Bi Î Y (i = 1,

2,..., m) and δ >0 such that

m⋂
i=1

{
f ∈ Y∗ : sup

y∈Bi

|f (y)| < δ

}
⊂ U.

Since Bi is bounded and g - f Î Y *, it is easy to see that |(g - f) (Bi)| is bounded for i

= 1, 2,..., m. This implies that there exists N such that

sup
y∈Bi

∣∣∣∣1n (g − f )(y)

∣∣∣∣ < δ, i = 1, 2, ...,m; n ≥ N.

Hence, 1
n(g − f ) ∈ U, that is fn - f Î U. Hence, {fn} converges to f with respect to b

(Y*, Y).

Since H is continuous on f, we have H (fn) ® H (f). Set {xn} = H (fn), then

{xn} = H(fn) = Vε−fn(A, F) ⊂
⋃

f∈C′′ Vε−f (A, F).

Because {x} = H (f), we have xn ® x. This implies that

x ∈ cl
(⋃

f∈C′′ Vε−f (A, F)
)
.

Since x ∈ ⋃
f∈C′ Vε−f (A, F) is arbitrary, we have

⋃
f∈C′ Vε−f (A, F) ⊂ cl

(⋃
f∈C′′ Vε−f (A, F)

)
.

Therefore,

⋃
f∈C′′ Vε−f (A, F) ⊂ Vε(A, F) ⊂ cl

(⋃
f∈C′′ Vε−f (A, F)

)
.

This completes the proof.

Theorem 5.3. Suppose that all the conditions of Theorem 5.2 are satisfied. Then, Vε

(A, F) is a connected set.

Proof. By Lemma 5.1, we have

⋃
f∈C′′ Vε−f (A, F) ⊂ Vε(A, F) ⊂ cl

(⋃
f∈C′′ Vε−f (A, F)

)
. (5:7)
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From Theorem 5.2, we can get⋃
f∈C′′ Vε−f (A, F)

is connected set and so (5.7) implies that Vε (A, F) is a connected set. This completes

the proof.

Remark 5.1 When ε = 0, we can get⋃
f∈C′′ Vε−f (A, F) =

⋃
f∈c �= Vε−f (A, F).

Therefore, Theorem 5.3 generalizes Theorem 2.2 in [31].

Next, we give an example to illustrate Theorem 5.3.

Example 5.3 Let X = R, Y = R, C = R+, ε = 1, e = 1, and A = [1, 2]. Let F (x, y) = x

(y - x) - 1 for all x, y Î A. Then, it is easy to check that all the conditions of Theorem

5.3 are satisfied and

Vε(A, F) = {1}.

Clearly, Vε (A, F) is a nonempty connected set.

Abbreviations
VEP: vector equilibrium problem.
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