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Abstract
This paper is concerned with the problem of passivity analysis for a class of
memristive neural networks with mixed time-varying delays and different
state-dependent memductance functions. By employing the theories of differential
inclusions and set-valued maps, delay-dependent criteria in terms of linear matrix
inequalities are obtained for the passivity of the memristive neural networks. Finally,
numerical examples are given to illustrate the feasibility of the theoretical results.
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1 Introduction
In , the memristor was predicted by Chua [] and considered to be the fourth passive
circuit element. The first practical memristor device was found by Strukov et al. [] in
. The memristor retains its most recent value when the voltage is turned off, so it
re-expresses the retained value when it is turned on the next time. That feature makes
them useful as energy-saving devices that can compete with flash memory and other static
memory devices. Some classes of memristors also have nonlinear response characteristics
which makes them doubly suitable as artificial neurons.

The electronic synapses and neurons was found that they can represent important func-
tionalities of their biological counterparts in []. Recently, the simulation of different kinds
of memristors has developed rapidly and the studies of memristive neural networks have
caused more attention [–]. In [], Wu and Zeng considered the following memristive
neurodynamic system:

ẋi(t) = –xi(t) +
n∑

j=

wij
(
xi(t)

)
fj
(
xj(t)

)
+ ui(t),

yi(t) = fi
(
xi(t)

)
, i = , , . . . , n,

(.)

where xi(t) represents the voltage of the capacitor Ci at time t. ui(t) and yi(t) denote exter-
nal input and output, respectively, fj(·) is the neuron activation function satisfying fj() = ,
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wij(xi(t)) represents memristor-based weights called memductance functions. In [], the
class of memristive neural networks was formulated and investigated with two different
types of memductance functions. The passivity criteria in terms of linear matrix inequal-
ities were proposed. Meanwhile, some stability criteria were obtained for the memristive
neural networks based on the derived criteria.

In many biological and artificial neural networks, as we know, time delays must be taken
into consideration because of the inherent communication time of neurons and the finite
speed of information processing. As correctly pointed out in [–], time delays may
change the dynamic characters of neural networks and cause some dramatic phenom-
ena such as oscillations, divergences, and so on. Consequently, it is value to consider the
problems of passivity analysis for neural networks with time delay and these problems
have become topics of both theoretical and practical importance. By using different ap-
proaches, many significant results have been reported such as the global robust passivity
analysis in [] and the passivity analysis in [–]. In order to investigate the influence
of time delay upon the dynamics of the memristive neural networks, Wu and Zeng []
considered the following system:

ẋi(t) = –xi(t) +
n∑

j=

aij
(
xi(t)

)
fj
(
xj(t)

)
+

n∑

j=

bij
(
xi(t)

)
fj
(
xj(t – τj)

)
+ ui(t),

zi(t) = fi
(
xi(t)

)
+ fi

(
xi(t – τi)

)
+ ui(t), t ≥ , i = , , . . . , n,

(.)

where τj is the time delay that satisfies  ≤ τj ≤ τ (τ ≥  is a constant). ui(t) and zi(t)
denote external input and output, respectively, fj(·) is the neuron activation function sat-
isfying fj() = , aij(xi(t)) and bij(xi(t)) represent memristor-based weights. Based on the
theories of nonsmooth analysis and linear matrix inequalities, by using suitable Lyapunov
functional, the exponential passivity was studied for the memristive neural networks with
time delays.

We note that the time delay τj was assumed constant in (.). In fact, the finite speed
of information processing and the inherent communication time of neurons are related to
the time t in many biological and artificial neural networks. So, using time-varying delay is
more reasonable to describe the information processing or inherent communication time.
Meanwhile, there may exist a spatial extent in neural networks as the presence of parallel
pathways of different axonal sizes and lengths, i.e., a distribution of conduction velocities
along these pathways or distribution of propagation delays over a period of time. Accord-
ingly, this causes another kind of time delays considered in this paper, namely, distributed
time delays. Recently, both discrete and distributed delays have been taken into account
for realistic neural networks [], and great attention has been paid to the problem of sta-
bility analysis for neural networks with both discrete and distributed time-varying delays
[, ].

The passivity theory, originating from circuit theory, is the most important issue in the
analysis and design of switched systems. In the passivity theory, the passivity means that
the systems can keep internally stable. Therefore, the passivity theory provides a tool to
analysis the stability of control systems and has been applied in many areas. Based on the
passivity theory, the authors in [] dealt with the problems of sliding mode control for un-
certain singular time-delay systems. In [], the authors designed a mode-dependent state
feedback controller by applying the passivity theory. The design of passive controller based
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on the passivity analysis of nonlinear systems has become an effective way to solve prac-
tical engineering problems, for example, passivity-based control of three-phase AC/DC
voltage-source converters. For details, the reader is referred to [, ] and the refer-
ences therein. As state-dependent switched nonlinear systems, memristive neural net-
works conclude too many subsystems. While the product of input and output is utilized
as the energy provision of the passive systems, which embodies the energy attenuation
character. Passivity analysis of memristive neural networks provides a way to understand
the complex brain functionalities with the adoption of memristor-MOS technology de-
signs [].

Motivated by the works in [, , ] and the circuit design in [–], the main pur-
pose of this paper is to establish the passivity criteria for the given memristive neural
networks with mixed time-varying delays and different state-dependent memductance
functions. By combining differential inclusions with set-valued maps and constructing a
proper Lyapunov-Krasovskii functional, new passivity criteria are derived in terms of lin-
ear matrix inequalities, which can be efficiently solved by Matlab toolbox.

The rest of this paper is organized as follows. In Section , the corresponding delayed
neurodynamic equation for the presented memristive circuit is established and prelimi-
naries were given. The theoretic results are derived in Section . In Section , the validity
of the theoretical analysis is discussed through two numerical examples.

2 Model description and preliminaries
In this paper, we consider the following delayed memristor-based neural networks:

ẋi(t) = –xi(t) +
n∑

j=

w
ij
(
xi(t)

)
fj
(
xj(t)

)
+

n∑

j=

w
ij
(
xi(t)

)
fj
(
xj

(
t – hj(t)

))

+
n∑

j=

w
ij
(
xi(t)

)∫ t

t–rj(t)
fj
(
xj(s)

)
ds + ui(t),

yi(t) = fi
(
xi(t)

)
, i = , , . . . , n.

(.)

System (.) can be implemented by the large-scale integration circuits as shown in Fig-
ure . From Figure , system (.) can be obtained using Kirchhoff’s current law. In (.),
xi(t) is the voltage of the capacitor Ci at time t, ui(t), and yi(t) denote external input and
output, respectively. hj(t) and rj(t) represent time-varying delays, fj(·) is the neuron acti-
vation function. wm

ij (xi(t)) (m = , , ) represent memristor-based weights, and

wm
ij
(
xi(t)

)
=

Wm
ij

Ci
× sginij, sginij =

{
, i �= j,
–, i = j,

(.)

in which Wm
ij denotes the memductances of the memristors Rm

ij , here Rm
ij represents the

memristor between xi(t) and the feedback functions fj(xj(t)) or fj(xj(t – h(t))).
Combining with the physical structure of a memristor device, we see that

Wm
ij =

dqm
ij

dσ m
ij

, m = , , , (.)
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Figure 1 The circuit of memristive neural networks (2.1). xi(t) is the state of the ith subsystem, Rm
ij

represents the memristor, fj is the amplifier, Ri and Ci are the resistor and capacitor, ui is the external input,
andm = 1, 2, 3, i, j = 0, 1, . . . ,n.

where qm
ij and σ m

ij denote charge and magnetic flux corresponding to memristor Rm
ij , re-

spectively.
As two typical memductance functions pointed in [], we discuss the following two

cases in this paper.
Case : The state-dependent switched memductance functions Wm

ij are given by

Wm
ij =

{
am

ij , |σ m
ij | > �m

ij ,
bm

ij , |σ m
ij | < �m

ij ,
(.)

where am
ij , bm

ij and �m
ij >  are constants, i, j = , , . . . , n.

Case : The state-dependent continuous memductance functions Wm
ij is given by

Wm
ij = cm

ij + dm
ij
(
σ m

ij
), (.)

where cm
ij and dm

ij >  are constants, i, j = , , . . . , n.
According to the feature of the memristor and the current voltage characteristic [],

the following two cases occur.
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Case ′: in the case , then

wm
ij
(
xi(t)

)
=

{
ŵm

ij , sgin
dfj(xj(t))

dt – dxi(t)
dt ≤ ,

w̌m
ij , sgin

dfj(xj(t))
dt – dxi(t)

dt > ,
(.)

where m =  or , and

w
ij
(
xi(t)

)
=

{
ŵ

ij, sgin
dfj(xj(t–hj(t)))

dt – dxi(t)
dt ≤ ,

w̌
ij, sgin

dfj(xj(t–hj(t)))
dt – dxi(t)

dt > ,
(.)

for i, j = , , . . . , n, where ŵm
ij and w̌m

ij are constants.
Case ′: in the case , then

wm
ij
(
xi(t)

)
is a continuous function, and �m

ij ≤ wm
ij
(
xi(t)

) ≤ �
m
ij (.)

for i, j = , , . . . , n, where �m
ij and �

m
ij are constants.

Obviously, the memristor-based neural network (.) with different memductance func-
tions is a state-dependent switched system or a state-dependent continuous system under
these two cases. System (.) is established based on the following assumptions:

(A) fi(·) is a monotonically increasing function with saturation, it satisfies

 ≤ fi(x̂) – fi(x̌)
x̂ – x̌

≤ ki, fi() = , i = , , . . . , n,

and

fi(x̂) · (fi(x̂) – kix̂
) ≤ , fi() = , i = , , . . . , n,

for ∀x̂, x̌ ∈R and x̂ �= x̌, where ki (i = , , . . . , n) are positive constants.
(A) hj(t) and rj(t) are bounded functions satisfying

 < hj(t) ≤ h, ḣj(t) ≤ μ and  < rj(t) ≤ r.

The solutions of the networks discussed in the following are intended in the Filip-
pov sense throughout this paper. Rn is n-dimensional Euclidean space. C([–τ , ],Rn) is
Banach space of all continuous functions. ‖ · ‖ denotes the Euclidean norm of a vec-
tor and its induced norm of a matrix. co{�̃, �̂} denotes closure of the convex hull gen-
erated by real numbers �̃ and �̂ or real matrices �̃ and �̂. Let wm

ij = max{ŵm
ij , w̌m

ij },
wm

ij = min{ŵm
ij , w̌m

ij }, w̃m
ij = max{|ŵm

ij |, |w̌m
ij |}, �̃m

ij = max{|�m
ij |, |�m

ij |} for i, j = , , . . . , n. De-
note K = diag(k, k, . . . , kn), W̃ m = (w̃m

ij )n×n, �̃m = (�̃m
ij )n×n. In is an n × n identity matrix.

For symmetric matrix T, T >  (T < ) means that T is a positive definite (negative definite)
matrix. For matrices Q = (qij)n×n and H = (hij)n×n, Q 	 H (Q 
 H) means that qij ≥ hij

(qij ≤ hij), for i, j = , , . . . , n. And by the interval matrix [Q, H], it follows that Q 
 H. For
any matrix L = (lij)n×n ∈ [Q, H], it means Q 
 L 
 H, i.e., qij ≤ lij ≤ hij for i, j = , , . . . , n.
The symmetric terms in a symmetric matrix are denoted by ‘∗’.
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In addition, the initial conditions of system (.) are assumed to be

xi(t) = φi(t), t ∈ [–τ , ], τ = max[h, r], i = , , . . . , n,

where φi(t) = (φ(t),φ(t), . . . ,φn(t)) ∈ C([–τ , ],Rn).
The following definitions are essential for the proof in the sequel.

Definition  [] Let G ⊆ R
n, x → H(x) is called a set-valued map from G ↪→ R

n, if for
each point x of a set G ⊆R

n, there corresponds a nonempty set H(x) ⊆R
n.

Definition  [] A set-valued map H with nonempty values is said to be upper semi-
continuous at x ∈ G ⊆ R

n, if for any open set M containing H(x), there exists a neigh-
borhood N of x such that H(N) ⊆ M. H(x) is said to have a closed (convex, compact)
image if, for each x ∈ G, H(x) is closed (convex, compact).

Definition  [] For differential system ẋ = h(t, x), where h(t, x) is discontinuous in x.
The set-valued map of h(t, x) is defined as

H(t, x) =
⋂

ε>

⋂

μ(M)=

co
[
h
(
B(x, ε) \ M

)]
,

where B(x, ε) = {y : ‖y – x‖ ≤ ε} is the ball of center x and radius ε; intersection is taken
over all sets M of measure zero and over all ε > ; and μ(M) is the Lebesgue measure of
the set M.

A Filippov solution of system ẋ = h(t, x), with initial condition x() = x is absolutely con-
tinuous on any subinterval t ∈ [t, t] of [, T], which satisfies x() = x, and the differential
inclusion:

ẋ ∈ H(t, x) for a.a. t ∈ [, T].

Definition  [] The system (.) is said to be passive if there exists a scalar γ ≥  such
that for all tp ≥  and all solutions of system (.) with x() = , the formula


∫ tp


yT (s)u(s) ds ≥ –γ

∫ tp


uT (s)u(s) ds

holds, where y(t) = (y(t), y(t), . . . , yn(t))T , u(t) = (u(t), u(t), . . . , un(t))T .

The product of input and output is regarded as the energy provision for the passivity of
the systems in Definition , which embodies the energy attenuation character of system. By
the control theories, we know that the passive properties of systems can keep the systems
internally stable. Passive systems only burn energy while there is no energy production.
Accordingly, by nature, passivity embodies a characteristic of the energy consumption of
system. We know that the power flow is usually made to meet the energy conservation
and the passive systems do not produce energy [], i.e.,

Einput + Einitial = Eresidual + Edissipated.
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Lemma  [, ] Let M be a constant matrix. For scalars a, b and a vector function x(t) :
[a, b] →R

n, the following inequality holds:

[∫ b

a
x(s) ds

]T

M
[∫ b

a
x(s) ds

]
≤ (b – a)

∫ b

a
xT (s)Mx(s) ds,

where a < b and M > .

3 Main results
In this section, we present our passivity criteria for system (.).

Theorem . Given scalars μ, h̄ >  and r̄ > , system (.) is passive in the sense of Defini-
tion  under the case ′ if there exist matrices J, J, J, M > , M > , M > , N > ,
N > , N > , and positive diagonal matrices D = diag{d, . . . , dn},ϒ = {ε, . . . , εn}, L =
{ι, . . . , ιn}, and appropriately dimensioned matrices Rζ > , Pζ , Qζ (ζ = , , . . . , ) satisfying
the following LMIs:

[
J J

∗ J

]
> , (.)

⎡

⎢⎣
� + �̃ + �̃T

√
h̄P

√
h̄Q

∗ –N 
∗ ∗ –N

⎤

⎥⎦ < , (.)

where

� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�  –J J J Kϒ   
∗ �     KL  
∗ ∗ –M  –J    
∗ ∗ ∗ h̄N J D   
∗ ∗ ∗ ∗ –N    
∗ ∗ ∗ ∗ ∗ �   –I
∗ ∗ ∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ ∗ ∗ –N 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –γ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which

� = M + M + J + JT
 + h̄N, � = –( – μ)M, � = M + r̄N – ϒ ,

� = –( – μ)M – L,

�̃ = [P, Q, –P, –Q, , , , , , ] + R
[
–I, , , –I, , W̃ , W̃ , W̃ , I

]
,

P =
[
PT

 , PT
 , PT

 , PT
 , PT

 , PT
 , PT

 , PT
 , PT


]T ,

Q =
[
QT

 , QT
 , QT

 , QT
 , QT

 , QT
 , QT

 , QT
 , QT


]T ,

R =
[
RT

 , RT
 , RT

 , RT
 , RT

 , RT
 , RT

 , RT
 , RT


]T > .
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Proof First of all, by utilizing the theories of differential inclusions and set-valued maps,
it follows from (.) that

ẋi(t) ∈ –xi(t) +
n∑

j=

co
{

ŵ
ij, w̌

ij
}

fj
(
xj(t)

)
+

n∑

j=

co
{

ŵ
ij, w̌

ij
}

fj
(
xj

(
t – hj(t)

))

+
n∑

j=

co
{

ŵ
ij, w̌

ij
}∫ t

t–rj(t)
fj
(
xj(s)

)
ds + ui(t),

yi(t) = fi
(
xi(t)

)
, i = , , . . . , n,

(.)

or, equivalently, there exists em
ij ∈ co{ŵm

ij , w̌m
ij } such that

ẋi(t) = –xi(t) +
n∑

j=

e
ijfj

(
xj(t)

)
+

n∑

j=

e
ijfj

(
xj

(
t – hj(t)

))

+
n∑

j=

e
ij

∫ t

t–rj(t)
fj
(
xj(s)

)
ds + ui(t),

yi(t) = fi
(
xi(t)

)
, i = , , . . . , n.

(.)

Clearly, for i, j = , , . . . , n,

co
{

ŵm
ij , w̌m

ij
}

=
[
wm

ij , wm
ij
]
.

Of course, the above parameters em
ij (i, j = , , . . . , n) in (.) depend upon the initial con-

dition of system (.) and time t. The compact form of system (.) or (.) is as follows:

ẋ(t) ∈ –x(t) + co
{

Ŵ , W̌ }f
(
x(t)

)
+ co

{
Ŵ , W̌ }f

(
x
(
t – h(t)

))

+ co
{

Ŵ , W̌ }
∫ t

t–r(t)
f
(
x(s)

)
ds + u(t),

y(t) = f
(
x(t)

)
,

(.)

or equivalently, there exists W m ∈ co{Ŵ m
ij , W̌ m

ij } such that

ẋ(t) = –x(t) + W f
(
x(t)

)
+ W f

(
x
(
t – h(t)

))
+ W 

∫ t

t–r(t)
f
(
x(s)

)
ds + u(t),

y(t) = f
(
x(t)

)
,

(.)

where

x(t) =
(
x(t), x(t), . . . , xn(t)

)T ,

u(t) =
(
u(t), u(t), . . . , un(t)

)T ,

y(t) =
(
y(t), y(t), . . . , yn(t)

)T ,

f
(
x(t)

)
=

(
f
(
x(t)

)
, f

(
x(t)

)
, . . . , fn

(
xn(t)

))T ,

Ŵ m =
(
ŵm

ij
)

n×n, W̌ m =
(
w̌m

ij
)

n×n.
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Clearly,

co
{

Ŵ m, W̌ m}
=

[
W m, W m]

,

where

W m =
(
wm

ij
)

n×n, W m =
(
wm

ij
)

n×n.

Second, according to (A), the inequalities

–
n∑

i=

εifi
(
xi(t)

)(
fi(t) – kixi(t)

) ≥ ,

–
n∑

i=

ιifi
(
xi

(
t – h(t)

))(
fi
(
t – h(t)

)
– kixi

(
t – h(t)

)) ≥ ,

(.)

hold, that is,

ϕ(t) = –f T(
x(t)

)
ϒ f

(
x(t)

)
+ f T(

x(t)
)
ϒKx(t) ≥ ,

ϕ(t) = –f T(
x
(
t – h(t)

))
Lf

(
x
(
t – h(t)

))
+ f T(

x
(
t – h(t)

))
LKx

(
t – h(t)

) ≥ .
(.)

Third, by using the Leibniz-Newton formula and recalling (.), we have

ϕ(t) = ηT (t)P
[

x(t) – x
(
t – h(t)

)
–

∫ t

t–h(t)
ẋ(s) ds

]
= ,

ϕ(t) = ηT (t)Q
[

x
(
t – h(t)

)
– x(t – h̄) –

∫ t–h(t)

t–h̄
ẋ(s) ds

]
= ,

ϕ(t) = ηT (t)R
[

–ẋ(t) – x(t) + W f
(
x(t)

)
+ W f

(
x
(
t – h(t)

))

+ W 
∫ t

t–r(t)
f
(
x(s)

)
ds + u(t)

]
= ,

(.)

where

ηT (t) =
[

xT (t), xT(
t – h(t)

)
, xT (t – h̄), ẋT (t),

(∫ t

t–h̄
x(s) ds

)T

, f T(
x(t)

)
,

f T(
x
(
t – h(t)

))
,
(∫ t

t–r(t)
f
(
x(s)

)
ds

)T

, uT (t)
]

.

Define a Lyapunov-Krasovskii functional V (x(t)):

V
(
x(t)

)
= V

(
x(t)

)
+ V

(
x(t)

)
+ V

(
x(t)

)
+ V

(
x(t)

)
+ V

(
x(t)

)
, (.)

where

V
(
x(t)

)
= 

n∑

i=

di

∫ xi(t)


fi(s) ds + xT (t)Jx(t) + xT (t)J

(∫ t

t–h̄
x(s) ds

)

+
(∫ t

t–h̄
x(s) ds

)T

J

(∫ t

t–h̄
x(s) ds

)
,
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V
(
x(t)

)
=

∫ t

t–h̄
xT (s)Mx(s) ds +

∫ t

t–h(t)
xT (s)Mx(s) ds

+
∫ t

t–h(t)
f T(

x(s)
)
Mf

(
x(s)

)
ds,

V
(
x(t)

)
= h̄

∫ 

–h̄

∫ t

t+θ

xT (s)Nx(s) ds dθ ,

V
(
x(t)

)
=

∫ 

–h̄

∫ t

t+θ

ẋT (s)Nẋ(s) ds dθ ,

V
(
x(t)

)
= r̄

∫ 

–r̄

∫ t

t+θ

f T(
x(s)

)
Nf

(
x(s)

)
ds dθ .

From system (.), we obtain

xT (t)Jx(t) + xT (t)J

(∫ t

t–h̄
x(s) ds

)
+

(∫ t

t–h̄
x(s) ds

)T

J

(∫ t

t–h̄
x(s) ds

)

=
[

xT (t),
(∫ t

t–h̄
x(s) ds

)T][
J J

∗ J

][
xT (t)

(
∫ t

t–h̄ x(s) ds)T

]

> .

Calculating the derivative of Vi(x(t)) (i = , , . . . , ) along the trajectory of (.), from
Lemma  and (A), we obtain

V̇
(
x(t)

)
= f T(

x(t)
)
Dẋ(t) + xT (t)Jẋ(t) + xT (t)

(
J + JT


)
x(t)

– xT (t)Jx(t – h̄) + ẋT (t)J

(∫ t

t–h̄
x(s) ds

)

+ xT (t)J

(∫ t

t–h̄
x(s) ds

)
– xT (t – h̄)J

(∫ t

t–h̄
x(s) ds

)
,

V̇
(
x(t)

)
= xT (t)Mx(t) – xT (t – h̄)Mx(t – h̄)

+ xT (t)Mx(t) –
(
 – ḣ(t)

)
xT(

t – h(t)
)
Mx

(
t – h(t)

)

+ f T(
x(t)

)
Mf

(
x(t)

)
–

(
 – ḣ(t)

)
f T(

x
(
t – h(t)

))
Mf

(
x
(
t – h(t)

))

≤ xT (t)Mx(t) – xT (t – h̄)Mx(t – h̄)

+ xT (t)Mx(t) – ( – μ)xT(
t – h(t)

)
Mx

(
t – h(t)

)
(.)

+ f T(
x(t)

)
Mf

(
x(t)

)
– ( – μ)f T(

x
(
t – h(t)

))
Mf

(
x
(
t – h(t)

))
,

V̇
(
x(t)

)
= xT (t)

(
h̄N

)
x(t) – h̄

∫ t

t–h̄
xT (s)Nx(s) ds

≤ xT (t)
(
h̄N

)
x(t) –

(∫ t

t–h̄
x(s) ds

)T

N

(∫ t

t–h̄
x(s) ds

)
,

V̇
(
x(t)

)
= ẋT (t)(h̄N)ẋ(t) –

∫ t

t–h̄
ẋT (s)Nẋ(s) ds,

V̇
(
x(t)

)
= f T(

x(t)
)(

r̄N
)
f
(
x(t)

)
– r̄

∫ t

t–r̄
f T(

x(s)
)
Nf

(
x(s)

)
ds
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≤ f T(
x(t)

)(
r̄N

)
f
(
x(t)

)
– r(t)

∫ t

t–r(t)
f T(

x(s)
)
Nf

(
x(s)

)
ds

≤ f T(
x(t)

)(
r̄N

)
f
(
x(t)

)
–

(∫ t

t–r(t)
f
(
x(s)

)
ds

)T

N

(∫ t

t–r(t)
f
(
x(s)

)
ds

)
.

From (.), we obtain

V̇
(
x(t)

)
– yT (t)u(t) – γ uT (t)u(t)

≤
∑

i=

ϕi(t) + ẋT (t)(h̄N)ẋ(t) + f T(
x(t)

)
Dẋ(t) + xT (t)Jẋ(t)

+ xT (t)
(
J + JT

 + M + M + h̄N
)
x(t) + f T(

x(t)
)(

M + r̄N
)
f
(
x(t)

)

+ ẋT (t)J

(∫ t

t–h̄
x(s) ds

)
+ xT (t)J

(∫ t

t–h̄
x(s) ds

)

– f T(
x(t)

)
u(t) – γ uT (t)u(t) – xT (t)Jx(t – h̄) – xT (t – h̄)Mx(t – h̄)

– xT (t – h̄)J

(∫ t

t–h̄
x(s) ds

)
–

(∫ t

t–h̄
x(s) ds

)T

N

(∫ t

t–h̄
x(s) ds

)

– ( – μ)xT(
t – h(t)

)
Mx

(
t – h(t)

)
– ( – μ)f T(

x
(
t – h(t)

))
Mf

(
x
(
t – h(t)

))

–
∫ t

t–h(t)
ẋT (s)Nẋ(s) ds –

∫ t–h(t)

t–h̄
ẋT (s)Nẋ(s) ds

–
(∫ t

t–r(t)
f
(
x(s)

)
ds

)T

N

(∫ t

t–r(t)
f
(
x(s)

)
ds

)

≤ ηT (t)
(
� + � + �T + h̄PN–

 PT + h̄QN–
 QT)

η(t)

–
∫ t

t–h(t)

(
PTη(t) + Nẋ(s)

)T N–


(
PTη(t) + Nẋ(s)

)T ds

–
∫ t–h(t)

t–h̄

(
QTη(t) + Nẋ(s)

)T N–


(
QTη(t) + Nẋ(s)

)T ds,

where

� = [P, Q, –P, –Q, , , , , , ] + R
[
–I, , , –I, , W , W , W , I

]
.

Noting that R > , w̃m
ij = max{|ŵm

ij |, |w̌m
ij |}, W̃ m = (w̃m

ij )n×n and W m ∈ co{Ŵ m
ij , W̌ m

ij }, we have
� 
 �̃. Hence, we obtain

V̇
(
x(t)

)
– yT (t)u(t) – γ uT (t)u(t)

≤ ηT (t)
(
� + �̃ + �̃T + h̄PN–

 PT + h̄QN–
 QT)

η(t)

–
∫ t

t–h(t)

(
PTη(t) + Nẋ(s)

)T N–


(
PTη(t) + Nẋ(s)

)T ds

–
∫ t–h(t)

t–h̄

(
QTη(t) + Nẋ(s)

)T N–


(
QTη(t) + Nẋ(s)

)T ds. (.)
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By applying the Schur complement to (.), from (.), we get

V̇
(
x(t)

)
– yT (t)u(t) – γ uT (t)u(t) ≤ . (.)

Integrating (.) with respect to t over the time period from  to tp, we have


∫ tp


yT (s)u(s) ds ≥ V

(
tp, x(tp)

)
– V

(
, x()

)
– γ

∫ tp


uT (t)u(t) ds

for x() = . Since V (, x()) =  and V (tp, x(tp)) ≥ , we get


∫ tp


yT (s)u(s) ds ≥ –γ

∫ tp


uT (t)u(t) ds.

Therefore, the memristive neural networks (.) is passive in the sense of Definition .
This completes the proof. �

Theorem . Given scalars μ, h̄ >  and r̄ > , system (.) is passive in the sense of Def-
inition  under the case ′ if there exist matrices J, J, J, M > , M > , M > , N > ,
N > , N > , and positive diagonal matrices D = diag{d, . . . , dn},ϒ = {ε, . . . , εn}, L =
{ι, . . . , ιn}, and appropriately dimensioned matrices Rζ > , Pζ , Qζ (ζ = , , . . . , ) satisfying
the following LMIs:

[
J J

∗ J

]
> , (.)

⎡

⎢⎣
� + � + �T

√
h̄P

√
h̄Q

∗ –N 
∗ ∗ –N

⎤

⎥⎦ < , (.)

where

� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�  –J J J Kϒ   
∗ �     KL  
∗ ∗ –M  –J    
∗ ∗ ∗ h̄N J D   
∗ ∗ ∗ ∗ –N    
∗ ∗ ∗ ∗ ∗ �   –I
∗ ∗ ∗ ∗ ∗ ∗ �  
∗ ∗ ∗ ∗ ∗ ∗ ∗ –N 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –γ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which

P =
[
PT

 , PT
 , PT

 , PT
 , PT

 , PT
 , PT

 , PT
 , PT


]T ,

Q =
[
QT

 , QT
 , QT

 , QT
 , QT

 , QT
 , QT

 , QT
 , QT


]T ,

R =
[
RT

 , RT
 , RT

 , RT
 , RT

 , RT
 , RT

 , RT
 , RT


]T > ,
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� = [P, Q, –P, –Q, , , , , , ] + R
[
–I, , , –I, , �̃, �̃, �̃, I

]
,

� = M + M + J + JT
 + h̄N, � = –( – μ)M, � = M + r̄N – ϒ ,

� = –( – μ)M – L.

Proof It follows from (.) that there exists �m ∈ [�m
ij ,�m

ij ] such that

ẋ(t) = –x(t) + �f
(
x(t)

)
+ �f

(
x
(
t – h(t)

))
+ �

∫ t

t–r(t)
f
(
x(s)

)
ds + u(t),

y(t) = f
(
x(t)

)
.

(.)

By recalling (.), we obtain

ηT (t)R
[

–ẋ(t) – x(t) + �f
(
x(t)

)
+ �f

(
x
(
t – h(t)

))

+ �
∫ t

t–r(t)
f
(
x(s)

)
ds + u(t)

]
= . (.)

Consequently, we have

ϕ(t) = ηT (t)R
[

–ẋ(t) – x(t) + �̃f
(
x(t)

)
+ �̃f

(
x
(
t – h(t)

))

+ �̃
∫ t

t–r(t)
f
(
x(s)

)
ds + u(t)

]
≥ . (.)

Then we can complete the proof by following a similar line to the proof of Theo-
rem .. �

Remark  In Theorems . and ., Lyapunov stability theory is applied to an analysis
of the passivity of network (.). Actually, in the process of proofs, we can find passivity
is a higher abstraction level of stability. For the passivity system (.), the corresponding
Lyapunov function (.) can be regarded as the storage function.

Remark  In the proof of Theorem ., in order to obtain (.) and turn to a study of the
passivity of system (.), we assume Rζ >  (ζ = , . . . , ), i.e., Rζ (ζ = , . . . , ) is a positive
definite matrix.

Remark  Theorems . and . can directly derive the stability conditions in term of
linear matrix inequalities for system (.) if the input u(t) = (u(t), u(t), . . . , un(t))T =
(, , . . . , )T .

Proof When u(t) = (u(t), u(t), . . . , un(t))T = (, , . . . , )T , by using standard arguments as
Theorem ., we can get the following equation from (.):

V̇
(
x(t)

) ≤ ηT (t)
(
� + �̃ + �̃T + h̄PN–

 PT + h̄QN–
 QT)

η(t) < . (.)
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A consequence of equation (.) is that

V
(
x(t)

)
–

∫ t

t

ηT (s)
(
� + �̃ + �̃T + h̄PN–

 PT + h̄QN–
 QT)

η(s) ds

≤ V
(
x(t)

)
< ∞. (.)

By using Barbalat’s lemma [], we obtain

x(t) →  as t → ∞,

and this completes the proof of the global attractivity of the origin of system (.). Thus,
system (.) is stable if the input u(t) = (u(t), u(t), . . . , un(t))T = (, , . . . , )T . �

4 Illustrative examples
In this section, we give two examples to illustrate the feasibility of the theoretical results
in Section .

Example . Consider a two-dimensional memristive neural network model,

ẋ(t) = –x(t) + w

(
x(t)

)
f
(
x(t)

)
+ w


(
x(t)

)
f

(
x(t)

)

+ w

(
x(t)

)
f
(
x(t – .)

)
+ w


(
x(t)

)
f

(
x(t – .)

)

+ w

(
x(t)

)∫ t

t–.
f
(
x(s)

)
ds + w


(
x(t)

)∫ t

t–.
f

(
x(s)

)
ds + u(t),

ẋ(t) = –x(t) + w


(
x(t)

)
f
(
x(t)

)
+ w


(
x(t)

)
f

(
x(t)

)

+ w


(
x(t)

)
f
(
x(t – )

)
+ w


(
x(t)

)
f

(
x(t – )

)

+ w


(
x(t)

)∫ t

t–.
f
(
x(s)

)
ds + w


(
x(t)

)∫ t

t–.
f

(
x(s)

)
ds + u(t),

y(t) = f
(
x(t)

)
,

y(t) = f
(
x(t)

)
,

(.)

for t ≥ , where f (ρ) = f(ρ) = f(ρ) = tanh(ρ),ρ ∈R and

w

(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
., df(x(t))

dt – dx(t)
dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,

w

(
x(t)

)
=

{
–., – df(x(t–.))

dt – dx(t)
dt ≤ ,

–., – df(x(t–.))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
., df(x(t–.))

dt – dx(t)
dt ≤ ,

., df(x(t–.))
dt – dx(t)

dt > ,

w

(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > ,
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w


(
x(t)

)
=

{
., df(x(t))

dt – dx(t)
dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
., df(x(t))

dt – dx(t)
dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
., df(x(t–))

dt – dx(t)
dt ≤ ,

., df(x(t–))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
–., – df(x(t–))

dt – dx(t)
dt ≤ ,

–., – df(x(t–))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
., df(x(t))

dt – dx(t)
dt ≤ ,

., df(x(t))
dt – dx(t)

dt > ,

w


(
x(t)

)
=

{
–., – df(x(t))

dt – dx(t)
dt ≤ ,

–., – df(x(t))
dt – dx(t)

dt > .

In system (.), μ = , h̄ = , r̄ = .,

W̃  =

[
. .
. .

]
, W̃  =

[
. .
. .

]
, W̃  =

[
. .
. .

]
.

Solving the linear matrix inequalities in (.) and (.) by the Matlab Tool Box, we obtain
an optimal feasible solution:

J =

[
. –.
–. .

]
, J =

[
–. –.
–. –.

]
,

J =

[
. .
. .

]
, M =

[
. –.
–. .

]
,

M =

[
. –.
–. .

]
, M =

[
. –.

–. .

]
,

N =

[
. –.
–. .

]
, N =

[
. .
. .

]
,

N =

[
. .
. .

]
, P =

[
–. .
. –.

]
,

P =

[
. –.

–. .

]
, P =

[
. –.

–. .

]
,

P =

[
–. –.
–. –.

]
, P =

[
–. –.
–. –.

]
,

P =

[
–. –.
–. –.

]
, P =

[
. .
. .

]
,
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Figure 2 The state curves of system (4.1) with input u(t) = (2 + sin(t), 2 – sin(t))T .

P =

[
. –.

–. .

]
, P =

[
–. –.
–. –.

]
,

Q =

[
. .
. .

]
, Q =

[
–. .
. –.

]
,

Q =

[
–. .
. –.

]
, Q =

[
. .
. .

]
,

Q =

[
–. .
. –.

]
, Q =

[
. .
. –.

]
,

Q =

[
–. –.
–. –.

]
, Q =

[
–. .
. –.

]
,

Q =

[
. .
. .

]
, R =

[
. –.
–. .

]
,

R =

[
. –.

–. .

]
, R =

[
. –.
–. .

]
,

R =

[
. –.
–. .

]
, R =

[
. –.

–. .

]
,

R =

[
. –.
–. .

]
, R =

[
. .
. .

]
,
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Figure 3 The state curves of system (4.1) with input u(t) = (0, 0)T .

R =

[
. –.

–. .

]
, R =

[
. –.
–. .

]
,

D = diag{., .}, ϒ = diag{., .},
L = diag{., .}, K = diag{., .} and γ = ..

By applying Theorem ., the passivity can be achieved.
Figures  and  show the state curves of system (.) with input u(t) = ( + sin(t),  –

sin(t))T and u(t) = (, )T , respectively. System (.) is a state-dependent switched system.
From Figure , we see system (.) can keep internally stable with input u(t) = (+sin(t), –
sin(t))T . The product of input and output can be regarded as the energy provision for the
system’s passivity, which can embody energy attenuation character of system (.). That
is to say, the passive system (.) will not produce energy. From Figure , we see system
(.) is stable with input u(t) = (, )T . By contrast, we can say that passivity is at a higher
abstraction level of stability.

Example . Consider a two-dimensional memristive neural network model

ẋ(t) = –x(t) + w

(
x(t)

)
f
(
x(t)

)
+ w


(
x(t)

)
f

(
x(t)

)

+ w

(
x(t)

)
f
(
x(t – .)

)
+ w


(
x(t)

)
f

(
x(t – .)

)

+ w

(
x(t)

)∫ t

t–.
f
(
x(s)

)
ds + w


(
x(t)

)∫ t

t–.
f

(
x(s)

)
ds + u(t), (.)
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ẋ(t) = –x(t) + w


(
x(t)

)
f
(
x(t)

)
+ w


(
x(t)

)
f

(
x(t)

)

+ w


(
x(t)

)
f
(
x(t – )

)
+ w


(
x(t)

)
f

(
x(t – )

)

+ w


(
x(t)

)∫ t

t–.
f
(
x(s)

)
ds + w


(
x(t)

)∫ t

t–.
f

(
x(s)

)
ds + u(t),

y(t) = f
(
x(t)

)
,

y(t) = f
(
x(t)

)
,

for t ≥ , where f (ρ) = f(ρ) = f(ρ) = tanh(ρ),ρ ∈R and

w

(
x(t)

)
= . sin

(
x(t)

)
, w


(
x(t)

)
= . sin

(
x(t)

)
,

w

(
x(t)

)
= . sin

(
x(t)

)
, w


(
x(t)

)
= . sin

(
x(t)

)
,

w

(
x(t)

)
= . sin

(
x(t)

)
, w


(
x(t)

)
= . sin

(
x(t)

)
,

w


(
x(t)

)
= . cos

(
x(t)

)
, w


(
x(t)

)
= . cos

(
x(t)

)
,

w


(
x(t)

)
= . cos

(
x(t)

)
, w


(
x(t)

)
= . cos

(
x(t)

)
,

w


(
x(t)

)
= . cos

(
x(t)

)
, w


(
x(t)

)
= . cos

(
x(t)

)
.

In system (.), μ = , h̄ = , r̄ = .,

�̃ =

[
. .
. .

]
, �̃ =

[
. .
. .

]
, �̃ =

[
. .
. .

]
.

Solving the linear matrix inequalities in (.) and (.) by Matlab Tool Box, we obtain
an optimal feasible solution:

J =

[
. –.
–. .

]
, J =

[
–. –.
–. –.

]
,

J =

[
. –.
–. .

]
, M =

[
. –.
–. .

]
,

M =

[
. –.
–. .

]
, M =

[
. –.

–. .

]
,

N =

[
. –.
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Figure 4 The state curves of system (4.2) with input u(t) = (1 + sin(t), 1 – sin(t))T .
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Figure 5 The state curves of system (4.2) with input u(t) = (0, 0)T .

R =

[
–. .
. .

]
, R =

[
. –.
–. .

]
,

D = diag{., .}, ϒ = diag{., .},
L = diag{., .}, K = diag{., .} and γ = ..

By applying Theorem ., the passivity can be achieved.
Figures  and  show the state curves of system (.) with input u(t) = ( + sin(t),  –

sin(t))T and u(t) = (, )T , respectively. System (.) is a state-dependent continuous
system. From Figure , we see that system (.) can keep internally stable with input
u(t) = ( + sin(t),  – sin(t))T . The product of input and output can be regarded as the en-
ergy provision for the system’s passivity which can embody energy attenuation character
of system (.). That is to say, the passive system (.) will not produce energy. From Fig-
ure , we can see that system (.) is stable with input u(t) = (, )T . By contrast, we can
say that passivity is at a higher abstraction level of stability.

5 Concluding remarks
In this paper, the problem of circuit design and passivity have been discussed for a class
of memristor-based neural networks with mixed time-varying delays and different state-
dependent memductance functions. The main contribution of this paper lies in the follow-
ing aspects: (i) A delayed memristive neurodynamic system is established for the designed
circuit. Different from the models of [–, ], system (.) contains not only transmis-
sion delay but also distributed time delay which is caused by the spatial extent in neural
networks as the presence of parallel pathway or distribution of propagation delays over a
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period of time, i.e., the model considered in this paper is more reasonable. (ii) By employ-
ing the theories of differential inclusions and set-valued maps, delay-dependent criteria in
terms of linear matrix inequalities are obtained for the passivity of the memristive neural
networks. (iii) The conditions are expressed in terms of linear matrix inequalities which
can easily be checked via the Matlab LMI Tool Box.
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