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Abstract

Mechanotransduction - how cells sense physical forces
and translate them into biochemical and biological
responses - is a vibrant and rapidly-progressing field,
and is important for a broad range of biological
phenomena. This forum explores the role of
mechanotransduction in a variety of cellular activities
and highlights intriguing questions that deserve further
attention.
plated on a compliant substratum (or within a hydrogel
Four centuries of cells and mechanical forces
Celeste M Nelson
Cells were first observed under the microscope by Robert
Hooke in 1665. That these tiny objects are actually the
most fundamental units of life would not be appreciated
until the early 1800s, but Hooke’s seminal discovery is
striking to us now in the early 21st century for another
reason. Amongst physical scientists, Hooke is better
known for ‘Hooke’s Law’, the principle of physics that
states that the force F needed to change the length of an
elastic spring by some distance x is linearly proportional
to that distance (F = kx), where k is the proportionality
constant that describes the stiffness of the spring. Hooke
thus made the earliest discoveries that would eventually
father two seemingly disparate fields. We now know, of
course, that physical forces are fundamental to cell biology.
That cells are subject to the laws of physics - of me-

chanics - was first postulated by Wilhelm His in the late
1800s [1]. The physical nature of cells and tissues was
embraced by embryologists and early cell biologists, as
the only tools to interrogate their behavior were mech-
anical in nature. The discovery of the structure of DNA
by Watson and Crick in 1953 ushered in an exciting
new era of molecular biology - instead of being considered
a physical material, the cell was viewed as a container of
genetic material and enzymes. The past 20 years have seen
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a resurgence of mechanics in cell biology, with new para-
digms emerging that have changed our understanding of
almost every fundamental cellular process, from cell div-
ision to differentiation to morphogenesis.
This new age of enlightenment in mechanobiology has

been enabled by technological breakthroughs resulting
from collaborations between biologists, physicists, and
engineers. We can now estimate the forces that cells
exert on their surroundings. Traction force microscopy
[2] is one approach to perform this estimation: cells are

[3]) that contains beads that act as fiducial markers. As
the cell exerts force on the substratum, the resulting
motion of the beads is tracked. The measured bead dis-
placements can then be used to estimate the force
exerted by the cells à la Hooke’s Law; the actual math
involved for a quantitative understanding is more com-
plicated than the equation described above since the
physical situation is significantly more complex than the
stretching of a spring, but the spirit of Hooke’s equation
holds. It is important to note that force is not measured
here - it is calculated, and the accuracy of the calculation
depends on the resolution of the measurements, the ma-
terial properties of the substratum, and the validity of
the underlying mathematical model.
Other force measurement calculation techniques in-

clude micropost arrays and atomic force microscopy
(AFM). Micropost arrays actually use Hooke’s Law to
calculate the forces exerted by cells on the underlying
posts, provided that the deformations of the substratum
induced by the cells are small [4]. In AFM, what are
really being measured are the mechanical properties of
the cell, not the force that the cell exerts. A cantilever
probe is used to tap gently on the surface of the cell; the
deflection of the cantilever is proportional to the stiff-
ness of the region being tapped. In the mechanobiology
literature, these readouts are often mistakenly referred
to as ‘tension’.
To detect tension within the cell, advances have been

made using molecular sensors. Physically, tension is the
pulling force exerted when a one-dimensional chain of
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objects is pulled apart (the opposite of compression).
The recently developed fluorescence-resonance energy
transfer (FRET)-based force sensors are intracellular
probes that measure tension (not force, per se). These
include clever systems that rely on the unfolding of pro-
teins at strategic locations in the cell, including vinculin
at focal adhesions [5] and cadherin at adherens junctions
[6, 7]. Again, the assumption with these molecular sensors
is that the protein behaves as a linear spring, following
Hooke’s Law. The validity of this assumption remains to
be verified for most cellular contexts.
Almost 400 years after Hooke’s original discoveries,

the field is now poised to detail precisely how cells exert
physical forces as well as how physical forces alter signal-
ing within cells, a process known as mechanotransduction.

Forces on cells of all domains of life:
mechanotransduction as a common language
Nicolas Biais
Any assemblage of building blocks - whether animate or
inanimate, whether a rock or a human being - needs
physical forces to hold itself together. Without the at-
tractive and repulsive forces between atoms, any object
we know will just crumble to a nondescript pile of matter.
Similarly, without the mechanical interactions between its
cells, any multicellular organism would lose its form, func-
tions, and any of the attributes we usually recognize it for.
Ever since the seminal work of D’Arcy Thompson [8],
there is no denying that physical forces and mechanics are
of paramount importance in shaping biological entities,
and that importance goes beyond the structural role
played by mechanics to hold cells together. The incredible
success of molecular biology and the effective explanatory
power of reaction–diffusion models have imposed a very
chemical mindset to most of our explanations of bio-
logical phenomena. Molecular recognition of diffusing
cognate molecules (protein-protein or protein-small mol-
ecule) is a tenet of biology, but in recent years it has been
more and more obvious that the colocalization in time
and space of molecules was not always enough to trigger a
given biological outcome. In many cases, the existence of
forces acting directly on molecules or cells is required in
order to trigger the correct biological response. This is in
essence what mechanotransduction is: the ability to alter
biological outcomes through mechanical forces.
One of the most interesting features of mechanotrans-

duction is that it reveals a new layer of modulation of
the interactions between molecules, and a potential global
guiding principle for organizing biological entities from
molecules to cells. At the same time, as new technological
advances have enabled us to measure and apply forces on
cells and molecules (optical tweezers, magnetic tweezers,
and lithography to name a few examples), we have come
to realize how pervasive the role of physical forces is.
Mechanotransduction, defined as the modulation of bio-
logical fates by physical forces, has been found to occur in
all corners of the biological realm and with an extremely
rich and diverse set of mechanisms. Some of these mecha-
nisms are very similar across all domains of life, as in the
case of the mechanosensitive channels that allow physical
stimuli on or across membranes to control the flow of
molecules across these membranes: flow that can in turn
release osmotic pressure or trigger another signaling path-
way [9–11]. Some are more specific to a given subset of
cells. As an example, the role of the mammalian cell cyto-
skeleton in responding to physical cues such as the rigidity
of its environment is one of the most studied examples of
mechanotransduction.
Thanks to their cytoskeleton, mammalian cells can

easily exert forces in the nanoNewton range on their
surroundings and sense the mechanics of cells or sub-
strates around them [12]. For mammalian cells, physical
forces play a direct role in important biological choices
such as stem cell differentiation, motility or tumor for-
mation [13–15]. Only some of the mechanisms of this
complex system have been elucidated. Some exemplify
direct coupling between chemical signaling and mechan-
ical forces: stretching of some molecules of the focal ad-
hesion exposes either cryptic binding sites or cryptic
phosphorylation sites, thus triggering signaling pathways
[16, 17]. Others represent responses to physical forces
that allow for adaptation of a cell and its cytoskeletal
network to external changes of stiffness in less than
100 ms [18]. The physical tension of the plasma mem-
brane can also play a role as an orchestrator of many
cellular events [19]. Note that in all instances, the origin
of the forces is not important, just that these forces are
present. For instance, in the case of the development of
the Drosophila embryo, forces resulting from internal
motions of cells control cellular fate and expression of
developmental genes. By altering these forces, one can
alter cellular differentiation [20].
Going back to the case of the response of mammalian

cells’ cytoskeletons, the recruitment of actin seen at focal
adhesion points can also be at least partially recapitu-
lated by artificially exerting forces on other locations of
the cells [21]. If it now seems obvious that mechanical
cues from mammalian cells’ surroundings and between
these cells are crucial for short- and long-term normal
biological behavior, the potential mechanical impact of
the cells of many bacterial species is largely overlooked.
We have known for a long time that we humans are out-
weighed 10 to 1 in numbers of cells by the microbiome
that we carry with us [22]. We now know that we are
also outweighed 25 thousand to 5 million in terms of
genes [23]. And the data about the modes of interactions
of all these bacteria cells with our own cells is still quite
scarce. So could it be that many bacteria are using
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mechanotransduction to interact with our cells? Neis-
seria gonorrhoeae, the causative agent of gonorrhea, has
emerged as a paradigm of mechano-micro-biology: the
study of the role of physical forces in microbes. The
long retractable polymers that emanate from the bodies
of these bacteria, named type IV pili, enable them to
exert physical forces reaching the nanoNewton range
on their surroundings, the same amplitude of forces
that mammalian cells exert on their own surroundings
[24]. Similarly to the recruitment of actin and other
molecules at focal adhesion points, the forces exerted
by N. gonorrhoeae cells trigger accumulation of actin
and other proteins, events critical to colonization of the
host [25, 26]. Thus, Neisseria and human cells appear to
be engaged in a physical cross-talk where bacterial cells
have at least partially co-opted mechanotransduction
pathways from human cells.
Despite our often detailed understanding of the bio-

chemical reactions that control cellular fates, or maybe
because of it, we may overlook the fact that mechanical
forces are a powerful means to modulate or override
many of these biochemical reactions. Whether members
of the eukarya, bacteria or archaea domain of life, all
cells share a genetic material made of DNA, but also
need to interact physically with their surroundings.
Through evolution, many different types of cells have
developed mechanisms that can intertwine mechanical
forces and biochemical reactions. Not only are those
mechanisms essential for the survival of the cells, but
they also provide an incredible platform for interaction
between cells of all domains. As soon as a cell possesses
a way to exert mechanical forces, it will have the ability
to modulate the functions of other cells (as we have seen
in the case of Neisseria). There are many examples of
cells from one domain (for instance bacteria) which have
evolved toxins or effectors with the ability to hijack
complex molecular machinery from cells from another
domain (for instance eukarya), but these modes of inter-
actions rely on specific molecular interactions and re-
quire a long evolution to be put in place. On the other
hand, mechanical forces constitute a natural common
language between cells of all domains that can easily be
modified. Studying the mechanical interactions between
cells of different domains that have co-evolved for a long
time, as, for instance, human cells and the members of
the human microbiota, will help us to delineate the full
modalities of mechanotransduction.

Force transmission via non-specific friction
Ewa K Paluch
Specific attachments of cells to their substrate, mediated
by dedicated proteins such as integrins or cadherins, have
long been considered paramount for cell migration. Yet,
recent studies demonstrate that effective cell movement
can occur in the absence of such specific attachment
points. In a seminal paper in 2008, Lammermann et al.
[27] showed that dendritic cells can migrate in the lymph
node or in collagen matrices in the complete absence of
integrins, demonstrating that, in three-dimensional envi-
ronments, low non-specific adhesion can be sufficient to
drive migration. More recently, two experimental studies
identified myosin activity and confinement as key parame-
ters favoring a switch to low-adhesion modes of migration
in cultured cells and in vivo [28, 29].
Several theoretical studies have explored possible mech-

anical bases of force transmission during migration with-
out specific adhesions. An important requirement for this
type of movement is three-dimensional confinement. In-
deed, without confinement, thermal fluctuations would
prevent sustained contact between the cell and the sub-
strate, which is required for force transmission, and the
cell would ‘drift away’, as no specific adhesions are there to
anchor it to the substrate [30]. Various theoretical mecha-
nisms of force generation and transmission have been pro-
posed, including chimneying, where cells push themselves
off the substrate like an alpinist climbing a rock cleft [31];
intercalation, where lateral protrusions insert into gaps in a
discontinuous three-dimensional matrix, thus providing
anchors for traction force generation [32]; and non-
specific substrate friction that could mediate intracellular
forces [33]. In a recent study, we combined theory and ex-
periments to investigate the origin and magnitude of the
forces involved in the migration of Walker carcinosarcoma
cells, which do not rely on specific adhesions and display
active migration in confinement [34]. We could show that
Walker cells move using non-specific friction that trans-
mits to the substrate forces generated by contractile acto-
myosin flows at the cell cortex. Interestingly, we found that
the forces involved are orders of magnitude lower than
during specific-adhesion-based migration [34]. Even in
conditions of high substrate friction, Walker cells exert
stresses lower than 1 Pa, and rapid cell movement is still
observed with stresses of a few mPa, strikingly less than
the 0.1-5 kPa stresses typically exerted at integrin-mediated
adhesions (see also the piece by Ben Fabry in this forum).
As the conditions under which cells display adhesion-

independent migration are progressively being unveiled,
many important questions arise. For instance, it remains
unclear whether any migratory cell can migrate without
specific adhesions or if friction-based migration is re-
stricted to certain cell types. From a mechanical stand-
point, the finding that the forces driving friction-based
migration are orders of magnitude lower than the forces
involved in integrin-mediated migration raises the puz-
zling question of the biological function of the strong
forces exerted at integrin-mediated adhesions. One can
speculate that these forces primarily function to sense
substrate stiffness, which is the basis of durotaxis and
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can guide differentiation of stem cells (see also the
pieces by Ben Fabry and Carina Wollnik et al. in this
forum). Furthermore, strong attachment forces may be
required for cells migrating against a flow, such as in
blood vessels. Another key question is the molecular
basis of friction. It is unclear whether it depends on the
chemistry of the cell surface and the substrate only, or if
geometric features such as substrate rugosity and geom-
etry might also play a role. Finally, it will be exciting to
elucidate in what physiological contexts friction-based
migration occurs in vivo.

Acto-myosin cycling kinetics and focal adhesion
reinforcement drives cellular durotaxis
Ben Fabry
Durotaxis describes the movement of cells along a stiff-
ness gradient of the substrate. Similar to chemotaxis
where cells migrate towards a concentration gradient of
chemokines, durotaxis is thought to be important for tis-
sue formation during embryogenesis, or the migration of
cells during wound healing, inflammation, and metastasis.
Obviously, durotaxis cannot be fully understood without a
basic understanding of cell migration. Migration, in turn,
cannot be understood without some understanding of the
underlying fundamental processes: cell adhesion (and de-
adhesion), spreading, and contraction. The canonical pic-
ture of how cells crawl on a planar substrate is that of a
sequential four-step process [35]. First, cells form protru-
sions at the leading edge, driven by actin polymerization.
Second, these protrusions are attached to the substrate
through the formation of focal adhesions. Third, these
focal adhesions are connected to actin stress fibers that
are tensed through the contractile activity of myosin mo-
tors. Finally, the focal adhesions at the rear end of the cells
de-adhere under the influence of time and contractile
force. Each of these processes can contribute to durotaxis.
Focal adhesions generate friction between the cell and

the substrate. Stronger and longer-lasting adhesions give
rise to higher friction and thus result in a lower speed of
cell migration. As discussed in more detail below, cells
form stronger adhesions and consequently migrate more
slowly on stiffer substrates [36]. If we consider that cell
migration on a mechanically isotropic substrate is a dir-
ectionally random process, it follows that cells spend less
time in regions with low stiffness, and thus more time in
regions with higher stiffness. The net effect is durotaxis,
and to understand this, we need to understand why ad-
hesions become stronger on stiffer substrates.
For reasons that are still not fully known, adhesions

are reinforced (they become larger and stronger) under
mechanical load [37, 38]. The mechanical load equals the
internal contractile stress of the cytoskeleton and at the
same time the external substrate tractions. Cells usually
generate higher tractions on stiffer substrates [39];
hence, adhesions also become stronger on stiffer sub-
strates [36]. Thus, we next need to understand why
tractions, and cell contractility, are stiffness-dependent.
As cells contract, the resulting traction forces deform

the underlying substrate. The softer the substrate is, the
more it deforms. Large deformations, however, pose a
problem for the cell for two reasons, both of which were
first discovered in muscle tissue. First, the force-generating
contractile apparatus of the cells has to shorten, which
reduces the force it can generate because the overlap
between actin and myosin filaments becomes suboptimal
[40]. Second, larger deformations require a larger speed of
contraction, and more and more of the myosin-generated
forces are wasted to overcome the internal friction with
actin [41]. Thus, cells cannot keep up large traction forces
on soft substrates, with the consequence that focal adhe-
sions become instable, which allows the cell to migrate
faster until it reaches a region of higher substrate stiffness.
This physical picture of durotaxis as presented here is

of course highly simplified and neglects important bio-
logical details. For example, myosin activation is not con-
stant in a cell but is actively controlled by force-dependent
signaling cascades that originate at focal adhesions [42].
Nonetheless, key aspects of durotaxis can be explained
without such complex biochemical signaling events. All
that is needed are two force-sensitive processes. One ap-
pears to be the dependence of myosin-generated cytoskel-
etal forces on the sliding speed, which is governed by
acto-myosin crossbridge cycling kinetics [41], and the
other appears to be the stress-dependent reinforcement of
focal adhesions, which may also be governed by a simple
physical mechanism, namely the catch-bond kinetics re-
ported for focal adhesion proteins [43]. Given the funda-
mental importance of durotaxis for essential cell behavior
in the living organism, it may be sensible that it relies not
on complex signaling cascades that can be easily deregu-
lated, but on robust physical principles.

May the force (deformation) be with you
Jens Moeller and Beth L Pruitt
Do cells sense and respond to forces or deformations?
Cells within tissues are subjected to exogenous, physio-
logical forces, including fluid shear stress or mechanical
load, while at the same time cells exert acto-myosin-
generated contractile forces to the extracellular matrix
(ECM) and to neighboring cells via cell-ECM and cell-
cell adhesions [44]. Hooke’s Law and Newton’s Laws of
equilibrium readily relate the linear extension of a ‘spring’
to forces, and using appropriate material models we can
further relate forces to stresses (force/area). All mechan-
ical measurements revolve around exquisitely precise dis-
placement measurements, yet these displacement data
must be converted to estimate force via a set of material
deformation models [45]. By necessity, these models are
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oversimplified because proteins, cells, and tissues present
highly anisotropic, heterogeneous, nonlinear mechanical
properties that vary widely and depend on the compos-
ition, architecture, and environmental conditions, as well
as the direction, nature and rate of load application [46].
But do not despair, for while ‘essentially, all models are
wrong, some are useful’ [47]. Although we need a material
model to estimate forces and stresses, we can directly
observe substrate displacements and calculate strains
(changes in length/original length) or three-dimensional
deformation fields (Fig. 1). To unravel how cells con-
vert these mechanical cues into biochemical signals
S =  0.08             0
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Fig. 1. Hooke's law for linear elastic engineering materials compared to co
applied stress σ (force/area) and resulting strain ε (deformation) is describe
materials. For biological specimens, the material model assumptions are m
tissues consist of multiple heterogeneous, anisotropic building blocks of
rate-dependent, non-linear, viscoelastic stress–strain responses. Comparis
testing methods requires careful assessment of testing conditions and ca
(mechanotransduction), we must also consider how the
structures of proteins and protein networks are altered
upon mechanical load. The cellular microenvironment
consists of protein networks of varying biochemical and
physical properties, including matrix composition, dimen-
sionality and stiffness, all of which have been shown to co-
regulate cell function, differentiation, tissue homeostasis
and organ development [48, 49].

ECM remodeling provides a force-feedback loop
Not only do cell mechanical properties exhibit rate-
dependent behaviors such as non-linear viscoelasticity or
.63                0.58

34 kPaa

-myosin
stress fibers

mplex material models for biological specimens. The ratio between
d by the elastic modulus E for homogenous, isotropic, linear elastic
ore difficult and depend on the specific system. Proteins, cells and
various length scales that are hierarchically organized and exhibit
on of mechanical properties across systems and among different
libration schemes, which are not yet standardized
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thermodynamic instabilities, but the substrate itself also
changes with time. Cells secrete and remodel the ECM
that comprises their tissue microenvironment in a load
history-dependent manner. For example, bone resorption
by cell-secreted proteases as in microgravity results in
more porous, weaker ECM networks while bone growth
by cell-secreted and remodeled ECM reinforcement oc-
curs with weight-bearing exercise [50]. Variations in ECM
biophysical properties within or across a tissue are not
only graded in their composition, crosslinking, dimension-
ality and stiffness by the cells that created them, but these
properties also feedback on cell responses via mechanic-
ally mediated cell signaling pathways and enable long-
range signaling by cells through the ECM. The biochem-
ical and physical properties of cell-generated ECM protein
networks (for example, collagens and laminins in base-
ment membranes or collagens, fibronectin and elastins in
blood vessels) co-regulate cell functions such as motility,
proliferation, apoptosis [51], stem cell differentiation [13]
and organ development [48]. Different cell types show
preferences for substrates of different rigidity, which in
turn can elicit different cell-ECM traction forces [52].
Unlike inert materials with fixed properties, living
cells remodel themselves and their environment under
chronic loading and also actively generate mechanical
forces through actomyosin-generated tension in the
cytoskeleton.
How do molecular mechanisms integrate to cellular
mechanotransduction?
Even though we can relate the deformations of the cells
and the cellular microenvironment to forces, mechanic-
ally mediated signaling at the molecular level is also fun-
damentally governed by deformation and rate sensitivity.
Binding kinetics, protein crosslinking and availability of
binding sites depend on both the protein sequence and
protein conformation, a function of thermodynamic en-
ergy. Changing protein conformations can encode distinct
functional states with different ligand binding affinities or
binding availability by exposing cryptic binding sites for
other binding partners. For example, the rod domain of
talin, a focal adhesion protein linking integrins to the actin
cytoskeleton, undergoes large conformational changes
under acto-myosin-generated forces and exposes cryptic
binding sites for vinculin [53]. Vinculin recruitment in
turn contributes to a reinforcement of the focal adhesion
complex to transduce higher load between the cells and
the ECM [54]. Similarly, actomyosin-generated tension fa-
cilitates vinculin binding to a cryptic binding site in α-
catenin in cell-cell adherens junctions to regulate tissue
organization [55]. Within the fibrous ECM, fibronectin
unraveling is controlled by Rho-mediated cell contractility
to expose cryptic self-assembly sites and binding sites for
other proteins and growth factors [56, 57]. All those
mechanosensitive proteins consist of multiple domains
with a range of threshold unfolding loads. At appropriate
force thresholds, stiff protein domains (β-sheets, α-helices,
barrels) first reorient in the direction of loading as flexible
linker chains connecting them (turns, loops, hairpins)
stretch and rotate; the individual domains unfold in the
order of their stiffness and thus contribute to highly non-
linear force-displacement behavior as proteins can unfold
up to >10 times their equilibrium length. Most of the
protein force spectroscopy studies quantified force
thresholds for these phenomena through a complex set
of assumptions both about the measurement tools and
the sample to arrive at forces at the scale of picoNew-
tons in such load-bearing proteins as cadherin [6] and
vinculin [5]. While pN molecular forces may be suffi-
cient for mechanically switching individual protein
functions or binding affinities, aggregated forces mea-
sured at the cellular level are much higher and result in
deformation on the surrounding ECM on the order of
several cell lengths. Indeed, fibrous scaffolds transmit
tension over long distances through their rope-like in-
terconnections [58].
How can we measure deformations (forces)?
Applying or measuring displacements (and inferring
forces from these measurements) across the length
scales of proteins, cells, and tissues requires a range of
techniques and several biochemical sensors and micro-
fabricated devices have been developed for this purpose.
Optical and magnetic tweezers, Förster Resonance Energy
Transfer (FRET) molecular tensions sensors, and atomic
force microscopy (AFM) are widely used to study con-
formational changes of individual mechanosensitive pro-
teins under mechanical load [59], while optical stretchers,
micropipette aspiration, AFM and microelectromechani-
cal systems (MEMS) enable single cell mechanobiological
studies (see [60] for a review). Meanwhile, traction force
microscopy of fiducial markers embedded in compliant
substrates and microfabricated post arrays are commonly
used to measure the displacement fields of single cells and
microtissues [61]. Given the dynamic nature of the state
of cells, ECM and proteins, estimates of small forces or
heterogeneous mechanical properties are not easily
compared between labs using the same method, let
alone across methods, and standardized calibration
and measurement schemes are needed. Nevertheless,
the variability of life is perhaps greater still, and thus
mechanobiologists can learn a great deal from appro-
priately designed experiments and controls to look for
relative changes in a consistent framework of measure-
ments and models.
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Mechano-guided differentiation of human
mesenchymal stem cells: actomyosin stress fibers
as collective mechanosensors
Carina Wollnik, Galina Kudryasheva and Florian Rehfeldt
It is nowadays well acknowledged that mechanical stim-
uli can be as important for cells as traditional biochem-
ical cues [62]. They also impact the efficacy of drugs [63]
and can influence the morphology and growth phase of
cellular aggregates [64]. Especially striking are the exper-
iments by Engler et al., demonstrating that substrate
elasticity can direct differentiation of human mesenchy-
mal stem cells (hMSCs) towards various linages (neural,
muscle, bone) [13]. Here, it is particularly interesting
that mimicking Young’s modulus of the in vivo environ-
ment drives naïve adult stem cells towards the respective
cell type. While the initial cue (elastic properties of the
matrix) and the overall outcome (changes in transcrip-
tion) are well-defined, the integration of the mechanical
stimuli into biochemical signaling pathways is still not
fully understood. Recently, there is mounting evidence
that direct mechanical coupling to and perturbation of
the nuclear envelope and the nucleus might be an alter-
native or additional route to alter gene regulation [65].
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nuclear lamina, thus providing a direct mechanical route to gene regulation. A
b Non-monotonic dependence of stress fiber structure quantified by an orde
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Publishing Group
To explain such a mechanical pathway, it is essential
to understand how forces can be transmitted to the nu-
cleus. Actomyosin stress fibers are key players in cell ad-
hesion and cell-matrix interactions as they anchor at focal
adhesion sites and create cellular contractility (Fig. 2a)
[66, 67]. Because they also connect directly to the nuclear
lamina [68, 69], stress fibers are able to pass on stress and
strain and deform the nucleus [65]. A closer look at the
actomyosin filaments in hMSCs revealed that quantifica-
tion of their structure and organization by means of an
order parameter S showed significant differences with
respect to the substrate elasticity at an early stage of
mechano-induced differentiation (24 hours) [70, 71]. On
soft (1 kPa) and rigid (34 kPa) substrates the stress fibers
are organized more isotropically (S = 0.08 and 0.58, re-
spectively), while on 11 kPa substrates (an intermediate
elasticity and matching the in vivo stiffness of relaxed
muscle) the actomyosin bundles were parallel aligned and
showed high anisotropy as indicated by an order param-
eter S = 0.63 (Fig. 2b). This early morphological marker
can be understood in terms of a collective mechanosensor
and is experimentally observable long before lineage-
specific genes are upregulated, a process that usually takes
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dapted from [67] with permission from The Royal Society of Chemistry.
r parameter S of hMSCs grown on substrates of different elasticity E can
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several days [72]. Another recent study used this quantita-
tive order parameter analysis to determine the effect of
substrate elasticity on differentiating myoblasts [73], indi-
cating that mechanical stimuli and respective change of
cytoskeleton structure do play a role in differentiation of
more than one cell type.
Such significant differences in macroscopic or global

structures are most likely induced by distinct molecular
compositions of the actomyosin stress fibers on the
nano-scale, a hypothesis that might be confirmed in the
near future by super-resolution microscopy methods
now available. It is important to note that this type of
analysis is now done with fixed cells at distinct times,
just like one would do for protein or transcription ana-
lysis. To get a better insight into the complex and also
highly dynamic processes it will be of paramount im-
portance to follow the temporal evolution of stress-fiber
structure and organization followed by live cell imaging
and quantitatively extract parameters of the kinetics.
Analyzing transcription profiles and biochemical sig-

naling cascades is essential to finally elucidate the com-
plex processes underlying mechanosensory phenomena.
However, the micro- and nano-structural properties of
those mechanically active structures contain valuable in-
formation on the route from outside mechanical signals
to inside biochemical regulation. In the same way that
cell biology relied for a long time on descriptive pheno-
typing by analyzing global cell shape, we should use the
additional information of the morphology of stress fibers
to complete our picture of mechano-guided differenti-
ation of hMSCs.

Reversible adhesion in climbing animals - is it
similar to cell adhesion?
Walter Federle
Not only cells but also many climbing animals such as
insects, spiders and geckos are able to move around in
their environment, yet have to resist detachment forces
by forming adhesive contacts. These animals possess
special attachment structures on their feet that allow
them to cling to substrates. When climbing on trees they
may be challenged by the forces of gravity and wind, or
by predators trying to dislodge them [74]. Cells, in turn,
can be exposed to shear flows in blood vessels or to ten-
sile stresses within tissues. Many animals can climb in a
three-dimensional environment such as the forest can-
opy by repeatedly attaching and detaching their feet,
whereas cells can migrate on substrates and within tis-
sues by forming new adhesive contacts at their front and
releasing them again at their trailing edge [75]. By way
of these functional similarities, it is perhaps natural to
compare cell adhesion with the adhesion of climbing an-
imals. Is cell adhesion similar to the adhesion of insects,
spiders and geckos?
Comparison of adhesive strength
Starting with the physical mechanism of adhesion, both
cells and climbing animals take advantage of van der
Waals forces [76, 77]. These forces only become signifi-
cant when two objects are in intimate contact with sep-
aration distances less than approximately 10 nm [78].
The contacts formed by cell adhesion molecules such as
integrin or cadherin and those of gecko adhesive hairs
are likely within this range [79, 80]. In addition to van
der Waals forces, cell adhesion is strongly dependent on
electrostatic forces comprising hydrogen bonds, double
layer forces and forces between charged domains of
interacting proteins [79]. An important role of electro-
static forces via contact electrification has also been pro-
posed recently for the adhesion of geckos [81], and
similar mechanisms are possible for insects [82]. Al-
though more evidence is needed to confirm the extent
to which contact electrification contributes to animal ad-
hesion, both cells and climbing animals are probably af-
fected by electrostatic interactions. In addition, the
adhesion of many climbing animals involves capillary
forces, arising from tiny amounts of fluid secreted into
the adhesive contact zone [83–87]. As cells live in a
watery environment, this adhesive mechanism is usually
absent in cells.
Given that both cells and whole animals adhere by van

der Waals forces and probably electrostatic forces, one
might expect their adhesive stresses to be of similar
magnitude. Let us briefly consider the consequences if
this were indeed the case: depending on the geometry,
adhesion forces scale with the length or the area of ad-
hesive contacts [88]. For example, while the pull-off
force for a suction cup is proportional to its area, the
force needed to peel off a piece of Scotch tape depends
on its width. For isometric organisms, weight increases
with the cube of linear dimensions, and therefore faster
than area- or length-specific adhesion. As a consequence,
adhesion per body weight is expected to decrease for
larger animals. Despite their relatively large body size,
however, geckos can easily hang from a single toe, and
weaver ants can carry more than 100 times their own
body weight whilst walking upside down on a smooth
surface (Fig. 3a, b). Clearly, these animals use only a
small fraction of their body surface area (that is, the ad-
hesive organs on their feet) for attachment, and at least
the gecko does not seem to employ any specific adhe-
sion molecules to achieve high levels of forces.
Cells have an average mass of approximately 1 ng [89]

and are thus 5 to 11 orders of magnitude lighter than
geckos and insects. Their weight-specific adhesion should
thus be enormous in comparison to animals. Moreover,
about half of a cell’s surface is in relatively close contact
with the substrate, a much larger proportion than for a
climbing animal. Thus, one might expect cells to adhere



Fig. 3. Surface adhesion in climbing animals and cells. a Weaver ant (Oecophylla smaragdina) carrying more than 100 times its body weight
upside-down on a smooth surface (photo: Thomas Endlein). b Tokay gecko (Gekko gecko) attached by a single toe to a tilted glass surface. Reproduced
from [130] with permission from the Journal of Experimental Biology. c Lateral view of adhesive setae in a longhorn beetle (Clytus arietis)
showing non-adhesive orientation of seta tips and anti-adhesive corrugations on the dorsal side. Reproduced from [131] with permission
from the Journal of Experimental Biology. d Weaver ant adhesive pad in the retracted (top) and the extended position (bottom). Reproduced
from [114]. e Adherent cell on a deformable substrate. Inward forces are transmitted via the cytoskeleton and the focal adhesions to the
substrate. Adapted from [75]. f Rapid increase in adhesive contact area in stick insects (Carausius morosus) in response to a rapid displacement of the
substrate. Adapted from [121]. g B16 melanoma cell (expressing fluorescent marker for focal adhesions) before and 5 minutes after displacement of cell
body by a microneedle (direction shown by arrow), showing growth of peripheral focal contacts in the region opposite the cell body (enlarged in
insets), stimulated by tension. Reproduced from [123] with permission from the Journal of Cell Science

Table 1 Shear and adhesive strength of animal adhesive pads
in comparison with single cells

Strength (kPa) Source

Shear forces

Gecko seta: real contact area 53,300 [124, 125]

Gecko seta: projected contact area 2,880

Beetle pad: real contact area 681 [112]

Beetle pad: projected contact area 259

Weaver ants 405 [126]

Stick insects 299 [112]

Barnacles 10-300 [127]

Fibroblast cells (whole) 0.048 [128]

Fibroblast cells (focal contacts) 5.5 [103]

Adhesion

Gecko seta: real contact area 10,700 [124, 125]

Gecko seta: projected contact area 576

Beetle pad: real contact area 86.9 [112]

Beetle pad: projected contact area 35.5

Stick insect pad 44.6 [112]

Barnacles 100-1000 [90]

Ants ~50 [126]

Endothelial cells 0.56-1.1 [129]
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very firmly to any substrate and to one another, even with-
out any specific adhesion molecules, potentially limiting
or preventing locomotion. Are the adhesive stresses of
cells and climbing animals indeed comparable, and how
do they compare with typical levels for van der Waals
forces?
van der Waals forces are considered weak intermo-

lecular forces, but they still can produce maximum con-
tact strengths of the order of 100 MPa, sufficient for a
1 cm2 contact to support the weight of a small family
car [76]. Table 1 shows that the stresses measured for
animal adhesives are at least two orders of magnitude
below these theoretical strength levels, probably a result
of stress concentrations and surface contamination.
However, adhesive and shear stresses of cells are much
smaller still, by several orders of magnitude. Why are
stresses so much smaller for cells, although they use
similar molecular forces for attachment?
Firstly, cells live in a watery environment. Water not

only provides viscous ‘squeeze-out’ resistance that makes
it harder for objects to come into close contact, but it
also shields surface charges, and intervening layers of
water reduce van der Waals forces [76]. However, there
are many examples of marine organisms that achieve
high adhesion strengths under water (e.g., barnacles and
mussels) [90–92], so that submersion alone may not
fully explain the low stress levels of cells.
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A second key factor that reduces cell adhesion is long-
range repulsion by the glycocalyx, a layer of glycopro-
teins and glycolipids on the outer cell surface [93, 94].
These surface molecules carry negative charges that in-
hibit adhesion between cells or negatively charged sur-
faces. The electrostatic repulsion by the glycocalyx is
further enhanced by steric repulsion and osmotic effects
[93]. Treatments reducing the negative charge on sub-
strates were found to increase cell adhesion dramatically
[95], and it is likely that excessive non-specific adhesion
would lead to cell clustering and render cells unable to
move. Cell locomotion is indeed enhanced on more
negatively charged substrates [96]. Thus, while sufficient
adhesion to diverse substrates via non-specific adhesion
is essential for climbing animals to prevent detachment,
the priority for cells may be exactly the opposite. Cells
have to reduce or prevent non-specific adhesive interac-
tions to maintain motility and to allow the controlled
formation and release of specific adhesive contacts. Pre-
vention of unwanted adhesion is also a common theme
in the larger world of climbing animals. Many plant sur-
faces prevent insect adhesion with the help of epicuticu-
lar wax crystals or surface textures that trap lubricating
water films [97]. In many insects, fields of microtrichia
occur in regions immediately outside adhesive contact
zones; it is likely that these surface structures are non-
adhesive and facilitate detachment when the foot pad is
rolled off, or in some systems prevent the self-matting of
adhesive hairs (Fig. 3c) [98].
One consequence of the interplay of short-range at-

traction between cell adhesion molecules and long-range
repulsion by the glycocalyx is that adhesion is concen-
trated locally in small adhesion domains such as focal
contacts or desmosomes, which are connected intracellu-
larly to filaments of the cytoskeleton [99]. This arrange-
ment is functionally similar to adaptations in animal
adhesive structures. The division of one large contact into
many sub-contacts (contact splitting [100]) is one design
principle of ‘hairy’ adhesive systems found in insects, spi-
ders and geckos, which consist of dense arrays of micro-
scopic hairs. Contact splitting can increase adhesion if the
forces of individual contacts scale with their width or per-
imeter (comparing a smooth and a hairy toe pad of the
same size, the hairy pad has a much smaller total contact
area, but a much larger total contact perimeter), and if dif-
ferent contacts are loaded simultaneously so that a condi-
tion of ‘equal load sharing’ is achieved [101]. Cells are able
to control the pulling forces on focal contacts by contract-
ile stress fibers and remodeling of the actin fiber network
[75, 102, 103]. Climbing animals can actively distribute
loads between different legs or pads; but within each indi-
vidual pad, the stress distribution depends mainly on the
pad’s stiffness and mechanical design. The adhesion forces
of many animals scale with contact area [88], suggesting
that their pads are designed in a way that allows them to
achieve uniform load distribution, but the underlying
mechanisms are still unclear. Separate subcontacts also
help for attachment on uneven substrates. Although gecko
and insect adhesive hairs are made of relatively stiff kera-
tin and cuticle, respectively, arrays of adhesive hairs are
compliant and can maintain adhesion even on substrates
with significant surface roughness [104, 105].

Adhesion and locomotion
One of the most apparent parallels between cell adhe-
sion and whole-animal adhesion is that, in both systems,
the contacts are reversible and dynamic to allow loco-
motion. When adhesive pads of climbing animals are
sheared (pulled) towards the body, they adhere firmly,
but they detach when pushed. A pull maximizes adhe-
sion by increasing not only the adhesive contact area,
but also the force per contact area [106].
Cells and animals are able to switch between different

types of adhesive bonds, depending on whether weak
temporary or strong permanent adhesion is required.
Leucocytes provide a well-known example of an active
change from weak/transient to stronger/more perman-
ent adhesion [107]. Leucocytes moving from the circula-
tory system into infected tissues undergo states of weak
adhesion, in which they 'roll' on the wall of venules,
followed by firm adhesion to endothelial cells and trans-
migration through the endothelium, each involving dif-
ferent adhesion molecules (selectins and integrins) with
varying binding affinities. The different steps of this cas-
cade are triggered by the release of cytokines from in-
fected tissues which trigger the expression of selectin
molecules on the inner vessel wall, and by the release of
chemokines which activate integrins on the leucocytes.
While the shear force exerted by the blood flow is suffi-
cient to maintain dissociation of selectins to induce cell
rolling, it is too small to dislodge cells in the firm adhe-
sion state [108]. There are some analogous cases of ani-
mals switching between different adhesive mechanisms
for temporary and permanent adhesion. For example,
limpets use a glycoprotein glue and achieve high adhe-
sive strengths when stationary at low tide, but suction
(achieving lower adhesive strengths) when moving around
underwater at high tide [109]. However, most animals do
not control adhesion by varying the chemistry of their
adhesive bonds (this would probably be too slow for
climbing animals), but by changing the geometry of the
adhesive contact.
When climbing rapidly, geckos, spiders and insects are

able to attach and detach their feet within tens of millisec-
onds. Although foot detachment can be very fast, it occurs
without any measurable force peaks in geckos and insects
[110]; [T. Endlein & W. Federle, unpubl. results]. The key
principle underlying this impressive performance is the
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same across many different taxa and adhesive pad designs:
climbing animals use shear forces (pulling and pushing) to
turn adhesion on and off [111, 112]. A pull towards the
body typically brings the pad into contact and maximizes
adhesion, whereas a push leads to detachment. Adhesive
setae of geckos, spiders and insects have oblique tips that
require a pull to be bent slightly and come into full con-
tact (Fig. 3c). If the setae are pushed or if the pulling force
is released, all hairs of a pad return almost simultaneously
to their non-adhesive default position, allowing effortless
and rapid detachment [112, 113]. The smooth pads of ants
and stick insects achieve very similar functionality via dif-
ferent mechanisms. When pulled, ant adhesive pads un-
fold and achieve a large contact area, but the pad recoils
to a retracted default position when the pull is released
(Fig. 3d) [114]. In stick insects, pads respond to pulls with
a lateral expansion of the contact zone, likely driven by a
hydrostatic mechanism in the outer cuticle [115]. An ani-
mal’s response to external forces is usually both passive
and active. For example, the adhesive pads of ants can be
unfolded both actively via a contraction of their claw
flexor muscle or passively when a pulling force is acting
on them. Passive ‘preflex’ reactions do not depend on the
neuromuscular system and thus have the advantage that
they can occur extremely rapidly, thereby preventing de-
tachment by unexpected perturbations such as raindrops
(Fig. 3f) [116].
Individual cells have an analogous ability to increase

contact area in response to forces acting on them. Cells
can react by changing the density of attractive and
repellent cell adhesion molecules by exo- and endocytosis
[117]. Moreover, pulling forces can reinforce focal adhe-
sions [118] by stimulating them to grow along the axis of
the externally applied force (Fig. 3g) [38]. Not only the
adhesive contacts themselves can be adapted to external
forces, but also their links to the cytoskeleton. Connec-
tions between focal adhesions and the cytoskeleton can
be either cut by proteases or strengthened by new as-
sembly [119]. It was found that the cytoskeleton itself
increases its stiffness in response to forces acting on
focal adhesions [120]. In contrast to the passive pre-
flexes in pads of climbing animals, cells’ reactions are
active and involve mechanotransduction. That is, cells
sense mechanical stresses and convert them into intra-
cellular signaling and biochemical reactions. While pre-
flexes can double the adhesive contact area within less
than a millisecond [121], the active nature of cells’ adhe-
sion reaction implies that it is much slower and occurs
within seconds or minutes [93, 122, 123].
In summary, the key principles of adhesion in cells

and climbing animals are surprisingly similar, despite
extreme differences in scale, structure and biological
context. Both cells and climbing animals are able to
resist detachment forces and distribute loads between
different adhesive contacts. Although similar physical
mechanisms are acting, adhesive stresses are much
smaller in cells than in climbing animals, likely a conse-
quence of the watery environment and the repulsion by
the glycocalyx. The smaller stresses may help cells to
maintain mobility despite their much larger surface-to-
volume ratio. Dynamic and reversible adhesion is an es-
sential requirement for both individual cells and climbing
animals. The control of adhesion allows both to move and
to react to varying environmental conditions. Adhesion
control in climbing animals is faster than in cells, partly
due to the passive (mechanical) reactions that operate in
addition to active control. Future research on cells and
climbing animals may uncover further similarities of their
adhesive mechanisms.
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