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1 Introduction

The recent measurements of proton-proton total cross sections at the LHC by the TOTEM

collaboration [1–4], at total center-of-mass energy
√
s = 7 TeV and

√
s = 8 TeV, have

helped in reviving the study of the high-energy behaviour of hadronic total cross sections [5–

8]. The main theoretical problem in this context is providing a convincing explanation of the

rise with energy of total cross sections observed in experiments, and a definite prediction of

its functional form, in the framework of QCD. Despite many years of efforts, a satisfactory

solution to this problem is still lacking.

Experimental data for total cross sections are well described by a “Froissart-like” be-

haviour σ
(hh)
tot (s)∼B log2 s for s→∞, with a universal (i.e., not depending on the particu-

lar hadrons involved) coefficient B ' 0.25 – 0.3 mb [9–17]. The attribute “Froissart-like” is

a reference to the functional form appearing in the well-known Froissart- Lukaszuk-Martin

(FLM) bound [18–20], which states that for s→∞, σ
(hh)
tot (s) ≤ π

m2
π

log2
(
s
s0

)
, where mπ is
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the pion mass and s0 is an unspecified squared mass scale.1 Theoretical supports to this

functional form and to the universality of the coefficient B were found in the model of the

iteration of soft-Pomeron exchanges by eikonal unitarisation [25, 26] (recently revisited in

the context of holographic QCD [27]), and also using arguments based on the so-called

Color Glass Condensate of QCD [28, 29], or simply modifying the original Heisenberg’s

model [30] in connection with the presence of glueballs [31]. These arguments however do

not provide a full derivation of the “Froissart-like” total cross sections from the first prin-

ciples of QCD. We mention at this point that the log2 s behaviour of total cross sections

has been recently questioned in refs. [32–34], and the validity itself of the FLM bound has

also been put under scrutiny [35] (see however also ref. [23] for a comment).

Explaining the behaviour of hadronic total cross sections is part of the more gen-

eral problem of hadronic soft high-energy scattering, i.e., high-energy elastic scattering of

hadrons at low transferred momentum. Soft high-energy processes are characterised by

two different energy scales, provided by the total center-of-mass energy squared s, which is

large, and the transferred momentum squared t, which is fixed and smaller than the typ-

ical (squared) energy scale of strong interactions (|t| . 1 GeV2 � s). As a consequence,

the study of these processes cannot fully rely on perturbation theory. A nonperturbative

approach to this problem in the framework of QCD has been proposed in ref. [36], and has

been further developed in a number of papers (see, e.g., ref. [37] for a review and a complete

list of references): using a functional integral approach, high-energy hadron-hadron elastic

scattering amplitudes are shown to be governed by the correlation function of certain Wil-

son loops defined in Minkowski space [38–42]. Moreover, it has been shown in refs. [43–47]

that this correlation function can be reconstructed by analytic continuation from the cor-

relation function of two Euclidean Wilson loops. This has allowed the investigation of the

correlators using the nonperturbative methods of Euclidean Field Theory, both through

approximate analytical calculations in the Stochastic Vacuum Model (SVM) [48], in the

Instanton Liquid Model (ILM) [49, 50], and using the AdS/CFT correspondence [51–54],

and through numerical Monte Carlo simulations in Lattice Gauge Theory (LGT) [50, 55]

(see also refs. [56, 57] for a short review).

As discussed in refs. [50, 55], the comparison of the analytic nonperturbative cal-

culations in QCD-related models [48–50] (as well as that of the perturbative calcula-

tions [46, 48, 58]) to the numerical data from LGT is not satisfactory. As the numerical

results obtained on the lattice can be considered “exact” (within the errors) predictions of

QCD, this casts doubts on the viability of the above-mentioned models, which moreover

do not lead to rising total cross sections.

Recently, a new analysis of the numerical results has been proposed in ref. [59]. The

main purpose of that paper was to provide a parameterisation of the lattice data that,

after analytic continuation to Minkowski space, results into a physically acceptable scat-

tering amplitude satisfying the unitarity constraint, and that furthermore leads to a rising

behaviour of total cross sections at high energy (beside, of course, fitting well the data). In

1Notice that the experimental value of B is much smaller than the coefficient π
m2

π
(about 0.5%) appearing

in the FLM bound. See refs. [21–23] for recent work to improve the bound, and also ref. [24].
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particular, we were able to identify and qualitatively justify a class of simple parameterisa-

tions that lead to universal “Froissart-like” behaviour. Moreover, the value of B resulting

from our fits was of the same order of magnitude of the experimental value, within the

large errors, and notwithstanding the use of the quenched approximation in the numerical

simulations. However, although the results above look promising, the functional forms used

in the analysis of ref. [59] are not fully justified.

The purpose of this paper is to gain more insight both on the functional form of the

relevant Wilson-loop correlators, and on the quantitative identification of its relevant pa-

rameters. The basic idea is to analyse the Euclidean correlators by inserting a complete set

of states between the Wilson loops, and extracting the large impact-parameter behaviour

of the Wilson-loop correlator. Under the assumption that the analytic continuation to

Minkowski space can be performed term by term, we are able to identify the terms that

dominate the sum at high energy, and in turn to compute the high-energy behaviour of

total cross sections. Under the above-mentioned nontrivial analyticity assumption, we

provide a derivation of the “Froissart-like” behaviour of hadronic total cross sections in

the framework of QCD. Furthermore, we discuss how one can obtain universality of this

behaviour, and how the coefficient B of the log2 s term is related to the hadronic spectrum.

The plan of the paper is the following. In section 2 we give a brief account of the

nonperturbative approach to soft high-energy scattering, based on the correlation function

of Wilson loops in the sense of the QCD functional integral. We also discuss the issue

of analytic continuation to Euclidean space. In section 3 we give a general outline of our

argument, to provide a guide for the reader to the more technical discussion of the following

sections. In section 4 we relate the functional-integral language with the operator language,

and we re-express the Wilson-loop correlation function in terms of a sum over a complete

set of states. After performing the analytic continuation to Minkowski space, we investigate

the limits of large energy and large impact parameter. In section 5 we use the corresponding

results to investigate the high-energy behaviour of the hadronic total cross sections and

of the elastic scattering amplitudes. Finally, in section 6 we draw our conclusions. Some

technical details are discussed in appendix A.

2 Meson-meson scattering from dipole-dipole scattering

In this section we briefly sketch the nonperturbative approach to soft high-energy scattering

(see ref. [55] for a more detailed presentation, and also ref. [60] for a recent re-derivation

of the main formula). The elastic scattering amplitude M(hh) of two hadrons, or more

precisely mesons (taken for simplicity with the same mass m), in the soft high-energy

regime can be reconstructed from the scattering amplitude M(dd) of two dipoles of fixed

transverse sizes ~R1,2⊥, and fixed longitudinal-momentum fractions f1,2 of the two quarks

in the two dipoles, after folding with two proper squared hadron wave functions |ψ1|2 and

|ψ2|2, describing the two interacting hadrons [38–42]:

M(hh)(s, t) =

∫
d2 ~R1⊥

∫ 1

0
df1 |ψ1(~R1⊥, f1)|2

∫
d2 ~R2⊥

∫ 1

0
df2 |ψ2(~R2⊥, f2)|2

×M(dd)(s, t; ~R1⊥, f1, ~R2⊥, f2) ≡ 〈〈M(dd)(s, t; ν1, ν2)〉〉,
(2.1)

– 3 –
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Figure 1. The relevant Wilson loops in Euclidean space.

with:
∫
d2 ~R1⊥

∫ 1
0 df1 |ψ1(~R1⊥, f1)|2 =

∫
d2 ~R2⊥

∫ 1
0 df2 |ψ2(~R2⊥, f2)|2 = 1, so that 〈〈1〉〉 = 1.

The notation νi = (~Ri⊥, fi) will be often used for the sake of brevity. For the treatment

of baryons, a similar picture can be adopted, using a genuine three-body configuration or,

alternatively and even more simply, a quark-diquark configuration: we refer the interested

reader to the above-mentioned original references [38–42] and to ref. [61].

In turn, the dipole-dipole scattering amplitude is obtained from the (properly nor-

malised) correlation function of two Wilson loops in the fundamental representation, de-

fined in Minkowski spacetime, running along the paths made up of the quark and antiquark

classical straight-line trajectories, and thus forming a hyperbolic angle χ ' log(s/m2) in

the longitudinal plane. The paths are cut at proper times ±T as an infrared regularisation,

and closed by straight-line “links” in the transverse plane, in order to ensure gauge invari-

ance. Eventually, the limit T →∞ has to be taken. It has been shown in refs. [43–47] that

the relevant Minkowskian correlation function GM (χ;T ;~z⊥; ν1, ν2) (~z⊥ being the impact pa-

rameter, i.e., the transverse separation between the two dipoles) can be reconstructed, by

means of analytic continuation, from the Euclidean correlation function of two Euclidean

Wilson loops,

GE(θ;T ;~z⊥; ν1, ν2) ≡ 〈WE [C (T )
1 ]WE [C (T )

2 ]〉E
〈WE [C (T )

1 ]〉E〈WE [C (T )
2 ]〉E

− 1 , (2.2)

where 〈. . .〉E is the average in the sense of the Euclidean QCD functional integral. The

Euclidean Wilson loop is defined as follows,

WE [C] ≡ 1

Nc
TrP exp

{
−ig

∮

C
AEµ(xE)dxEµ

}
, (2.3)

where P stands for path-ordering with larger values of the path parameter appearing on
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the left.2 The Wilson loops appearing in eq. (2.2) are computed on the paths made up of

the following quark [+] - antiquark [−] straight-line paths (see figure 1),

C (T )
1 : X±E1(τ) = ±u1τ + z + f±1 R1, C (T )

2 : X±E2(τ) = ±u2τ + f±2 R2, (2.4)

with τ ∈ [−T, T ], and closed by straight-line paths in the transverse plane at τ = ±T .

The four-vectors u1,2 are chosen to be u1,2 = (± sin θ
2 ,
~0⊥, cos θ2), θ being the angle formed

by the two trajectories, i.e., u1 · u2 = cos θ. Moreover, Ri = (0, ~Ri⊥, 0), z = (0, ~z⊥, 0)

and f+
i ≡ 1 − fi, f−i ≡ −fi. We define also the Euclidean and Minkowskian correlation

functions with the infrared cutoff removed as

CE(θ;~z⊥; ν1, ν2) ≡ lim
T→∞

GE(θ;T ;~z⊥; ν1, ν2) ,

CM (χ;~z⊥; ν1, ν2) ≡ lim
T→∞

GM (χ;T ;~z⊥; ν1, ν2) .
(2.5)

The dipole-dipole scattering amplitude is then obtained from CE(θ; . . .), with θ ∈ (0, π),

by means of analytic continuation as

M(dd)(s, t; ν1, ν2) ≡ −i 2s

∫
d2~z⊥e

i~q⊥·~z⊥CM (χ ' log(s/m2);~z⊥; ν1, ν2)

= −i 2s

∫
d2~z⊥e

i~q⊥·~z⊥CE(θ → −iχ ' −i log(s/m2);~z⊥; ν1, ν2) ,

(2.6)

with χ ∈ R+, and where s and t = −|~q⊥|2 (~q⊥ being the transferred momentum) are

the usual Mandelstam variables (for a detailed discussion on the analytic continuation see

ref. [47], where we have shown, on nonperturbative grounds, that the required analyticity

hypotheses are indeed satisfied). The restrictions on the domains of the variables θ and

χ cause no loss of generality, due to the symmetries of the Euclidean and Minkowskian

theories [62, 63].

For our purposes, it is convenient to exploit the rotation invariance of the Minkowskian

theory in order to fix the direction of ~z⊥ along, say, the 2-axis. Indeed, dropping all the

variables that are irrelevant here, and choosing a rotation of angle ϕ around the 1-axis in

such a way that Rϕ~b⊥ = ~z⊥,3 with ~b⊥ = (b, 0) and b = |~z⊥|, we have

∫
d2 ~R1⊥ |ψ1(~R1⊥)|2

∫
d2 ~R2⊥ |ψ2(~R2⊥)|2

∫
d2~z⊥ e

i~q⊥·~z⊥ CM (~z⊥; ~R1⊥, ~R2⊥)

=

∫
d2~z⊥ e

i~q⊥·~z⊥
∫
d2 ~R1⊥ |ψ1(Rϕ ~R1⊥)|2

∫
d2 ~R2⊥ |ψ2(Rϕ ~R2⊥)|2 CM (~b⊥; ~R1⊥, ~R2⊥) ,

(2.7)

and we can write
∫
d2~z⊥ =

∫∞
0 dbb

∫ 2π
0 dϕ. Expression eq. (2.7) simplifies in two cases. If

~q⊥ = 0, the only dependence on the orientation of ~z⊥ appears in the wave functions, so

2Usually, path-ordering requires larger values of the path parameter to appear on the right, while our

definition of path-ordering is usually called time-ordering and is denoted with T . The usual convention has

been followed in our previous papers. However, here we will also use the time-ordered product of operators,

for which we have preferred to reserve the symbol T .
3Here Rϕ denotes the restriction of the rotation to the (2, 3)-plane.
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~̃R1⊥

~̃R2⊥

~b⊥

xE4

xE3

Figure 2. Relevant configuration of dipoles in Euclidean space after aligning the impact parameter

with Euclidean “time”.

that we can treat the angular integration over ϕ as part of the averaging over the dipole

variables, i.e., we can write

M(hh)(s, 0) = −4πis

∫ 2π

0

dϕ

2π

∫
d2 ~R1⊥ |ψ1(Rϕ ~R1⊥)|2

∫
d2 ~R2⊥ |ψ2(Rϕ ~R2⊥)|2

×
∫ ∞

0
db b CM (~b⊥; ~R1⊥, ~R2⊥) ≡ −4πis 〈〈

∫ ∞

0
db b CM (~b⊥; ~R1⊥, ~R2⊥)〉〉ϕ ,

(2.8)

where 〈〈1〉〉ϕ = 1. Notice that we are not making any assumption on the wave functions.

The other case is that in which the wave functions are independent of the orientation of the

dipoles: this is the case, for example, if one considers amplitudes for unpolarised scattering.

Under this condition, Rϕ drops from the wave functions in eq. (2.7), and after carrying out

the integration over ϕ one obtains the following simple form for the meson-meson scattering

amplitude,

M(hh)(s, t) = −4πis 〈〈
∫ ∞

0
dbb J0(b

√
−t) CM (χ ' log(s/m2);~b⊥; ν1, ν2)〉〉0 , (2.9)

where by the subscript 0 we indicate explicitly that the wave functions are rotation-

invariant. We note here that in most phenomenological applications of the nonperturbative

approach to soft high energy scattering, the hadron wave functions are chosen to be in-

variant under rotations and under the exchange fi → 1− fi (see refs. [41, 42] and also [37],

section 8.6, and references therein).

Clearly, CM (χ;~b⊥; ν1, ν2) = CE(θ → −iχ;~b⊥; ν1, ν2), due to the analytic continuation

relations. Furthermore, we can exploit the O(4) invariance of the Euclidean theory to

show that

CE(θ;~b⊥; ν1, ν2) = C̃E(θ; b; ν1, ν2) = lim
T→∞

G̃E(θ;T ; b; ν1, ν2) , (2.10)

– 6 –
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where G̃E is the correlation function of two Wilson loops computed on new paths C̃ (T )
1,2 ,

G̃E(θ;T ; b; ν1, ν2) ≡ 〈WE [C̃ (T )
1 ]WE [C̃ (T )

2 ]〉E
〈WE [C̃ (T )

1 ]〉E〈WE [C̃ (T )
2 ]〉E

− 1 , (2.11)

with C̃ (T )
1,2 obtained from C (T )

1,2 by rotating the transverse separation (0,~b⊥, 0) along the

Euclidean “time” direction xE4, see figure 2. Explicitly, these paths are defined by

C̃ (T )
1 : X̃±E1(τ) = ±ũ1τ + z̃ + f±1 R̃1 , C̃ (T )

2 : X̃±E2(τ) = ±ũ2τ + f±2 R̃2 , (2.12)

with τ ∈ [−T, T ], and closed by appropriate straight-line paths at τ = ±T . Here

ũ1,2 =

(
cos

θ

2
,± sin

θ

2
, 0, 0

)
, z̃ = (0, 0, 0, b) ,

R̃i = (0, 0, ~̃Ri⊥) = (0, 0, ri sinφi, ri cosφi) , i = 1, 2 ,

(2.13)

where ri = |~Ri⊥|, φi is the angle formed by ~b⊥ and ~Ri⊥, and f±i have been defined after

eq. (2.4). For future utility, we define also the paths C̃ (T )
0 (νi),

C̃ (T )
0 (νi) : X̃±E0(τ) = ±ũ0τ + f±i R̃i , u0 = (1, 0, 0, 0) , (2.14)

again with τ ∈ [−T, T ], and closed by appropriate straight-line paths. These are nothing

but rectangular paths centered4 at the origin, and with the “long” side parallel to direction

1. Obviously, CM (χ;~b⊥; ν1, ν2) = C̃E(θ → −iχ; b; ν1, ν2), so that C̃E encodes all the relevant

information on the scattering amplitude.

We finally mention that the amplitude for meson-antimeson scattering is obtained

from eq. (2.6) by replacing ~R2⊥, f2 → −~R2⊥, 1 − f2, or equivalently by performing the

analytic continuation χ→ iπ−χ of the Minkowskian correlator CM , thanks to the crossing-

symmetry relations discussed in refs. [62, 63],

CM (χ;~z⊥; ν1, ν̄2) = CM (χ;~z⊥; ν̄1, ν2) = CM (iπ − χ;~z⊥; ν1, ν2) , (2.15)

where ν̄i = (−~Ri⊥, 1−fi). Notice that for hadronic wave functions invariant under rotations

and under the exchange fi → 1 − fi [see after eq. (2.9)], the scattering amplitude is

automatically crossing-symmetric.

3 Relating hadronic total cross sections and the QCD spectrum: outline

As we have stated in the Introduction, the purpose of this paper is to obtain new insights

on the high-energy behaviour of hadronic total cross sections, by relating the Wilson-loop

correlation functions from which the scattering amplitudes are built in the soft high energy

regime to the spectrum of QCD. As this involves a certain number of rather technical steps,

we want to provide first a general outline of our argument, to make it easier for the reader

to follow the detailed discussion of the following sections.

4Here by “center” of the loop we mean the “center of mass” of the dipole at τ = 0, i.e., fiX
+
E0(0) + (1−

fi)X
−
E0(0).

– 7 –
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The starting point is to re-express the relevant Euclidean correlation function in the

operator language. This requires the introduction of the Euclidean Wilson loop operator

ŴE , which will be defined precisely in eq. (4.4) below. In terms of ŴE , Wilson-loop corre-

lation functions in the functional-integral formalism are rewritten as vacuum expectation

values of T -ordered products of Wilson loop operators. For our purposes, it is convenient to

work with the correlation function G̃E defined in eq. (2.11), for which the separation along

Euclidean “time” is equal to the impact-parameter distance b in the scattering process.

For sufficiently large b, so that there are no (Euclidean) time-ordering issues [see eq. (4.7)],

the relevant correlator reads (up to normalisation factors)

〈WE [C̃ (T )
1 ]WE [C̃ (T )

2 ]〉E = 〈0|ŴE [C̃ (T )
1 ]ŴE [C̃ (T )

2 ]|0〉 , (3.1)

where the paths C̃ (T )
1,2 have been defined above in eq. (2.12).

The form eq. (3.1) of the correlation function is suitable for inserting a complete

set of states between the two Wilson loops. For this purpose we use asymptotic states

characterised by their particle content, and by the momentum and third component of

the spin of each particle. Denoting by α a generic state, and exploiting the Euclidean

symmetries, one finds

〈WE [C̃ (T )
1 ]WE [C̃ (T )

2 ]〉E =
∑

α

〈0|ŴE [C̃ (T )
1 ]|α〉〈α|ŴE [C̃ (T )

2 ]|0〉

=
∑

α

e−bEαeiθS
(α)
3 〈0|ŴE [C̃ (T )

0 (ν1)]|α θ
2
〉〈α− θ

2
|ŴE [C̃ (T )

0 (ν2)]|0〉 ,

(3.2)

where the sum over α includes also the appropriate phase-space integration over the par-

ticles’ momenta. Here Eα and S
(α)
3 are the total energy and total third component of

the spin for state α, respectively, and the paths C̃ (T )
0 (ν1,2), which have been defined in

eq. (2.14), are independent of b and θ. Moreover, the states |α± θ
2
〉 are obtained from |α〉

by performing a rotation of the momenta of ± θ
2 around the third axis [see eq. (4.19)].

The use of time-translation invariance in the second line of eq. (3.2) allows to completely

expose the dependence on b, while the use of rotation invariance allows to shift the depen-

dence on θ from the loops to the momenta of the particles in the intermediate states; a

further simple change of variables allows to expose the θ-dependence almost entirely [see

eqs. (4.20)–(4.22)], yielding

C̃E = lim
T→∞

〈0|WE [C̃ (T )
1 ]WE [C̃ (T )

2 ]|0〉
〈0|ŴE [C̃ (T )

1 ]|0〉〈0|ŴE [C̃ (T )
2 ]|0〉

− 1

=
∑

α 6=0

e−bEαeiθS
(α)
3

(sin θ)Nα
Mα(θ; ν1, ν2) =

∑

α 6=0

δCα ,

(3.3)

where Nα is the number of particles in state α, Mα is given by the Wilson-loop matrix

elements expressed in terms of the new variables [times appropriate phase-space factors,

see eq. (4.26)], and we have taken the physical limit T →∞ [see eqs. (2.10) and (4.28)].

The next step is to perform the analytic continuation to Minkowski space, which for

the correlation function C̃E reduces to taking θ → −iχ, and to study the large-χ limit.

– 8 –
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To this extent, we make the crucial assumption that the analytic continuation can be

carried out term by term, i.e., we assume that the analytic continuation can be performed

independently for each term δCα in the sum over states in eq. (3.3). This requires that the

sum has “good” convergence properties (e.g., uniform convergence in θ), so that analytic

continuation and summation commute. Under this assumption, it is easy to carry out the

analytic continuation, and to determine separately the leading energy dependence of each

term in the sum in the physical limit of large χ ∼ log s. This is due to the fact that, after

analytic continuation, the function Mα(θ → −iχ; ν1, ν2) in eq. (3.3) becomes independent

of χ at large χ [see eqs. (4.31)–(4.35)]. Assuming that it is a finite nonzero quantity (see

however footnote 11), it is therefore possible to read off the leading power of s ∼ eχ for

each contribution directly from eq. (3.3). One can easily see that at fixed particle content

the dominant contributions come from states with maximal total spin. Furthermore, it is

clear from eq. (3.3) that at large b each contribution dies off exponentially. More precisely,

for maximal total spin the leading term in δCα receives a factor eχ[s(a)−1]e−bm
(a)

from each

particle, i.e., up to χ, b-independent factors and inverse powers of b one finds

δCα ∼
∏

a

[
eχ[s(a)−1]e−bm

(a)
]na(α)

, (3.4)

with m(a) and s(a) respectively the mass and spin of particles of type a, and na(α) the

corresponding occupation number in state α. In physical terms, this means that states

containing only particles of type a contribute appreciably to the correlator only up to

impact-parameter distances of the order of the “effective radius” R
(a)
eff = χ[s(a) − 1]/m(a)

[or of an appropriate weighted average of the effective radii, if different species of particles

are present, see eq. (4.40)].

The final step consists in realising that, for our purposes, the relevant contributions

to the Wilson-loop correlator come from states containing only a single type of parti-

cles, namely those with maximal “effective radius”. This is because to obtain the elastic

scattering amplitude and the total cross section one has to integrate over the impact pa-

rameter, and the dominant contributions to the integrals in the large-χ limit come pre-

cisely from particles with maximal “effective radius”. In turn, this implies that the lead-

ing relevant contributions to the correlator depend on b only through the combination

z = z(χ, b) = eχ(s̃−1)e−bm̃, where m̃ and s̃ are respectively the mass and spin of the parti-

cle maximising the ratio (s(a)−1)/m(a). More precisely, up to constant factors, each of the

n-particle sectors contributes a term proportional to wn, where w = w(χ, z(χ, b)) ∝ z/χλ

for some real λ, whose precise value turns out to be irrelevant for the leading asymptotic

behaviour of the total cross section.

Summarising, under the analyticity and finiteness assumptions mentioned above, it

is possible to show that at large χ the relevant (Minkowskian) Wilson-loop correlation

function, CM (χ;~b⊥; ν1, ν2), depends only on a specific combination, w, of χ and b, i.e.,

CM (χ;~b⊥; ν1, ν2) ∼
s→∞

g(w; ν1, ν2)− 1 , (3.5)

[see eq. (4.49)] for sufficiently large b [see eq. (4.7)]. Furthermore, one finds that the
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relevant features of the detailed form of w depend only on the spectrum of the theory.

This constitutes the first part of our program, and will be discussed in section 4.

Having derived the large-χ behaviour of the relevant Wilson-loop correlation func-

tion, one can study the consequences for the asymptotic behaviour of hadronic total cross

sections. An essential ingredient here is the unitarity constraint, which provides bounds

on the scattering amplitude in impact-parameter space. As we argue in section 5, the

unitarity constraint translates into a bound on the relevant Minkowskian correlator, i.e.,

|CM (χ;~b⊥; ν1, ν2)+1| ≤ 1, which in turn implies that g in eq. (3.5) is bounded [see eq. (5.6)].

This immediately allows to identify the large-b region as the one giving the dominant con-

tribution to the total cross sections, and to obtain a “Froissart-like” bound on the total

cross sections [see eq. (5.22)],

σ
(hh)
tot (s) .

s→∞
4π

(s̃− 1)2

m̃2

(
log

s

m2

)2
, (3.6)

where s̃ and m̃ have been defined above. If g(w) is either vanishing or oscillating at large w,

one can derive a stronger result, namely one can predict the asymptotic behaviour of σ
(hh)
tot

and show that it is universal, i.e., independent of the kind of hadrons involved. Explicitly,

one finds [see eq. (5.34)]

σ
(hh)
tot (s) '

s→∞
2π

(s̃− 1)2

m̃2

(
log

s

m2

)2
. (3.7)

Remarkably, in this case the prefactor of log2 s is shown to be entirely determined by the

spectrum of QCD, and can be predicted by finding the type of particle with maximal

effective radius, as explained above. The detailed discussion of these issues, and a few

results on the elastic scattering amplitudes, are reported in section 5.

4 Wilson-loop correlation function and the hadronic spectrum

In this section we will show how the relevant Wilson loop correlator can be related to the

QCD spectrum, discussing in full detail the first part of the argument outlined above in

section 3. The consequences of our results for the hadronic total cross sections and elastic

scattering amplitudes will be discussed in section 5.

4.1 Wilson loop in the operator formalism

The “good” definition of the Wilson loop operator in Minkowski space, preserving its gauge

invariance, is the following [64]:

Ŵ[C] ≡ 1

Nc
TrTP exp

{
−ig

∮

C
Âµ(x)dxµ

}
. (4.1)

Here and in the following the “hat” denotes an operator, and TP stands for both time-

ordering, acting on operators, and path-ordering, acting on the colour matrices. Explicitly,

TP
{
Âµ(x(τ))Âν(x(τ ′))

}
=
{

Θ(x0(τ)− x0(τ ′))Âaµ(x(τ))Âbν(x(τ ′))

+ Θ(x0(τ ′)− x0(τ))Âbν(x(τ ′))Âaµ(x(τ))
}{

Θ(τ − τ ′)tatb + Θ(τ ′ − τ)tbta
}
,

(4.2)
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where Θ(x) is the Heaviside step function, and similarly in the case of more terms. The

bridge between the operator formalism and the functional-integral formalism is provided

by the relation

〈W[C1] . . .W[Cn]〉 = 〈0|T
{
Ŵ[C1] . . . Ŵ[Cn]

}
|0〉 , (4.3)

where the time ordering is understood to act on the expansion of the Wilson loops in

products of field operators. The definition of the Euclidean Wilson loop is the same as in

eq. (4.1),

ŴE [C] ≡ 1

Nc
TrTP exp

{
−ig

∮

C
ÂEµ(xEµ)dxEµ

}
, (4.4)

the only difference being that now the time-ordering is done with respect to the Euclidean

“time”. Also,

〈WE [C1] . . .WE [Cn]〉E = 〈0|T
{
ŴE [C1] . . . ŴE [Cn]

}
|0〉 , (4.5)

where T is again time-ordering with respect to the Euclidean “time”.

Let us now focus on the case of interest. Using eq. (4.5), we can recast the correlation

function eq. (2.11) in terms of vacuum expectation values as follows,

G̃E(θ;T ; b; ν1, ν2) =
〈0|T

{
ŴE [C̃ (T )

1 ]ŴE [C̃ (T )
2 ]

}
|0〉

〈0|ŴE [C̃ (T )
1 ]|0〉〈0|ŴE [C̃ (T )

2 ]|0〉
− 1 . (4.6)

Since we are mainly interested in the large-distance behaviour of the relevant Wilson-loop

correlation function, we restrict our analysis to the case of loops that do not overlap in

Euclidean “time”, which are characterised by

b > b0(ν1, ν2) ≡ r1[f1 −Θ(− cosφ1)] cosφ1 − r2[f2 −Θ(cosφ2)] cosφ2 (≥ 0) , (4.7)

in terms of the transverse distance and of the sizes ri and orientations φi of the dipoles [see

eq. (2.13)]. In this case we can drop the time-ordering symbol in the numerator, obtaining

G̃E(θ;T ; b; ν1, ν2) =
〈0|ŴE [C̃ (T )

1 ]ŴE [C̃ (T )
2 ]|0〉

〈0|ŴE [C̃ (T )
1 ]|0〉〈0|ŴE [C̃ (T )

2 ]|0〉
− 1 . (4.8)

In the following we will always assume that eq. (4.7) is satisfied, unless explicitly stated,

so that eq. (4.8) holds.

4.2 Inserting a complete set of states

The stage is now set to insert a complete set of states between the Wilson loop operators.

According to the usual assumptions, such a complete set of states is made of the asymptotic

(in or out) states of the theory, containing any number of the particles of the theory

(including bound states) [65]. We choose in states for definiteness; the analysis is of course

unchanged if one uses out states instead.

A generic asymptotic in state is characterised by its particle content, and by the

momenta and the third component of the spins of the particles. We will denote by

|α, {~p}α, {s3}α ; in〉 (4.9)
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a state with particle content α, where α =
(
n1, n2, . . .

)
is a string made up of the occupation

numbers na = na(α) of the various particle species a = 1, 2, . . ., characterised by their mass

m(a) and spin s(a), and moreover by their baryon number, electric charge, “strangeness”,

“charm”, “bottomness” and “topness”. From now on, the latter quantum numbers will be

indicated collectively as “discrete charges”. Here {~p}α = {(p1, p2, p3)}α and {s3}α denote

respectively the sets of all the momenta ~p (a)i and all the third components of the spin s
(a)i
3 ,

where the index a = 1, 2, . . . runs on the particle species and i = 1, 2, . . . , na(α) on the

particles of the same species. As we are interested in real-world QCD, we will consider the

case m(a) > 0 ∀a; the inclusion of massless particles presents no particular difficulty, and

will be briefly discussed in appendix A.1.

Let us now define the projector on the n-particle sector as follows:

|n〉〈n| ≡ 1

n!

∑

α

δNα,n Pα
∑

{s3}α

∫
dΩα |α, {~p}α, {s3}α ; in〉〈α, {~p}α, {s3}α ; in| , (4.10)

where the sum is over the strings α with Nα ≡
∑

a na(α) equal to n, the factor

Pα =
n!∏

a na(α)!
(4.11)

is due to Bose/Fermi symmetry (having factorised a 1/n! for convenience), and we have

denoted

∑

{s3}α

=
∏

a, na(α)6=0

na(α)∏

i=1





s(a)∑

s
(a)i
3 =−s(a)




,

∫
dΩα =

∏

a, na(α)6=0

na(α)∏

i=1

{∫
d3p(a)i

(2π)32ε(a)i

}
, ε(a)i =

√(
m(a)

)2
+
(
~p (a)i

)2
.

(4.12)

We are using the standard relativistic normalisation for the states.5 With this definition,

the expansion of eq. (4.8) over a complete set of states reads

G̃E(θ;T ; b; ν1, ν2) =

∞∑

n=1

〈0|ŴE [C̃ (T )
1 ]|n〉

〈0|ŴE [C̃ (T )
1 ]|0〉

〈n|ŴE [C̃ (T )
2 ]|0〉

〈0|ŴE [C̃ (T )
2 ]|0〉

=

∞∑

n=1

1

n!
Gn(θ;T ; b; ν1, ν2) , (4.13)

where we have introduced the notation

Gn(θ;T ; b; ν1, ν2) ≡
∑

α

δNα,n Pα
∑

{s3}α

∫
dΩα

〈0|ŴE [C̃ (T )
1 ]|α, {~p}α, {s3}α ; in〉
〈0|ŴE [C̃ (T )

1 ]|0〉

× 〈α, {~p}α, {s3}α ; in|ŴE [C̃ (T )
2 ]|0〉

〈0|ŴE [C̃ (T )
2 ]|0〉

.

(4.14)

5For example, for one-particle states 〈~p ′, s′3|~p, s3〉 = 2ε(2π)3δ(3)(~p ′ − ~p)δs3s′3 , for two-particle states

〈~p ′1, p ′2, s′3 1, s
′
3 2|~p1, ~p2, s3 1, s3 2〉 = 2ε12ε2(2π)3δ(3)(~p ′1 − ~p1)(2π)3δ(3)(~p ′2 − ~p2)δs′3 1,s3 1

δs′3 2,s3 2
+ 1 ↔ 2,

and so on.
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It is important to notice that, since the Wilson loop carries no flavour, contributions to

this sum come only from states with vanishing “discrete charges”.

We exploit now the invariance of the theory under translations along Euclidean “time”

and under rotations to write

ŴE [C̃ (T )
1 ] = eĤbe−iĴ3

θ
2 ŴE [C̃ (T )

0 (ν1)]eiĴ3
θ
2 e−Ĥb ,

ŴE [C̃ (T )
2 ] = eiĴ3

θ
2 ŴE [C̃ (T )

0 (ν2)]e−iĴ3
θ
2 ,

(4.15)

where Ĥ and Ĵ3 are the Hamiltonian and the third component of the angular momentum,

i.e., we re-express the relevant Wilson loops in terms of a rectangular loop with one (long)

side parallel to the 1-axis, and one (short) side in the (3,4)-plane [recall the definition of

C̃ (T )
0 (νi), eq. (2.14)]. We can now write

Gn(θ;T ; b; ν1, ν2) =
∑

α

δN [α],n Pα
∑

{s3}α

eiθS
(α)
3 ({s3}α)

∫
dΩα e

−bEα({~p}α)

×W (T )
α ({R θ

2
~p}α, {s3}α; ν1)W

(T )
α ({R− θ

2
~p}α, {s3}α; ν2) .

(4.16)

Here we have introduced some new notation, which we now explain. The total energy Eα
and the total third component of the spin S

(α)
3 are given by

Eα({~p}α) =
∑

a, na(α)6=0

na(α)∑

i=1

ε(a)i =
∑

a, na(α)6=0

na(α)∑

i=1

√(
m(a)

)2
+
(
~p (a)i

)2
,

S
(α)
3 ({s3}α) =

∑

a, na(α)6=0

na(α)∑

i=1

s
(a)i
3 .

(4.17)

As the baryon number (and so the fermion number) must be zero for a state to contribute,

the total spin S
(α)
3 must be an integer. The Wilson-loop matrix elements are denoted by

W (T )
α ({~p}α, {s3}α; νi) =

〈0|ŴE [C̃ (T )
0 (νi)]|α, {~p}α, {s3}α ; in〉
〈0|ŴE [C̃ (T )

0 (νi)]|0〉
,

W
(T )
α ({~p}α, {s3}α; νi) =

〈α, {~p}α, {s3}α ; in|ŴE [C̃ (T )
0 (νi)]|0〉

〈0|ŴE [C̃ (T )
0 (νi)]|0〉

.

(4.18)

In eq. (4.16), we have denoted the rotated three-momenta by {R± θ
2
~p}α, where

Rϕ =




cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 , (4.19)

and it is understood that the rotation is applied to the momenta of all the particles. For

our purposes, for θ 6= 0, π, it is convenient to re-express the rotated three-momenta in

terms of the variables

x
(a)i
± = cos

θ

2
p

(a)i
1 ± sin

θ

2
p

(a)i
2 . (4.20)
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We have

~p (a)i =

(
x

(a)i
+ + x

(a)i
−

2 cos θ2
,
x

(a)i
+ − x (a)i

−

2 sin θ
2

, p3

)
,

R± θ
2
~p (a)i =

(
x

(a)i
± ,± cot θx

(a)i
± ∓ 1

sin θ
x

(a)i
∓ , p3

)
.

(4.21)

We will therefore write

W (T )
α ({R θ

2
~p}α, {s3}α; νi) = W (T )

α ({
(
x+, cot θx+ − 1

sin θx−, p3

)
}α, {s3}α; νi) ,

W
(T )
α ({R− θ

2
~p}α, {s3}α; νi) = W

(T )
α ({

(
x−,− cot θx− + 1

sin θx+, p3

)
}α, {s3}α; νi) ,

Eα({~p}α) = Eα({(x++x−
2 cos θ

2

, x+−x−
2 sin θ

2

, p3)}α) =
∑

a, na(α)6=0

na(α)∑

i=1

ε(a)i ,

(4.22)

where in terms of the new variables

ε(a)i =

√
(
m(a)

)2
+

(
x

(a)i
+ +x

(a)i
−

2 cos θ
2

)2

+

(
x

(a)i
+ −x(a)i

−
2 sin θ

2

)2

+
(
p

(a)i
3

)2
. (4.23)

Furthermore, it is easy to obtain the Jacobian for the change of variables,

d3p(a)i =
1

| sin θ| dx
(a)i
+ dx

(a)i
− dp

(a)i
3 , (4.24)

so that we can write

dΩα =
1

| sin θ|Nα dX
+
α dX

−
α dΩ̃αhα({(x++x−

2 cos θ
2

, x+−x−
2 sin θ

2

, p3)}) ,

dX±α =
∏

a, na(α)6=0

na(α)∏

i=1

dx
(a)i
±

2π
, dΩ̃α =

∏

a, na(α)6=0

na(α)∏

i=1

dp
(a)i
3

(2π)2ε̃(a)i
,

hα =
∏

a, na(α)6=0

na(α)∏

i=1

ε̃(a)i

ε(a)i
, ε̃(a)i =

√
(
m(a)

)2
+
(
p

(a)i
3

)2
.

(4.25)

Restricting to θ ∈ (0, π), so that we can drop the absolute value from the Jacobian, we can

finally write

Gn(θ;T ; b; ν1, ν2) =
1

(sin θ)n

∑

α

δNα,n Pα
∑

{s3}α

eiθS
(α)
3 ({s3}α)

∫
dX+

α

∫
dX−α

∫
dΩ̃α

× hα({(x++x−
2 cos θ

2

, x+−x−
2 sin θ

2

, p3)})e
−bEα

(
{(x++x−

2 cos θ2

,
x+−x−
2 sin θ2

,p3)}α
)

×W (T )
α ({

(
x+, cot θx+ − 1

sin θx−, p3

)
}α, {s3}α; ν1)

×W (T )
α ({

(
x−,− cot θx− + 1

sin θx+, p3

)
}α, {s3}α; ν2) .

(4.26)
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Let us introduce one last piece of notation. Since we are interested in the limit of infinite

loop length, and we expect such a limit to exist for all the matrix elements W
(T )
α , W

(T )
α

separately,6 we define

Cn ≡ lim
T→∞

Gn , Wα ≡ lim
T→∞

W (T )
α , Wα ≡ lim

T→∞
W

(T )
α , (4.27)

and so we write

C̃E =
∞∑

n=1

1

n!
Cn . (4.28)

4.3 Analytic continuation to Minkowski space

The expression eq. (4.26), in the limit T → ∞, is the starting point for the analytic

continuation back to Minkowski space, that we now discuss. At this point we make two

crucial analyticity assumptions:

1. the analytic continuation can be performed term by term, i.e., separately for the

contribution of each state;

2. the matrix elementsWα andWα, expressed in terms of the variables x
(a)i
± , are analytic

in θ, in a complex domain including the real segment (0, π) and the negative imaginary

axis.7

The first assumption is especially strong, as it requires appropriate convergence properties

of the double series defined by eqs. (4.13) and (4.26) (at least in the limit T → ∞). We

will discuss later possible ways of partially relaxing this condition.

Let us now consider the various terms of eq. (4.26), in the limit T →∞, and analytically

continuing θ in the complex plane, i.e., replacing θ → θ − iχ with θ ∈ (0, π) and χ ∈ R+.

The physical, Minkowskian quantity is obtained in the limit θ → 0.8 Let us start from the

total energy Eα =
∑

a,i ε
(a)i. We have

ε(a)i →
θ→θ−iχ

√
(
m(a)

)2
+

(
x

(a)i
+ +x

(a)i
−

2 cos θ−iχ
2

)2

+

(
x

(a)i
+ −x(a)i

−
2 sin θ−iχ

2

)2

+
(
p

(a)i
3

)2

=

√
(
m(a)

)2
+
(
p

(a)i
3

)2
+Q(a)i =

√
V (a)i ,

(4.29)

6 This can be understood in the LSZ framework [66, 67], where the matrix elements get replaced by the

vacuum expectation values of products of appropriate interpolating fields and the Wilson loop. Due to the

short-range nature of strong interactions, those parts of the loop that are too distant from the interpolating

fields do not interact with them, and give contributions only to the self-interaction of the loop. As these

contributions get cancelled by the normalisation factor, one expects W
(T )
α and W

(T )
α to become almost

constant beyond some “critical” loop length.
7Technically, this amounts to asking for analyticity of Wα and Wα in the second component of the

three-momenta of the particles. Notice that analyticity in all the first components of the momenta is not

satisfied, as the translational invariance along direction 1 in the limit T →∞ leads to the appearence of a

delta function imposing that the first component of the total momentum vanish.
8This limit gives the physical amplitude in the direct channel. The limit θ → π (with negative χ)

provides the amplitude in the crossed channel, see the discussion at the end of section 2.
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with

Q(a)i = (A(a)i)2
(
cos θ2

)2
+ (B(a)i)2

(
sin θ

2

)2
+ [(A(a)i)2 − (B(a)i)2](cos θ)2(sinh χ

2 )2

+
i

2
[(B(a)i)2 − (A(a)i)2] sin θ sinhχ ,

A(a)i =
1

2

x
(a)i
+ + x

(a)i
−

(cos θ2 cosh χ
2 )2 + (sin θ

2 sinh χ
2 )2

,

B(a)i =
1

2

x
(a)i
+ − x(a)i

−

(sin θ
2 cosh χ

2 )2 + (cos θ2 sinh χ
2 )2

.

(4.30)

Convergence problems in the integration over x
(a)i
± and p

(a)i
3 may arise if there were regions

with Re ε(a)i < 0. This can happen only if the phase of the argument of the square root in

eq. (4.29), V (a)i = |V (a)i|eiϕ(a)i
, grows beyond ±π. In turn, this can happen only if V (a)i

crosses the negative real axis, i.e., if there is a point where ImV (a)i = 0 with ReV (a)i < 0.

However, for θ ∈ (0, π), ImV (a)i = 0 implies ImQ(a)i = 0 and therefore A(a)i = ±B(a)i,

so that ReQ(a)i ≥ 0 and thus ReV (a)i > 0. As a consequence, as long as θ 6= 0, π, one

has ϕ(a)i ∈ (−π, π), which finally implies Re ε(a)i > 0 ∀a, i, i.e., ReEα > 0.9 On the other

hand, when θ = 0, π one has ImV (a)i = 0 independently of the integration variables, while

ReV (a)i can be negative. Therefore, one should keep in mind that the limits θ → 0, π

can be taken only after performing the integration: a small but nonzero θ serves as a

regularisation, that will be understood in the following.

Notice also that, as long as θ 6= 0, π, one has V (a)i 6= 0, so that no singularity appears

in the quantity hα. Moreover, for θ = 0, π, these singularities are integrable, so that they

cause no problem to the integration even in the limit θ → 0, π.

Having assumed analyticity of the matrix elements, there is no further problem in

carrying out the analytic continuation to Minkowski space (i.e., in taking θ → 0), obtaining

Cn(−iχ; b; ν1, ν2) =

(
i

sinhχ

)n∑

α

δNα,n Pα
∑

{s3}α

eχS
(α)
3 ({s3}α)

×
∫
dX+

α

∫
dX−α

∫
dΩ̃α hα({( x++x−

2 cosh χ
2
, i(x+−x−)

2 sinh χ
2
, p3)}α)

× e
−bEα

(
{( x++x−

2 cosh
χ
2
,
i(x+−x−)

2 sinh
χ
2
,p3)}α

)

×Wα({
(
x+, i cothχx+ − i

sinhχx−, p3

)
}α, {s3}α; ν1)

×Wα({
(
x−,−i cothχx− + i

sinhχx+, p3

)
}α, {s3}α; ν2) ,

(4.31)

where, as we have explained above, the expression for the energy Eα is properly regularised.

9For a massless particle m(a0) = 0 one has ReV (a0)i > 0, except at x
(a)i
+ = x

(a)i
− = p

(a)i
3 = 0 where

ReV (a0)i = 0. As a consequence, if there are massless particles in the spectrum one still has ReEα > 0,

except on the set of states containing only massless particles of zero momentum, where ReEα = 0, but

which is a set of zero measure.
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As we have explained in section 2, the Wilson-loop correlation function encodes the

scattering amplitude in the high-energy regime. Therefore, physical results are obtained in

the limit χ→∞, that we now discuss. Since10

ε(a)i →
θ→θ−iχ

√
(
m(a)

)2
+

(
x

(a)i
+ +x

(a)i
−

2 cos θ−iχ
2

)2

+

(
x

(a)i
+ −x(a)i

−
2 sin θ−iχ

2

)2

+
(
p

(a)i
3

)2

→
χ→∞

√
(
m(a)

)2
+
(
p

(a)i
3

)2
+O(e−χ) = ε̃(a)i +O(e−χ) ,

(4.32)

we have that hα → 1 after analytic continuation and in the large-χ limit, and that

Eα

(
{( x++x−

2 cosh χ
2
, i(x+−x−)

2 sinh χ
2
, p3)}α

)
→

χ→∞
Ẽα({p3}α) =

∑

a, na(α)6=0

na(α)∑

i=1

ε̃(a)i . (4.33)

Also, to leading order, Wα is independent of x
(a)i
− , and Wα is independent of x

(a)i
+ . Finally,

due to the exponential prefactor eχS
(α)
3 , for a given particle content α the leading contri-

bution comes from the spin configuration in which s
(a)i
3 = s(a) ∀i ∈ {1, . . . , na(α)}, which

we will denote as {s3 = s}α. To leading order in χ we have therefore

Cn(−iχ; b; ν1, ν2) ∼
χ→∞

(2i)n
∑

α

δNα,n Pα eχ[S
(α)
3 ({s3=s}α)−n]

∫
dΩ̃α e

−bẼα({p3}α)

×Fα({p3}α, ν1)Fα({p3}α, ν2) ,
(4.34)

where

Fα({p3}α; ν1) ≡
∫
dX+

α Wα({(x+, ix+, p3)}α, {s3 = s}α; ν1) ,

Fα({p3}α; ν2) ≡
∫
dX−α Wα({(x−,−ix−, p3)}α, {s3 = s}α; ν2) ,

(4.35)

with corrections being of relative order O(e−χ).11

The result above depends crucially on our analyticity assumptions, which can however

be relaxed. A possibility which is worth discussing is that the term-by-term analytic

continuation can be performed only in some limited range of χ at any fixed value of b.

Since a larger b makes the coefficient of eχ[S
(α)
3 ({s3=s}α)−n] smaller, in this case we expect

the range of χ to widen at larger impact parameter, including higher and higher values

of the energy. Turning the argument around, we expect in this case that increasing the

energy requires to go to larger impact parameter to perform the term-by-term analytic

continuation. As we will discuss in the following, this could be enough for our approach to

work.

10Notice that we are taking χ → ∞ before (actually, without) taking θ → 0: we are assuming that the

limit χ→∞ commutes with the integration (for θ 6= 0, π).
11 Here we are assuming that Fα and Fα are finite quantities, but it is of course possible that they are

zero or infinite. In these cases, in eq. (4.34) they would be replaced by a finite quantity times a χ-dependent

suppression or enhancement factor, respectively. This would change quantitatively the result obtained with

our method, but not the qualitative features of our argument.
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4.4 Large-b behaviour

Before discussing the physical consequences of our result for Cn, eq. (4.34), it is useful to

determine its behaviour for large impact parameter b. In order to do so, let us perform the

change of variables

p
(a)i
3 =

p̃
(a)i
3√
bm(a)

. (4.36)

The integration measure becomes

dΩ̃α =
∏

a, na(α)6=0

na(α)∏

i=1

dp̃
(a)i
3

(2π)2
√
bm(a)

√
(
m(a)

)2
+

(
p̃

(a)i
3√
bm(a)

)2

=
∏

a, na(α)6=0

na(α)∏

i=1

1

2
√
bm(a)

dp̃
(a)i
3

(2π)m(a)


1 +O


 1

bm(a)

(
p̃

(a)i
3

m(a)

)2



 ,

(4.37)

while expanding the energy Ẽα in inverse powers of bm(a) we obtain

Ẽα({ p̃3√
bm
}α) =

∑

a, na(α)6=0

na(α)∑

i=1


m(a) +

1

2b

(
p̃

(a)i
3

m(a)

)2

+O


 m(a)

(bm(a))2

(
p̃

(a)i
3

m(a)

)4



 .

(4.38)

Assuming now that Fα({0}α; ν1) and Fα({0}α; ν2) are nonzero, where {0}α denotes p
(a)i
3 =

0 ∀ a, i, and carrying out the integrations over p̃
(a)i
3 , we obtain

Cn(−iχ; b; ν1, ν2) ∼
χ→∞, b→∞

in
∑

α

δNα,n PαFα({0}α; ν1)Fα({0}α; ν2)

×
∏

a

(
1√

2πbm(a)
eχ[s(a)−1]e−bm

(a)

)na(α)

,

(4.39)

with corrections being of relative order O(e−χ) and O(b−1). The finiteness assumption is

not crucial: if Fα({0}α; ν1) and/or Fα({0}α; ν2) vanish, extra inverse powers of b appear,

which will not affect dramatically the high energy behaviour of the amplitude. A detailed

discussion of this issue is provided in appendix A.1, where the effects due to the presence

of massless particles in the spectrum are also considered.

The physical interpretation of eq. (4.39) is that the contribution to Cn of the states α,

characterised by a given particle content, is non-negligible as long as the impact-parameter

distance is smaller than or of the order of a critical “effective radius”,

R
[α]
eff (s) ≡

∑
a na(α)[s(a) − 1]∑
a na(α)m(a)

χ =

∑
a na(α)m(a)R

(a)
eff (s)∑

a na(α)m(a)
, (4.40)

growing like ∼ log s, but with a prefactor that depends on the particle content. This

means that while the ratio of effective radii corresponding to different particle contents

is constant, their difference can grow logarithmically with energy. In the last passage of
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eq. (4.40) we have made explicit that the effective radius for state α is the weighted average

of the single-particle effective radii,

R
(a)
eff (s) ≡ s(a) − 1

m(a)
χ ≡ l(a)

0 χ . (4.41)

4.5 Large-χ behaviour

It is clear from eq. (4.39) that one cannot straightforwardly take the limit χ → ∞ of the

quantity Cn. Nevertheless, since we are ultimately interested in integrating over the impact

parameter b to determine the elastic scattering amplitude and the total cross section,

it would be enough for our purposes if we could define a variable, which is a suitable

combination of χ and b, that encodes the energy and impact-parameter dependencies in

the high-energy limit. To this extent, we define the quantity

z(χ, b) ≡ ecχe−Mb , (4.42)

where the parameters c and M will be determined later, and we re-express Cn in terms

of z and χ. Using the large-χ, large-b expression eq. (4.39), and including explicitly the

subleading terms, we find

Cn(−iχ; b; ν1, ν2) = in
∑

α

δNα,n PαFα({0}α; ν1)Fα({0}α; ν2)

×
∏

a




eχ[s(a)−1−cm

(a)

M
]z
m(a)

M

[
2π log

(
ecχ

z

)
m(a)

M

] 1
2





na(α)

×
(

1 +O
(

1

log ecχ

z

)
+O(e−χ)

)
,

(4.43)

where for clarity we have suppressed the dependence of z on χ and b. We are considering

here the case of only massive particles in the spectrum. If we now choose

c

M
= max

a

s(a) − 1

m(a)
= max

a
l
(a)
0 , (4.44)

assuming that it exists and that it is positive,12 we immediately see that

lim
χ→∞

eχ[s(a)−1−cm
(a)

M
] =





0 , if l
(a)
0 <

c

M
,

1 , if l
(a)
0 =

c

M
.

(4.45)

Therefore, the contributions of states α containing particles with non-maximal effective

radius, i.e., with l
(a)
0 < c

M , are seen to be suppressed exponentially in χ when expressing

Cn as a function of z, with factors of the form e−δχzβ with δ and β positive real quantities,

related to the masses and spin configuration of α.

12If the maximum in eq. (4.44) exists but is negative or zero, we can take straightforwardly χ → ∞ in

eq. (4.39), obtaining either zero or a function of b only. In turn, this leads to a vanishing or constant forward

elastic scattering amplitude (and thus total cross section) at high energy.
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In principle, it is possible that there are several particles for which the ratio l
(a)
0 = s(a)−1

m(a)

is equal to the maximum, eq. (4.44). For sure, if it is so for a particle, so it is for its

antiparticle. For simplicity, we will assume that the maximum in eq. (4.44) is essentially

unique, i.e., that there is a single particle-antiparticle pair that saturates it (of course,

particle and antiparticle may coincide); the generalisation is straighforward, requiring only

to take into account the appropriate combinatorics. If m̃ and s̃ are respectively the mass

and the spin of these particles, we can conveniently choose c = s̃ − 1 and M = m̃. There

are two possibilities.

1. Suppose that the relevant particle is a boson coinciding with its antiparticle, and

therefore having vanishing discrete charges (baryon number, electric charge, “strangeness”,

“charm”, “bottomness” and “topness”). In this case, in the limit of large χ, the only terms

that survive in the sum over α are the states αn containing only n such bosons. Since for

these states Pαn = 1, eq. (4.43) simplifies to

Cn(−iχ; b; ν1, ν2) ∼
χ→∞

(
iw√
2π

)n
Fαn({0}αn ; ν1)Fαn({0}αn ; ν2)

≡
(
iw√
2π

)n
C0
n(ν1, ν2) ,

(4.46)

where w = w(χ, z) is defined as

w(χ, z) ≡ z
[

log

(
e(s̃−1)χ

z

)]− 1
2

. (4.47)

2. Suppose that the relevant particle is a fermion, not coinciding with its antiparticle, or

a boson with nonvanishing discrete charges.13 In this case, as the selection rules on the

discrete charges imply that only states with vanishing baryon number, electric charge, etc.,

contribute to the sum over α, the only states that survive at large χ are those containing

only pairs of the relevant particle and antiparticle. The total particle number must therefore

be even, n = 2k, and the combinatorial factors of the relevant states α2k are equal to

Pα2k
= (2k)!

(k!)2 . Therefore, eq. (4.43) simplifies to

C2k(−iχ; b; ν1, ν2) ∼
χ→∞

(
iw√
2π

)2k (2k)!

(k!)2
Fα2k

({0}α2k
; ν1)Fα2k

({0}α2k
; ν2)

≡
(
iw√
2π

)2k (2k)!

(k!)2
C0

2k(ν1, ν2) ,

(4.48)

while the leading contribution to C2k+1 must contain a boson of the type discussed above

in point 1, with a nonmaximal ratio l
(a)
0 , and therefore is exponentially suppressed in χ at

fixed w.

13The case of a fermion coinciding with its antiparticle, and the case of a boson not coinciding with its

antiparticle but having vanishing discrete charges, are not relevant to QCD.
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From the expressions above, it is immediate to see that Cn depends on χ and b only

through the factor wn, independently of what scenario is actually realised,14 up to sub-

leading terms which are suppressed by at least one power of χ. In conclusion, we find that

CM (χ;~b⊥; ν1, ν2) = C̃E(θ → −iχ; b; ν1, ν2)

∼
χ→∞

g(w; ν1, ν2)− 1 ≡





∞∑

n=1

1

n!

(
iw√
2π

)n
C0
n(ν1, ν2) (case 1) ,

∞∑

k=1

1

(k!)2

(
iw√
2π

)2k

C0
2k(ν1, ν2) (case 2) .

(4.49)

Here we have implicitly assumed that Fα and/or Fα are nonzero at {p3}α = {0}α: the

modifications to eq. (4.49) required when they vanish are discussed in appendix A.1. The

bottom line is that at high energy, the dependence of the correlator on χ and b in the “tail”

region b > b0 [see eq. (4.7)] is entirely encoded in the function w(χ, z(χ, b)) defined above

in eqs. (4.42) and (4.47). Going back to our discussion of effective radii, eqs. (4.46), (4.48)

and (4.49) simply state that the large-χ behaviour is determined by the particle(s) with the

largest effective radius. The consequences of this fact will be explored in the next section.

As a final remark, we anticipate that the important feature of the result eq. (4.49) is that

in the high-energy limit the amplitude depends only on a specific combination of χ and b.

As we will see, this allows to disentangle the energy dependence of the scattering amplitude

at large χ.

The validity of eq. (4.49) relies mainly on the possibility of interchanging the order

in which one performs the sum over intermediate states and the analytic continuation to

Minkowski space, and proving that this is actually allowed is currently out of reach in

the general case. It is however possible to provide a partial justification, based on the

short-range nature of strong interactions. The basic observation is that the Wilson-loop

matrix elements Wα and Wα in the limit of infinite loop length, eq. (4.18) and (4.27), can

be written in factorised form to a first approximation. In the LSZ framework [66, 67], Wα

and Wα are obtained from the vacuum expectation value of the T -ordered product of the

Wilson loop and of appropriate interpolating local fields, corresponding to each particle

appearing in α, integrated over the position of the fields. Due to the finite interaction range,

in most of the configurations the interpolating fields will be far away from each other, and

therefore their mutual (“particle-particle”) interactions will be negligible. Furthermore,

they will interact with the Wilson loop only locally (see footnote 6), so that each of them

will “see” in practice a loop of infinite length and nothing else. The conclusion is that to

first order one has

Wα({~p}α, {s3}α; ν1) '
∏

a, na(α)6=0

na(α)∏

i=1

lim
T→∞

〈0|ŴE [C̃ (T )
0 (ν1)]|α, ~p (a)i, s

(a)i
3 ; in〉

〈0|ŴE [C̃ (T )
0 (ν1)]|0〉

≡
∏

a, na(α)6=0

na(α)∏

i=1

Wa(~p
(a)i, s

(a)i
3 ; ν1) ,

(4.50)

14In case 2, this is true only for n = 2k, while C2k+1 is exponentially suppressed in χ.
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where Wa are one-particle matrix elements, and similarly for Wα. From eqs. (4.13)

and (4.16), and using the multinomial theorem, one finds

C̃E ' exp




∑

a

s(a)∑

s3=−s(a)

eiθs3
∫
dΩa e

−bε(a)
Wa(R θ

2
~pa, s3; ν1)W a(R− θ

2
~pa, s3; ν2)



− 1 ,

(4.51)

where dΩa = d3pa/[(2π)32ε(a)] is the phase-space element for a particle of type a, and ε(a)

the corresponding energy. For simplicity, we have considered here only particles of the kind

discussed above in point 1, in order to avoid unnecessary complications. For particles of

the kind considered above in point 2, the factorisation will be at the 2-particle level due to

the selection rules, and eq. (4.51) has to be modified to include their contribution: this is

discussed in appendix A.2. As the sum is now over the set of asymptotic particle species,

which is finite (at least in QCD), there are no more complications due to problems of

convergence of the sum, and one can safely perform the analytic continuation. Furthermore,

one can explicitly verify that the resummation can be done also if one performs the analytic

continuation first, and that this leads to the same result. This proves that the term-by-

term analytic continuation is justified when particle-particle interactions can be neglected.

Including the corrections due to particle-particle interactions will modify the expression

above, but we think that it is reasonable to assume that it will not spoil the possibility of

interchanging summation and analytic continuation.

It is worth noting that even if the term-by-term analytic continuation can be performed

only for a limited range of χ at any fixed b, which we expect to include higher and higher

energies as we increase the impact parameter, eq. (4.43) shows that in this case we could

nevertheless take the large-χ limit at fixed w, which amounts to take at the same time

the large-χ and the large-b limit. This means that in this case eq. (4.49) would define the

coefficients of a convergent power series at least in some limited range of w. In this case,

even though the power series representation would be valid only within its finite radius

of convergence, it is possible that the analytic function obtained by resumming the series

could be analytically continued (in w) outside the radius of convergence.

More precisely, one can formulate the following condition. Let us assume that the dou-

ble series defined by eqs. (4.13) and (4.26), re-expressed in terms of the complex variable15

w =
eiθ(s̃−1)e−bm̃√

bm̃
(4.52)

and of θ, is such that a term-by-term analytic continuation of θ → −iχ at fixed w can be

performed, for w ∈ D0 with D0 some complex domain. Possibly, the analytic continuation

has to be understood as θ → ε−iχ, followed by the limit ε→ 0. Let us assume furthermore

that in a subdomain D1 ⊆ D0, that we assume to contain part of the positive real axis

in the complex-w plane, at least as a boundary, it is possible to take χ → ∞ at fixed w.

Taking w ∈ D1, performing the analytic continuation in θ, and setting

CM (χ;~b⊥; ν1, ν2) = C̃E(−iχ; b; ν1, ν2) = F (w(χ, z(b, χ));χ; ν1, ν2) , (4.53)

15Here we are assuming s̃ > 1.
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according to the discussion above one has that F can be written as follows,

F (w;χ; ν1, ν2) = g (w; ν1, ν2) + g1 (w;χ; ν1, ν2) , (4.54)

with g1 → 0 as χ → ∞ at fixed w. Moreover, if F and g can be analytically extended

beyond D1 including a larger part (possibly all) of the real axis, then so can be g1, which

will vanish as χ→∞ in the whole extended domain.

5 Elastic scattering amplitude and total cross section

We are now in a position to discuss the high-energy behaviour of the meson-meson elastic

scattering amplitude and of the corresponding total cross section, so completing the argu-

ment outlined in section 3. For this purpose, it is useful to analyse first the consequences

of unitarity on the relevant Wilson loop correlators.

It is clear from eqs. (2.1) and (2.6), and from the definition of the scattering amplitude

in the impact-parameter representation,

M(hh)(s, t) = −2is

∫
d2~z⊥ e

i~q⊥·~z⊥a(hh)(s, ~z⊥) , (5.1)

that a(hh) coincides with the Minkowskian Wilson-loop correlator averaged over the dipole

variables, i.e.,

a(hh)(s, ~z⊥) = 〈〈CM (χ;~z⊥; ν1, ν2)〉〉 . (5.2)

It is well known [68–70] that the impact-parameter amplitude satisfies the unitarity con-

straint |a(hh)(s, ~z⊥) + 1| ≤ 1, ∀ ~z⊥. Therefore, if the description of the scattering process in

terms of dipoles, that we are using in this work, is to lead to physically meaningful results,

then the normalised Wilson-loop correlator in Minkowski space has to satisfy the following

unitarity constraint (at least in the large-χ limit),

|〈〈CM (χ;~z⊥; ν1, ν2)〉〉+ 1| ≤ 1 , ∀ ~z⊥ . (5.3)

If the dipole picture is correctly describing soft high-energy processes, and since the con-

straint eq. (5.3) has to be satisfied for all the species of colliding mesons, i.e., for all the

physical choices of the wave functions ψ1,2 in eq. (2.1), we expect a stronger unitarity

constraint to be satisfied, namely

|CM (χ;~z⊥; ν1, ν2) + 1| ≤ 1 , ∀ ~z⊥, ν1, ν2 . (5.4)

In particular, choosing ~z⊥ = ~b⊥ = (b, 0) parallel to the 2-axis, we have

|CM (χ;~b⊥; ν1, ν2) + 1| ≤ 1 , ∀ b, ν1, ν2 . (5.5)

For b > b0, where the analysis of the previous section applies, we have that CM (χ;~b⊥)+1 =

g(w(χ, z(χ, b))) + g1(w(χ, z(χ, b));χ), with g1 → 0 as χ→∞ with w fixed [see eq. (4.49)].

Here we have dropped all the irrelevant dependencies. The function g is just the high-

energy, large-b approximation of the normalised Wilson-loop correlator, expressed as a
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function of w. As already remarked, one can keep w fixed to any non-negative real value

as χ→∞ if one also properly takes b→∞. We have therefore, according to eq. (5.5),

|g(w; ν1, ν2)| = lim
χ,b→∞
w fixed

|CM (χ;~b⊥; ν1, ν2) + 1| ≤ 1 ∀ w ≥ 0, ν1, ν2 , (5.6)

i.e., g is a bounded function.

5.1 Asymptotic behaviour of the total cross section

Recalling eq. (2.8), and exploiting the optical theorem, we obtain for the total cross section

σ
(hh)
tot (s) ∼

s→∞

1

s
ImM(hh)(s, t = 0) = −4πRe 〈〈

∫ ∞

0
db b CM (χ;~b⊥; ν1, ν2)〉〉ϕ , (5.7)

where ~b⊥ = (b, 0) is parallel to the 2-axis, χ ' log(s/m2) at high energy, and 〈〈. . .〉〉ϕ has

been defined in eq. (2.8). The integral in eq. (5.7) is conveniently split into two parts,

∫ ∞

0
dbb CM (χ;~b⊥; ν1, ν2) =

∫ b0(ν1,ν2)

0
dbb CM (χ;~b⊥; ν1, ν2)

+

∫ ∞

b0(ν1,ν2)
dbb CM (χ;~b⊥; ν1, ν2) ,

(5.8)

where b0 has been defined in eq. (4.7). We expect from unitarity [see eq. (5.5)] that the

first term is bounded by a χ-independent function, and so we will focus on the second

term. Here we can use the approximate expression for CM obtained in the previous section,

eq. (4.49). Changing variables to z, as defined in the previous section, i.e.,

z = e(s̃−1)χe−m̃b , m̃b = log
e(s̃−1)χ

z
, m̃ db = −dz

z
, (5.9)

and setting e−b0m̃ = Λ, with Λ = Λ(ν1, ν2), we can write

J(χ; ν1, ν2) ≡ −
∫ ∞

b0(ν1,ν2)
dbb CM (χ;~b⊥; ν1, ν2)

∼
χ→∞

1

m̃2

∫ e(s̃−1)χΛ

0

dz

z
log

(
e(s̃−1)χ

z

)
[1− g(w(χ, z); ν1, ν2)] ,

(5.10)

where w(χ, z) has been defined in eq. (4.47), and g is defined in eq. (4.49). One could in

principle use w itself as integration variable, but for our purposes it is more convenient to

follow a different strategy. Let z = ξ(χ)z′, and let us require that ξ is such that

w(χ, z) = w(χ, ξ(χ)z′) =
ξ(χ)√

log
(
e(s̃−1)χ

ξ(χ)

)
z′√

1 +
log( 1

z′ )

log
(
e(s̃−1)χ

ξ(χ)

)
≡ z′√

1 +
log( 1

z′ )

log
(
e(s̃−1)χ

ξ(χ)

)
. (5.11)

The reason to do this is that now eq. (5.10) depends on χ only through the variable η,

eη ≡ e(s̃−1)χ

ξ(χ)
, ξ2 + log ξ = (s̃− 1)χ , η = (s̃− 1)χ− log ξ = ξ2 . (5.12)
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The equation for ξ in eq. (5.12) can be solved, yielding

η = ξ2 =
1

2
W (2e2(s̃−1)χ) , (5.13)

where W (z) is the Lambert W function [73], defined by the equation

z = W (z)eW (z) . (5.14)

For large positive z, W (z) = log z− log log z+ log log z
log z + . . ., and so we obtain at large energy

η = (s̃− 1)χ− 1

2
log[(s̃− 1)χ] +

log[(s̃− 1)χ]

4(s̃− 1)χ
+ . . . . (5.15)

Dropping now the prime, rescaling z → Λz, and setting for notational convenience

g̃(z; ν1, ν2) = g(zΛ(ν1, ν2); ν1, ν2) , (5.16)

we can recast eq. (5.10) in the compact form

J(χ; ν1, ν2) ∼
χ→∞

1

m̃2

∫ eη

0

dz

z
log

(
eη

Λz

)(
1− g̃(z; ν1, ν2)

)
, (5.17)

where we have neglected terms of order O(η−1) appearing in eq. (5.10) [see eq. (5.11)].

Clearly, the constraint eq. (5.6) holds also for g̃.

In order to determine the high-energy behaviour of J , it is convenient to split it into

three parts, J = J1 − J2 + J3, with

J1(χ; ν1, ν2) =
1

m̃2

∫ eη

1

dz

z
log

(
eη

Λz

)
,

J2(χ; ν1, ν2) =
1

m̃2

∫ eη

1

dz

z
log

(
eη

Λz

)
g̃(z; ν1, ν2) ,

J3(χ; ν1, ν2) =
1

m̃2

∫ 1

0

dz

z
log

(
eη

Λz

)(
1− g̃(z; ν1, ν2)

)
.

(5.18)

The first integral can be easily computed, and gives

J1(χ; ν1, ν2) =
1

m̃2

[
1

2
η2 + η log

1

Λ

]
. (5.19)

Moreover, the dependence of J3 on η is easily exposed,

J3(χ; ν1, ν2) =
1

m̃2
[η c1(ν1, ν2) + c2(ν1, ν2)] , (5.20)

where c1,2 are functions of the dipole variables only, so that J3 is subleading in η. Finally,

using the unitarity constraint eq. (5.5), or eq. (5.6), we can bound J2,

|J2(χ; ν1, ν2)| ≤ J1(χ; ν1, ν2) , (5.21)
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which leads to the following bound on the total cross section at high energy,

σ
(hh)
tot (s) '

s→∞
4πRe 〈〈J(χ; ν1, ν2)〉〉ϕ .

s→∞
4π

η2

m̃2
' 4π

(s̃− 1)2

m̃2

(
log

s

m2

)2
, (5.22)

where we have used eq. (5.15) and the fact that 〈〈1〉〉ϕ = 1. Notice that the subleading

terms neglected in the last passage are of order O(log s · log log s), as can be seen again from

eq. (5.15). This “Froissart-like” bound is a consequence of the analyticity and unitarity

properties assumed for the Wilson-loop correlator, and of the existence of a maximal (and

positive) ratio (s̃−1)
m̃ in the hadronic spectrum. The origin of the prefactor is therefore

rather different than in the original derivation of the FLM bound, where it is related to

the position of the lowest singularity in the t-channel.

5.2 Universality of total cross sections

From eqs. (5.19) and (5.21), we can write for the asymptotic energy dependence of the

total cross section

σ
(hh)
tot (s) ∼

s→∞
2π

(s̃− 1)2

m̃2
[1− 〈〈Re ∆(ν1, ν2)〉〉ϕ]

(
log

s

m2

)2
, (5.23)

where we have set J2 ∼ 1
2∆(ν1, ν2)η2 at high energy, compatibly with eq. (5.21). Since

the quantity ∆ can in principle depend nontrivially on the dipole variables, in general the

resulting total cross section will be nonuniversal. In order to have universality, either ∆

is purely imaginary (or even zero), or Re ∆ is independent of ν1,2, or for some reason the

average of Re ∆ over the dipole variables is universal, which would still be rather natural

if only the average over the orientations of the dipoles and over the momentum fractions

were required.

To investigate the issue of universality, we exploit eq. (5.6) to write

g̃(z; ν1, ν2) = e−ρ(z;ν1,ν2)+iφ(z;ν1,ν2) , (5.24)

with ρ, φ ∈ R and ρ ≥ 0. Let us now consider several interesting cases.

1. The simplest possibility is that ρ(z →∞)→∞, in which case g̃(z →∞)→ 0, and we

see that in eq. (5.18) we can push the upper limit of integration in J2 to infinity, obtaining

a finite quantity.16 This implies that

J2(χ; ν1, ν2) =
η

m̃2

[∫ ∞

1

dz

z
g̃(z; ν1, ν2) + o(1)

]

+
1

m̃2

∫ ∞

1

dz

z
log

(
1

Λz

)
g̃(z; ν1, ν2) + o(1) ,

(5.25)

i.e., J2 = O(η) and therefore ∆ = 0, so that universality is obtained. In physical terms, this

case corresponds to the Minkowskian Wilson-loop correlator vanishing at large χ for any

fixed b (at least for any fixed b > b0), so that in this limit the impact-parameter amplitude

goes to 1. In other words, this would directly correspond to the usual assumption of

particles behaving in a scattering process as black disks with energy-dependent radius.

16This requires g̃ to vanish at least as fast as | log z|−2−ε.
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2. Another possibility we want to discuss is that of an amplitude that keeps oscillating as

z →∞, i.e., φ(z) ∼ φ0z
λ, λ > 0, as z →∞. Separating the leading contribution from the

rest, setting g̃(z) = e−ρ(z)ei(φ(z)−φ0zλ)eiφ0zλ = Ã(z)eiφ0zλ , and changing variables to y = zλ

in the integral for J2, eq. (5.18), we obtain

J2(χ; ν1, ν2) =
1

λ2m̃2

∫ eλη

1

dy

y
log

(
eλη

Λλy

)
eiφ0yÃ(y

1
λ ) . (5.26)

Since the function fλ(y) = 1
y log

(
eλη

Λλy

)
θ(y − 1) is L2(R) and Ã is bounded, we can push

the upper limit of integration to infinity, obtaining the Fourier transform of fλÃ at φ0.

As a consequence, the leading behaviour of J2 is only O(η); therefore ∆ = 0, and the

colliding particles behave effectively as black disks. Interestingly, we recover the same

result obtained in the previous case starting from completely different assumptions. The

key point is the possibility of pushing the upper limit of integration to infinity in J2, so that

eq. (5.25) above holds: any time that this can be done, no matter under what conditions,

we will get ∆ = 0 and universality of the total cross sections.

3. The last case we want to discuss is that in which both φ and ρ become independent of z

at large z while remaining finite, i.e., φ(z →∞) = φ∞(ν1, ν2), and ρ(z →∞)→ ρ∞(ν1, ν2).

In this case, we can write

J2(χ; ν1, ν2) =
1

m̃2

∫ eη

1

dz

z
log

(
eη

Λz

)[
e−ρ∞(ν1,ν2)eiφ∞(ν1,ν2) + r(z; ν1, ν2)

]
, (5.27)

where the quantity r(z; ν1, ν2) ≡ e−ρ(z;ν1,ν2)eiφ(z;ν1,ν2) − e−ρ∞(ν1,ν2)eiφ∞(ν1,ν2) vanishes as

z →∞. As a consequence, in the corresponding contribution to the integral one can again

push the upper limit of integration to infinity, obtaining a finite quantity.17 In turn, this

implies that this contribution grows at most like η at large energy. A leading contribution

to J2, proportional to χ2, is however possible, and reads

J2(χ; ν1, ν2) =
e−ρ∞(ν1,ν2)

2m̃2
eiφ∞(ν1,ν2)η2 +O(η) . (5.28)

The leading contribution to the forward scattering amplitude is therefore

M(hh)(s, 0) = is
2π(s̃− 1)2

m̃2
χ2
(

1− e−κ(hh)
eiϕ

(hh)
)
, (5.29)

where we have set

e−κ
(hh)

eiϕ
(hh)

= 〈〈e−ρ∞(ν1,ν2)eiφ∞(ν1,ν2)〉〉ϕ , (5.30)

with κ(hh), ϕ(hh) ∈ R and κ(hh) ≥ 0. In general, both κ(hh) and ϕ(hh) will depend on

the kind of particles involved in the scattering process. However, not any value of ϕ(hh)

is allowed, due to the constraint on the phase of scattering amplitudes at high energy

coming from analyticity and crossing symmetry (see, e.g., ref. [71]). Due to this constraint,

the crossing-symmetric part of the amplitude must be purely imaginary at high energy.

17This requires r to vanish at least as fast as | log z|−2−ε.

– 27 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
2

If, for simplicity, the hadronic wave functions are chosen to be invariant under rotations

and under the exchange fi → 1 − fi, as mentioned in section 2, the scattering amplitude

is automatically crossing-symmetric, and therefore one must have ϕ(hh) = 0, π. Since this

must hold for all physical choices of the hadronic wave functions, the simplest way to achieve

this is to have φ∞(ν1, ν2) ≡ 0, or π, independently of νi. This would “naturally” lead to

universality of total cross sections only if at the same time ρ∞(ν1, ν2) = ρ̄∞, independently

of νi:

σ
(hh)
tot (s) ∼

s→∞
2π

(s̃− 1)2

m̃2

[
1∓ e−ρ̄∞

] (
log

s

m2

)2
, (5.31)

where the upper (lower) sign corresponds to φ∞(ν1, ν2) = 0 (π). According to the sign,

one would have in this case either grey-disk (φ∞ = 0) or anti-shadowing [74, 75] (φ∞ = π)

behaviour. In particular, if ρ̄∞ = 0 one would have respectively no log2 s contribution, or

saturation of the unitarity limit. Although we cannot exclude that this scenario is realised,

we find it rather unpleasing, since it requires several extra conditions to be met in order to

achieve universality, and contains one parameter (i.e., 1∓e−ρ̄∞) that remains undetermined

at this stage. In the remaining part of this section we will discuss only the first two cases,

with ∆ = 0.

If eq. (5.25) holds, we can set for convenience

∫ ∞

1

dz

z
g̃(z; ν1, ν2) = −C(ν1, ν2) + c1(ν1, ν2) + log

1

Λ
, (5.32)

and write for J

4πJ(χ; ν1, ν2) ∼
s→∞

2π

m̃2
η2 +

4π

m̃2
〈〈C(ν1, ν2)〉〉ϕ η , (5.33)

where η has been defined in eq. (5.13). From this we find that the total cross section

behaves asymptotically as

σ
(hh)
tot (s) ∼

s→∞
2π

(s̃− 1)2

m̃2

(
log

s

m2

)2
− 2π

(s̃− 1)

m̃2
log

s

m2
· log log

s

m2
+Q(hh) log

s

m2
, (5.34)

where we have used the large-s behaviour of η [see eq. (5.15)], we have introduced the

(process-dependent) coefficient Q(hh) of the log s term, and discarded further subleading

terms. There are three important consequences of this expression.

1. The leading energy dependence is of the form σ
(hh)
tot (s)∼B log2 s for s→∞, with uni-

versal B, i.e., independent of the colliding mesons. One easily sees that extending the

calculation to the case of mesons with different masses this term remains unaffected.

2. The universal coefficient B = 2π (s̃−1)2

m̃2 can be entirely determined from the hadronic

spectrum.

3. The first subleading correction in energy is proportional to log s · log log s, and it is

also universal.

All of the above remains true if extra powers of b have to be taken into account in the

large-b behaviour, as mentioned after eq. (4.39). More precisely, the coefficient of the
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subleading log s · log log s term gets an extra (universal) factor, while the leading term

remains unaltered. A detailed discussion is reported in appendix A.1, where we also make

contact with the parameterisations discussed in ref. [59].

Let us now briefly discuss the energy dependence of further subleading corrections.

The o(1) terms in the first square bracket in eq. (5.25) are expected to vanish quite fast,

and if they vanish at least as fast as η−1, then they simply give a constant contribution to

the total cross section, plus vanishing terms. The terms that have been neglected in the

integrand passing from eq. (5.10) to eq. (5.17) are of order O(η−1), and so can provide at

most a contribution of order O(η) to the total cross section. However, a direct calculation

shows that in the cases 1-3 discussed above they only contribute to O(1). The terms that

have been discarded from eq. (4.49) on are bounded [this follows from eqs. (5.5) and (5.6)]

and suppressed by a factor
[
log
(
eη

z

)]−1
, so they can yield at most a contribution of order

O(η) to the total cross section, which has to be included in Q(hh) in eq. (5.34). In any

case, eq. (5.34) above gives the leading contribution to the total cross section, in the case

Re ∆ = 0.

5.3 Elastic scattering amplitude at high energy

To conclude this section, we want to briefly discuss what happens to the elastic scattering

amplitude if the conditions leading to ∆ = 0 are met. As these conditions correspond in

practice to particles behaving as black disks at high energy, one expects that the usual

results obtained in the black-disk model hold. For simplicity, we will work with rotation-

invariant wave functions, as appropriate for example for unpolarised scattering processes.

In this case, recalling eq. (2.9), the elastic scattering amplitude reads

M(hh)(s, t) = −4πis 〈〈
∫ ∞

0
dbb J0(b

√
−t) CM (χ ' log(s/m2);~b⊥; ν1, ν2)〉〉0 . (5.35)

If g̃(z) defined in eq. (5.16) vanishes sufficiently fast at large z (any power law will do),

or if it oscillates wildly, one can repeat the argument carried out above for the total cross

section, taking now into account the Bessel function J0(b
√−t) appearing in eq. (5.35). A

simple calculation then shows that to leading order

M(hh)(s, t) ∼
s→∞

4πi s
( η
m̃

)2
(
m̃

qη

)
J1

(qη
m̃

)
= 4πi s

( η
m̃

)2 J1(%)

%
, (5.36)

where we have set % = %(χ, q) ≡ qη
m̃ . This is actually a black-disk scattering amplitude with

radius η
m̃ . A few remarks are in order.

1. The amplitude is purely imaginary at high energy, as expected from analyticity and

crossing symmetry, and from the fact that it isM(hh)(s, t) ∝ s up to logarithms (see,

e.g., ref. [71]).

2. The ratio
M(hh)(s, t)

M(hh)(s, 0)
∼

s→∞

2J1(%)

%
(5.37)
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depends on s and t only through the combination % ∼ µ−1
√−t log s, with µ =

m̃/(s̃− 1). Furthermore, the function

f(τ) = lim
s→∞

M(hh)(s,−µ2τχ−2)

M(hh)(s, 0)
=

2J1(
√
τ)√

τ
(5.38)

is entire of order 1/2, in agreement with a theorem by Auberson, Kinoshita and

Martin [72].

3. At high energy, the elastic scattering amplitude is a universal function of the form

M(hh)(s, t) ∼ is log2 s

m1m2
M

(√
−t log

s

m1m2

)
, (5.39)

where we have straightforwardly extended the result to the case of colliding particles

of different mass.

The well-known results of the black-disk model therefore hold: in particular, one can show

that18 σ
(hh)
el = σ

(hh)
tot /2, and that the B-slope at zero transferred momentum,

B(s) ≡ d

dt

[
log

dσ
(hh)
el

dt

]

t=0

, (5.40)

satisfies the relation 8πB(s) = σ
(hh)
tot . Moreover, the differential elastic cross section vanishes

for t0 satisfying |t0|(η/m̃)2 = x2
0, where x0 ' 3.83 is the first zero of the function J1(x).

Identifying t0 with the position tdip of the dip seen in differential elastic cross sections,

one expects that at high energy |tdip|σ(hh)
tot = 2πx2

0. Notice that experimental data give

σ
(hh)
el /σ

(hh)
tot ' 0.26 and 8πB(s)/σ

(hh)
tot ' 1.97 at

√
s = 7 TeV, and σ

(hh)
el /σ

(hh)
tot ' 0.27 at√

s = 8 TeV [1–4]. Furthermore, recent analyses [76, 77] show that |tdip|σ(hh)
tot /(2πx2

0) is

well above 1 up to LHC energies. If the black-disk picture is correct, this indicates that

the asymptotic region is still far away from the energies presently available at colliders.

Finally, one can uncover the nature of the Pomeron singularity in the complex angular

momentum plane at high energy, by means of the Mellin transform,

M̄(hh)(ω, t) =

∫ ∞

m2

ds

s

( s

m2

)−ω
M(hh)(s, t) . (5.41)

From eq. (5.36) one easily obtains

M̄(hh)(ω, t) =
4πi

(
m
µ

)2

[
(ω − 1)2 − t

µ2

] 3
2

, (5.42)

which already appeared in ref. [78]. This shows that the Pomeron singularity at positive

t is not a pole, but rather an algebraic singularity, while at t = 0 it is a triple pole. The

position of the singularity is

ω±P = 1±
√
t

µ
, (5.43)

i.e., the Pomeron trajectory is nonlinear.

18This requires to use the expression eq. (5.36) in the whole range t ∈ [−∞, 0], which can be justified

assuming that the small-t region gives the dominant contribution to the elastic cross section.
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6 Conclusions

In this paper we have shown how to obtain the leading energy dependence of hadronic

total cross sections, in the framework of the nonperturbative approach to soft high-energy

scattering based on Wilson-loop correlation functions [38–42], if certain nontrivial ana-

lyticity assumptions are satisfied. The total cross sections turn out to be of “Froissart”

type, σ
(hh)
tot (s)∼B log2 s for s→∞. We have also discussed a few scenarios in which the

coefficient B turns out to be universal, i.e., independent of the hadrons involved in the

scattering process.

Our results rely mainly on the possibility of expressing the Wilson-loop correlator, at

high energy and large impact parameter b, as a function of the combination

w(χ, b) = eχ(s̃−1) e
−bm̃
√
bm̃

, (6.1)

where χ ' log(s/m2), and s̃ and m̃ are respectively the spin and mass of the particle that

maximises the ratio l
(a)
0 = (s(a) − 1)/m(a) over the asymptotic one-particle states a.

The “natural” scenarios leading to universality of B depend on the large-w behaviour

of the Wilson-loop correlator (WLC). We have discussed three possibilities: (1) WLC → 0

as w → ∞, (2) WLC oscillates as w → ∞, and (3) WLC → const. as w → ∞. In

cases 1 and 2, B turns out to be entirely determined by the hadronic spectrum, and reads

B
(1,2)
th = 2π

µ2 , where µ = m̃/(s̃ − 1). In case 3, analyticity and crossing symmetry require

that the constant is real, and one finds that B
(3)
th = κB

(1,2)
th , with 0 ≤ κ ≤ 2 due to unitarity;

κ is however not determined at this stage.

Although the precise form of w(χ, b) in eq. (6.1) depends on some technical assumptions

on certain matrix elements of the relevant Wilson loops, a more general form w̄(χ, b) =

eχce−bM/(bM)(1+λ)/2 still holds if these assumptions are relaxed. In this more general

case, one finds B
(1,2) gen
th = 2πc2

M2 , which is independent of λ; one however loses the simple

connection with the spectrum. We note in passing that the possibility to express the

Wilson-loop correlator as a function of w̄(χ, b) for some values of c, M and λ can be made

into a general assumption, independently of our derivation: this would obviously lead to

the same results discussed in this paper.

In our calculation, we found that the first subleading correction in energy is propor-

tional to log s · log log s. The approach to soft high-energy scattering based on Wilson-loop

correlation functions is expected to correctly yield the leading energy dependence of scat-

tering amplitudes and total cross sections, while it is not clear how trustworthy the sub-

leading terms are: indeed, to settle this question one should carefully estimate the energy

dependence of the subleading terms discarded in the derivation of eqs. (2.1) and (2.6) (see

refs. [36, 38, 39, 60]). Nevertheless, a log s·log log s term has never been considered so far in

fits to the experimental data, and we believe it worth to include it in a systematic analysis

of total cross sections. Such an analysis is however beyond the scope of this paper: we have

only checked that in fits limited to the high energy region only (χ & 5 ÷ 7) the resulting
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Figure 3. Value of the ratio 2π
(
s−1
m

)2
for QCD-stable one-particle states, plotted against the spin

s, for s ≥ 1. Only light mesons and baryons, and ground states and long-lived isomers of nuclei have

been considered, and only the lightest states are shown for a given spin. Nuclear data are taken

from ref. [79]. The maximal value of 2π
(
s−1
m

)2
provides the coefficient Bth of the log2 s term in

σ
(hh)
tot in the scenarios 1 and 2 discussed in the text. The value of Bexp reported by the Particle Data

Group [17], and the value of Bth obtained from the 2++ glueball (data taken from refs. [80, 83]),

are also shown for comparison.

value of B is not very much affected by its presence.19 Indeed, B slightly increases, as

expected, when this extra term is included, but the change is smaller than the errors. Our

expectation is therefore that the value of B would not change much also in a systematic

analysis, so that we can compare the theoretical prediction for B with the value currently

reported by the Particle Data Group [17],

Bexp =
2π

M2
, M = 3.04(3) GeV , (6.2)

i.e., Bexp ' 0.680(13) GeV−2 [0.2646(49) mb].

As we have said above, the theoretical expectation for B in our “favourite” scenarios

1 and 2 is obtained from the spectrum of stable particles with spin larger than 1, but

one has to clarify what “stable” means in this context. As only strong interactions have

been considered in the derivation of the basic formula for hadronic scattering amplitudes,

eqs. (2.1) and (2.6), a state has to be considered “stable” if it is so when considering QCD

in isolation. Among mesons and baryons with baryonic number 1, only the Ω± is stable

and with large enough spin. The Ω± baryon (mΩ± ' 1.67 GeV) has quantum numbers

19The function used for our checks is of the form σ
(hh)
tot = Bη2 +Cη+D, approximating η using its large-χ

expansion, eq. (5.15).
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JP = 3
2

+
, electric charge |Q| = 1 and strangeness |S| = 3. The other known QCD-stable

states of high spin are nuclear states. A comprehensive study of nuclei is beyond the scope

of this paper: here we limit ourselves to the nuclear ground states and long-lived isomers20

that are stable in Nature or decay through the electroweak interactions. As can be seen in

figure 3 (data for nuclear states are taken from ref. [79]), the Ω± maximises the relevant

ratio, and yields Bth ' 0.56 GeV−2 (0.22 mb), which is in fair agreement with experiments,

being about 20% smaller than the value eq. (6.2) reported by the Particle Data Group. In

the comparison one should take into account that the values of Bexp reported in refs. [9–

17] show a variation of around 10% due to different fitting procedures, which suggests a

corresponding systematic error.

Strictly speaking, in this paper we have discussed meson-meson scattering, starting

from dipole-dipole scattering, while experimental data for total cross sections are avail-

able mainly for baryon-baryon and meson-baryon scattering. However, adopting a quark-

diquark picture for baryons (see refs. [38–42, 61]), our results extend immediately to these

processes. Moreover, the arguments of section 4 can be easily generalised to more com-

plicated Wilson loops, aimed at describing the three-body structure of baryons, or the

inclusion of gluons and sea quarks in the description of hadrons. Under the same assump-

tions made in this paper, one arrives at the same behaviour of total cross sections obtained

here, i.e., “Froissart-like” total cross sections; also, the same considerations can be made

concerning universality.

It is also worth noting, at this point, that the description of hadrons in terms of dipoles

is (probably) most naturally justified in the quenched limit (or in the limit of a large number

of colours Nc), which would lead to consider the quenched (i.e., pure-gauge) theory as the

relevant one. In this case, the relevant spectrum would be the glueball spectrum, and, in

particular, the spectrum of stable glueballs with spin larger than 1, which, according to

ref. [80], are those with JPC = 2++, 2+−, 2−+, 2−−, 3++, 3+−, 3−−. Always according to

ref. [80] (but see also refs. [81, 82] for other more recent quenched determinations of the

glueball spectrum), among the glueballs with J = 2, the lightest (and thus relevant) one is

the 2++, with M
(Q)
2++ ' 2.40 GeV, while the lightest glueball with J = 3 is the 3+−, with

M
(Q)
3+− ' 3.55 GeV.21 They would lead to a value of the coefficient B given by, respectively,

B
(Q)
2++ ' 1.09 GeV−2 (0.42 mb) and B

(Q)
3+− ' 1.99 GeV−2 (0.77 mb). Therefore, according to

our approach, we should conclude that, in the quenched theory, B
(Q)
th = B

(Q)
3+− ' 1.99 GeV−2

(0.77 mb), which is (quite surprisingly) a factor 3 larger than Bexp.

An interesting issue is the possible effectiveness of one-particle selection rules to reduce

the set of states over which l
(a)
0 has to be maximised. It is rather easy to prove selection

rules for spin (s3), parity (ηP ) and charge conjugation (ηC) for the one-particle contribu-

tions: they are nonzero only if ηP = ηC = eiπs3 . But even if a particle does not contribute

20A detailed study should include all the excited nuclear states that are QCD-stable.
21 We would like to point out, at this point, that the identification of the spin of glueball states on the

lattice is highly nontrivial and, in some cases (such as 2+−, 2−−, 3++ and 3−−), also controversial [80].

Moreover, a more recent (unquenched) determination of the glueball spectrum [83] has not found evidence

for the states 2+−, 3++ and 3−−, leaving, however, the states 2++ and 3+− as possible relevant states, with

masses M2++ ' 2.62 GeV and M3+− ' 3.85 GeV.
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at this level, there is no reason for it not to contribute starting from the two-particle level,

so that it should be included in the set over which l
(a)
0 has to be maximised. Things could

change if the (connected) contributions of many-particle states were suppressed by addi-

tional powers of eχ, but we have not found any argument supporting this possibility. If, for

some reason, states for which one-particle contributions are nonzero should be considered

to be “dominant”, then (see also footnote 21) we would be left with the glueball 2++, with

B
(Q)
th = B

(Q)
2++ ' 1.09 GeV−2 (0.42 mb), as it has been already suggested in ref. [84], com-

menting the results of the best fits to the lattice data performed in ref. [59].22 This value is

still larger than Bexp, but “only” by a factor 1.6 [and an even better agreement with Bexp

would be obtained if we used the unquenched value M2++ ' 2.62 GeV found in ref. [83],

which leads to B2++ ' 0.91 GeV−2 (0.35 mb)]. Therefore, a cautious conclusion could be

that, in the quenched theory, B
(Q)
th is at least 1.09 GeV−2 (0.42 mb). The comparison with

the unquenched estimate Bth ' 0.56 GeV−2 (0.22 mb), that we have found above,23 seems

to suggest (quite surprisingly) large unquenching effects due to the sea quarks. Of course,

also the possibility that the relevant state (which maximises the ratio l
(a)
0 = s(a)−1

m(a) ) has

not yet been discovered, cannot be excluded.
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A Technical details

A.1 Vanishing Wilson-loop matrix elements and massless particles

In this appendix we briefly discuss the consequences of vanishing matrix elements

Fα({0}α; ν1) and/or Fα({0}α; ν2) on the large-χ behaviour of the relevant Wilson-loop

correlator, and on the asymptotic behaviour of total cross sections. Furthermore, we dis-

cuss the possible effects due to the presence of massless particles in the spectrum.

Let us assume that

Fα({p3}α; ν1)Fα({p3}α; ν2) ' kα
∏

a, na(α)6=0

na(α)∏

i=1

(
p

(a)i
3

)λ(a)
α

, (A.1)

with kα some function of νi, and where some of the λ
(a)
α can be zero. One immediately

finds after the change of variables eq. (4.36) that in the limit of large b the contribution

22We note in passing that a Pomeron of gluonic nature and effectively of spin 2 has been recently proposed

in ref. [85].
23Since the Ω± baryon does not satisfy the selection rules on baryon number, electric charge and

strangeness, the above-mentioned (hypothetical) suppression mechanism would make this value into an

upper bound.

– 34 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
2

δCα of state α to Cn is proportional to

δCα ∝ δNα,n
∏

a


 1

(bm(a))
1+λ

(a)
α

2

eχ[s(a)−1]e−bm
(a)



na(α)

. (A.2)

Here λ
(a)
α is the same for all particles of the same species due to symmetry reasons. As

anticipated in section 4.4, the only effect of vanishing Fα, Fα on the large-b behaviour of

δCα is the appearence of extra inverse powers of b.

The quantities Fα({0}α; ν1) and Fα({0}α; ν2) are actually expected to vanish in the

presence of massless particles, since in this case the phase-space measure contains factors

dp3/p3, and the integral would diverge otherwise. Including massless particles requires only

a minor modification to the calculation of section 4.4, and we obtain for δCα in the limit

of large b

δCα ∝ δNα,n
∏

a


 1

(bm(a))
1+λ

(a)
α

2

eχ[s(a)−1]e−bm
(a)



na(α)

∏

a′

(
1

bλ
(a′)
α

eχ[s(a
′)−1]

)na′ (α)

, (A.3)

where the indices a and a′ run over massive and massless particles, respectively.

The modifications discussed above affect the asymptotic expression eq. (4.49) for the

relevant Wilson-loop correlator. If only massive particles are present, one has simply to

introduce the extra powers of b discussed above, finding

Cn(−iχ; b; ν1, ν2) ∼
χ→∞

(iz)n
[
2π log

(
e(s̃−1)χ

z

)1+λ
]n

2

C̄0
n(ν1, ν2) ≡

(
iwλ√

2π

)n
C̄0
n(ν1, ν2) , (A.4)

with λ being the appropriate power corresponding to the relevant particle(s).24 On the

other hand, in the presence of massless particles, one has to reconsider the procedure

leading to eq. (4.49). If a state contains massless particles, its contribution to Cn takes

the form eq. (A.3). It is easy to see that if (s̃− 1)/m̃ can be maximised over the massive

particles (yielding s̃ > 1), changing variables to z, eq. (5.9), one gets extra factors from

each massless particle of the form

(
eχ(s(0)−1)

bλ
(0)

)n(0)

=


 eχ(s(0)−1)

[
1
m̃ (χ(s̃− 1)− log z)

]λ(0)



n(0)

. (A.5)

If s(0) = 0, eq. (A.5) vanishes exponentially in χ at high energy, meaning that scalar

massless particles can be safely neglected; this allows to safely consider the chiral limit of

QCD. If s(0) = 1, on the other hand, eq. (A.5) vanishes only as a power of χ, so that it can

24For simplicity, we are assuming that λ is n-independent. If λ depends on n, only those terms with

smallest λ have to be kept to leading order in χ. Also, eq. (A.4) holds only for n = 2k if we are in case 2

discussed in section 4.5, while C2k+1 is suppressed exponentially in χ.
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give important subleading contributions.25 The situation is drastically different if massless

particles with s(0) ≥ 2 are present: in this case the proper change of variable is rather

z = eχ(s(0)−1)/bλ
(0)

, with s(0) and λ(0) corresponding to the massless particle maximising

the ratio (s − 1)/λ, which kills all the massive contributions, and all the other massless

contributions as well. We will not consider this case any longer.

The modifications discussed above have only mild consequences on the asymptotic

behaviour of the total cross section. To see this, one has simply to repeat the calculation of

section 5.1, taking into account that now CM (χ;~b⊥; ν1, ν2) ∼ ḡ(wλ; ν1, ν2) − 1 for χ → ∞,

where

wλ(χ, z) = z

[
log

(
e(s̃−1)χ

z

)]− 1+λ
2

, (A.6)

z = e(s̃−1)χe−m̃b is the same as in eq. (5.9), and ḡ is a bounded function, which can be

proved exploiting unitarity as in eq. (5.6). Rescaling z = ξ(χ)z′, with ξ(χ) defined by

wλ(χ, z) = wλ(χ, ξ(χ)z′) ≡ z′

[
1 +

log( 1
z′ )

log
(
e(s̃−1)χ

ξ(χ)

)
] 1+λ

2

, (A.7)

setting again η = log
(
e(s̃−1)χ

ξ(χ)

)
, and solving the equation for ξ, one finds

η = λ̃W

(
1

λ̃
e

1
λ̃
χ(s̃−1)

)
, (A.8)

with λ̃ = (1 + λ)/2. One then proceeds as in section 5.1, and if ∆ = 0 [see eq. (5.23)]

one again obtains eq. (5.33), with η defined now in eq. (A.8). The leading term in the

expansion of η at large χ is unchanged, while the first subleading correction is modified,

η = (s̃− 1)χ− 1

2
log[(s̃− 1)χ]→ (s̃− 1)χ− λ̃ log[(s̃− 1)χ] . (A.9)

As a consequence, also for nonzero λ the total cross section is of the form eq. (5.34), with

an extra factor of λ̃ in front of the coefficient of the subleading log s · log log s term, but

with exactly the same leading term.

Finally, let us make contact with the parameterisations of lattice data discussed in

ref. [59]. The functional forms considered there for the Euclidean correlator, after analytic

continuation to Minkowski space and in the large-χ limit, reduce to the general form

CM (χ;~b⊥; ν1, ν2) '
χ→∞

exp{KM (χ;~b⊥; ν1, ν2)} − 1 ,

KM (χ;~b⊥; ν1, ν2) = iβ(ν1, ν2)χpenχe−µb .
(A.10)

They are therefore functions of the variable w̃ = χpz̃ only, with z̃ = enχe−µb, which, up to

subleading terms at large χ, coincides with eq. (A.6) upon identifying n = s̃−1, µ = m̃ and

p = −(1+λ)/2. These parameterisations therefore lead to the same high-energy behaviour

25In principle these contributions could also be dominant, if λ(0) were smaller than the power correspond-

ing to the relevant massive particles.

– 36 –



J
H
E
P
0
3
(
2
0
1
4
)
0
0
2

of total cross sections found here, as already discussed in ref. [59]. Furthermore, if Imβ > 0,

they satisfy our first criterion for universality, i.e., vanishing of the Wilson-loop correlator

at large χ and fixed b, while if Imβ = 0 the correlator oscillates wildly at large χ and fixed

b, thus satisfying our second criterion for universality.

A.2 Resummation for factorised matrix elements: general case

We want now to extend the discussion of section 4.5 concerning the possibility to inter-

change the order of summation and analytic continuation to the case in which particles of

type 2 (see section 4.5) are present, when the Wilson-loop matrix elements are approxi-

mately in factorised form. Including this kind of particles, the factorised form of the matrix

elements reads26

Wα({~p}α, {s3}α; ν1) '
(1)∏

a, na(α) 6=0

na(α)∏

i=1

lim
T→∞

〈0|ŴE [C̃ (T )
0 (ν1)]|α, ~p (a)i, s

(a)i
3 ; in〉

〈0|ŴE [C̃ (T )
0 (ν1)]|0〉

×
(2)∏

a, na(α)6=0

∑

Pa

na(α)∏

i=1

lim
T→∞

〈0|ŴE [C̃ (T )
0 (ν1)]|α, ~p (a)i, ~p (ā)iPa , s

(a)i
3 , s

(ā)iPa
3 ; in〉

〈0|ŴE [C̃ (T )
0 (ν1)]|0〉

≡
(1)∏

a, na(α) 6=0

na(α)∏

i=1

Wa(~p
(a)i, s

(a)i
3 ; ν1)

×
(2)∏

a, na(α)6=0

∑

Pa

na(α)∏

i=1

Waā(~p
(a)i, ~p (ā)iPa , s

(a)i
3 , s

(ā)iPa
3 ; ν1) ,

(A.11)

where Wa are one-particle matrix elements, and Waā are particle-antiparticle pair matrix

elements; a similar result holds for Wα. Here the superscript (1) and (2) indicate that

the products in eq. (A.11) are restricted to particles of type 1 and particle-antiparticle

pairs of type 2, respectively; ā denotes the antiparticle of particle a; Pa is a permuta-

tion of 1, . . . , na(α) [clearly na(α) = nā(α)]. From eqs. (4.13) and (4.16), and using the

multinomial theorem, we get

C̃E ' exp





(1)∑

a

s(a)∑

s3=−s(a)

eiθs3
∫
dΩa e

−bε(a)
Wa(R θ

2
~pa, s3; ν1)W a(R− θ

2
~pa, s3; ν2)

+
1

2

(2)∑

a

s(a)∑

s3=−s(a)

s(a)∑

s̄3=−s(a)

eiθ(s3+s̄3)

∫
dΩadΩā e

−b[ε(a)+ε(ā)]

×Waā(R θ
2
~pa,R θ

2
~pā, s3, s̄3; ν1)W aā(R− θ

2
~pa,R− θ

2
~pā, s3, s̄3; ν2)



− 1 ,

(A.12)

26Here we are assuming that a particle can be paired only to its antiparticle to evade the selection rules.

Dropping this assumption would only make the combinatorics more complicated, without affecting the

argument.
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where dΩa = d3pa/[(2π)32ε(a)] is the phase-space element for a particle of type a, and

ε(a) the corresponding energy. The argument then goes as in section 4.5: the sums in the

exponent in eq. (A.12) are over finite sets, so that there is no convergence problem, and

one can verify explicitly that analytic continuation and summation over the complete set

of states commute.
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