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Abstract

Background: An accepted hypothesis states that coronary atherosclerosis (CA) is
initiated by endothelial dysfunction due to inflammation and high levels of LDL-
C, followed by deposition of lipids and macrophages from the luminal blood
into the arterial intima, resulting in plaque formation. The success of statins in
preventing CA promised much for extended protection and effective
therapeutics. However, stalled progress in pharmaceutical treatment gives a good
reason to review logical properties of the hypothesis underlining our efforts, and
to reconsider whether our perception of CA is consistent with facts about the
normal and diseased coronary artery.

Analysis: To begin with, it must be noted that the normal coronary intima is
not a single-layer endothelium covering a thin acellular compartment, as
claimed in most publications, but always appears as a multi-layer cellular
compartment, or diffuse intimal thickening (DIT), in which cells are arranged in
many layers. If low density lipoprotein cholesterol (LDL-C) invades the DIT from
the coronary lumen, the initial depositions ought to be most proximal to blood,
i.e. in the inner DIT. The facts show that the opposite is true, and lipids are
initially deposited in the outer DIT. This contradiction is resolved by observing
that the normal DIT is always avascular, receiving nutrients by diffusion from the
lumen, whereas in CA the outer DIT is always neovascularized from adventitial
vasa vasorum. The proteoglycan biglycan, confined to the outer DIT in both
normal and diseased coronary arteries, has high binding capacity for LDL-C.
However, the normal DIT is avascular and biglycan-LDL-C interactions are
prevented by diffusion distance and LDL-C size (20 nm), whereas in CA, biglycan
in the outer DIT can extract lipoproteins by direct contact with the blood. These
facts lead to the single simplest explanation of all observations: (1) lipid
deposition is initially localized in the outer DIT; (2) CA often develops at high
blood LDL-C levels; (3) apparent CA can develop at lowered blood LDL-C levels.
This mechanism is not unique to the coronary artery: for instance, the normally
avascular cornea accumulates lipoproteins after neovascularization, resulting in
lipid keratopathy.
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Hypothesis: Neovascularization of the normally avascular coronary DIT by permeable
vasculature from the adventitial vasa vasorum is the cause of LDL deposition and CA.
DIT enlargement, seen in early CA and aging, causes hypoxia of the outer DIT and
induces neovascularization. According to this alternative proposal, coronary
atherosclerosis is not related to inflammation and can occur in individuals with
normal circulating levels of LDL, consistent with research findings.
Background
Atherosclerosis, the predominant cause of coronary artery disease, remains enigmatic.

Despite best efforts, available therapies protect only 30-40% of individuals at risk, and

no therapeutic cure is anticipated for those who currently suffer from the disease.

Delayed progress concerning pharmaceutical treatment implies that atherosclerosis

drug development is in jeopardy, raising concerns among experts [1].

This analysis addresses the logical properties of the hypothesis underlying our efforts,

and reconsiders whether our perception of the disease is consistent with undisputed

facts concerning coronary arteries in general and during disease in particular. A differ-

ent perspective on the pathogenesis of atherosclerosis is proposed.

Logical properties and factual consistency concerning a currently endorsed
hypothesis relating to coronary atherosclerosis: common perception of
coronary artery morphology
A currently endorsed hypothesis is based on the following assumptions: (1) atheroscler-

osis is a systemic disease, initiated by endothelial dysfunction due to (2) inflammation

and (3) high levels of LDL, (4) leading to lipid and macrophage deposition in the tunica

intima from blood of the coronary lumen, and plaque formation (modified response-

to-injury hypothesis) [2,3]. This perception is presented in mainstream scientific publi-

cations and in educational materials, whether printed or electronic. This hypothesis is

typically accompanied by familiar schematics depicting the pathogenesis of coronary

atherosclerosis and transition from a normal cardiac artery to a diseased state, e.g.

Figure 1:

This perception of the mechanism of disease and similar schematics appear in well-

recognized scientific journals including Nature Medicine, Atherosclerosis, Thrombosis

and Vascular Biology and etc. (e.g. [5]), and common educational materials such as the

Britannica Online Encyclopaedia (Figure 2):

Therefore, this explanatory model concerning atherosclerosis, and accompanying

schematics indistinguishable from that outlined above, are available in the majority of

scientific publications and educational materials [2-6].

Analysis of main assumptions of the currently endorsed hypothesis
Assumption: atherosclerosis is a systemic disease

Factual contradiction Atherosclerosis never affects the entire arterial bed; it is exclu-

sive to large muscular arteries, particularly coronary, and to a lesser extent to elastic ar-
teries. Therefore, this systemic notion should be rejected on logical grounds;

atherosclerosis is NOT a systemic disease.



Figure 1 From: Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. The New
England journal of medicine 2005; 352(16):1685–1695. Figures 2, 3 and 4 [5]. Reproduced with permission of
the Publisher. Copyright © MMS, 2005.
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Assumption: atherosclerosis is an inflammatory disease

Varieties of microorganisms are present in advanced atherosclerotic lesions, for example in

specimens removed during atherectomy [7]. Fabricant et al. induced visible atherosclerotic

changes in chicken coronary arteries resembling that in humans, by infecting them with

herpesvirus [8-10] and suggested the viral role in pathogenesis, a view shared by many

scientists (for review see [11,12]).Mycoplasma pneumonia or Chlamydia pneumoniae infec-

tions alone [13] or together with influenza virus [14] have been proposed as contributory

factors in the pathogenesis of atherosclerosis, and particularly by participation in obstruc-

tion of vasa vasorum [11]. However, these cases probably do not indicate the initiation of

atherosclerosis, but are more likely to represent secondary infection of degenerating/

necrotic tissue. It should be emphasized that neither non-steroidal nor antibacterial anti-

inflammatory treatments alter the risk of coronary atherosclerosis [15-18]. Despite the
Figure 2 Coronary atherosclerosis. From: Atherosclerosis. Britannica Online Encyclopaedia. By courtesy of
Encyclopaedia Britannica, Inc., copyright © 2010 Encyclopaedia Britannica, Inc; used with permission [4].
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aforementioned studies [7-11,13,14], therefore, it can reasonably be claimed that no infec-

tious cause of atherosclerosis has been demonstrated [19,20].

Assumption: a high level of LDL initiates and is the main cause of atherosclerosis

High levels of LDL are an important risk factor, and lowering LDL levels is the most

significant pharmaceutical tool in coronary atherosclerosis prevention. However, the

statement that high levels of LDL are the main cause of coronary atherosclerosis is in-

consistent with established medical concepts.

Inconsistency with the established concept in medicine “Indeed, proof that a given

condition always precedes or accompanies a phenomenon does not warrant concluding

with certainty that a given condition is the immediate cause of that phenomenon. It

must still be established that when this condition is removed, the phenomenon will no

longer appear. . ..” Claude Bernard [21].

As has been emphasized by numerous scientists, multiple factors participate during

disease development, and can affect the progression and severity of disease. However,

only through distinguishing the cause from all contributing factors can an effective

cure, leading to disease eradication, be achieved.

“. . . differentiating between cause and non-causative factors is essential. Elimination

of the latter only ameliorates or reduces the incidence whereas elimination of the

former eradicates the disease. Swamps are not a cause of malaria. Draining swamps

may reduce the incidence of malaria but it is eradication of the malarial parasites

that eliminates the disease. Reduction in incidence rather than elimination of the

disease precludes a causal relationship.” W. E. Stehbens [22].

Therefore, the fact that lowering LDL levels does not prevent cardiac events in

60-70% of individuals at risk [23] contradicts the causative role of LDL. Unfortu-

nately, it appears that the scientific and medical communities are focusing on and

emphasizing biomarkers that can predict risk, without proof that these biomarkers

cause the risk [24,25].

Mechanisms of diseases constitute a new scientific field. However, although well-

recognized concepts are not always proved correct, the author believes that a new

hypothesis should not contradict established concepts that have been proven as far as

possible, without informed reasoning.

Factual discrepancies Lipid/macrophage pathogenesis of arteriosclerosis was sug-

gested approximately one hundred years ago [26]. However, the hypothesis only gained

proper attention during the 1970-80s, after a report concerning the Framingham Heart

Study [27], culminating in joint NIH and American Heart Association publication of a

Special Report [28], which was reprinted in all relevant journals [29-33]. The first

Panel’s Conclusion of the Report states: “Elevation of blood cholesterol levels is a major

cause of coronary artery disease”.

At approximately the same time, effective hypolipidemic drugs were developed and

introduced to clinics, and the American Heart Association predicted that lowering

blood cholesterol would almost eliminate the requirement for bypass surgery and
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eradicate coronary arteriosclerosis by the end of the 20th century [5,34]. It is now

known that HMG-CoA reductase inhibitors, cholesterol-lowering drugs known as “sta-

tins”, are almost 100% effective in populations with high LDL-C levels, but normalizing

LDL levels only reduces the risk of cardio-vascular diseases in this group by approxi-

mately 30-40% [23,35-38], and the total number of coronary interventions (bypass and

stenting operations) has increased significantly [39]. However, individuals with normal

LDL-C levels suffer from coronary atherosclerosis, and although at lower risk, this

includes vegetarians [40]. Numerous studies have demonstrated that coronary athero-

sclerosis affects all eutherian animals with a body mass comparable to or larger than

humans, regardless of diet specialization and LDL levels [41-45]. Surprisingly, in these

mammals, lipid accumulations in arterial walls were more common in herbivores than

carnivores [43,46]. The lack of association between total or LDL cholesterol and degree

of atherosclerosis in unselected individuals was demonstrated by a study during the

1930s [47] and has since been noted by many others, notably by W. E. Stehbens [48-

54] and U. Ravnskov [55-59], and others, e.g. [60]. Therefore, the hypothesis that ele-

vated blood cholesterol constitutes a major cause of coronary arteriosclerosis is ques-

tionable. Undoubtedly, high LDL levels are an important risk factor and a vital tool in

CA prevention, but logically, it must be concluded that high LDL levels are not "a

major cause" of coronary atherosclerosis.

Assumption: lipids act and invade coronary tunica intima from the arterial lumen

Factual discrepancies If high levels of LDL-C affect and invade arterial walls from the

arterial lumen (Figure 1), then the initial and most pronounced lipid accumulation in

the arterial tunica intima ought to be most proximal to the coronary blood flow, i.e.

within inner layers of the tunica intima. However, detailed pathological studies con-

cerning the early stages of human coronary atherosclerosis have demonstrated that the

opposite is true, i.e. lipid deposits are initiated on outer layers of the coronary tunica

intima [61,62], termed deeper musculoelastic layers (for morphological details and

terms see [63]). A report published in 1968 described, although very briefly, the same

morphological pattern during the early stages of human coronary atherosclerosis: initial

lipid accumulation in the deepest intimal portion, followed by lipid deposition in the

middle intimal zone [64]. This counterintuitive location of lipid depositions is very im-

portant for understanding the pathogenesis of coronary atherosclerosis, and I term this

phenomenon the “outer lipid deposition paradox”.

Nakashima et al. explained the outer lipid deposition paradox by demonstrating that

accumulation of proteoglycan biglycan occurs predominantly in the outer layers of the

tunica intima of normal and diseased individuals, i.e. in the same location as the initial

accumulation of lipids. Furthermore, Nakashima et al. suggested that biglycan possesses

specific binding properties for atherogenic lipoproteins. They noted that structural

changes in biglycan could increase its binding properties, and suggested a possible source

of biglycan expression in agreement with previous reports [65,66]. Noting some discrep-

ancy in patterning, i.e. that lipids deposit eccentrically, whereas biglycan is localized con-

centrically [62], the authors elaborated these specifics in this and a later publication [67].

In addition to reporting significant findings on the precise location of lipid deposi-

tions during initiation of coronary atherosclerosis, this work univocally demonstrates

that normal coronary tunica intima is not a single-layer endothelium covering a thin



Figure 3 From: Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K. Early human atherosclerosis:
accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration.
Arteriosclerosis, thrombosis, and vascular biology 2007; 27(5):1159–1165. Arrowheads indicate internal elastic
lamina. Reproduced with permission from the Publisher. Copyright © 2007, Wolters Kluwer Health.
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acellular compartment, as is commonly claimed in all mainstream scientific publications

and educational materials (e.g. Figures 1 and 2), but a multi-layer cellular compartment

where cells and matrix are arranged in a few dozen layers.

However, this is not a new discovery in coronary morphology. In 2002 Nakashima et al.

published a complete morphological analysis concerning normal post-natal development of

human coronary arteries, demonstrating that the epicardial coronary tunica intima invari-

ably forms a multilayered cellular compartment, or diffuse intimal thickening (DIT) [68],

known as normal arterial intimal hyperplasia [69]. Please note, this morphogenesis



Figure 4 Structures and components of DIT in the proximal portion of the RCA in adults. a, b – DIT
was demonstrated as a uniformly thickened inner layer (van Gieson). c – immunostain for alpha smooth
muscle actin. Almost all cells in DIT were smooth muscle cells. d – immunostain for macrophage marker
HAM56 at the same site as in c. Only a few intimal and several adventitial cells were positive (arrowheads).
I – intima, M – media, A – adventitia. These microscopic images represent a normal right adult coronary
artery in two intersecting planes. From: Nakashima Y, Chen YX, Kinukawa N, et al: Distributions of diffuse
intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early
age. Virchows Arch 2002, 441:279–288. Used with permission from the publisher and authors. Copyright ©
2002, Springer.
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necessarily occurs during early postnatal development in humans and is maintained

throughout life.

From: Nakashima Y, Chen YX, Kinukawa N, et al: Distributions of diffuse intimal

thickening in human arteries: preferential expression in atherosclerosis-prone arteries

from an early age. Virchows Arch 2002, 441:279–288. Used with permission from the

publisher and authors. Copyright © 2002, Springer.

From: Nakashima Y, Chen YX, Kinukawa N, et al: Distributions of diffuse intimal

thickening in human arteries: preferential expression in atherosclerosis-prone arteries

from an early age. Virchows Arch 2002, 441:279–288. Used with permission from the

publisher and authors. Copyright © 2002, Springer.

Nakashima et al. [68] credited all previous reports concerning DIT in normal human

coronaries, beginning with a famous publication by Richard Thoma in 1883 [70] and con-

cluding with modern papers, e.g. [71]. These references could be supplemented with

dozens of others demonstrating that the formation of DIT in normal coronaries is univer-

sal in humans. One particular publication, written by Dr. Kapitoline Wolkoff in 1923 [72],

was pioneering in relation to the detailed morphology of post-natal human coronary onto-

genesis. In her observations, the intimal structures (in German “Bindegewebsschicht” and

“Elastisch-hyperplastische Schicht”) above a lamina elastica interna correspond to DIT in

the modern literature [63,67,68,73].

To my knowledge there are no definitive data concerning the number of cell layers

forming DIT, which varies in formalin-fixed specimens owing to artery contraction in

fixative [63]. In addition to individual variations, the latter could explain differences in

DIT thickness in various reports, e.g. [68,72,74]. Therefore, it is difficult to determine an



Figure 5 Diffuse intimal thickening (DIT) in proximal coronary arteries. a– Right coronary artery (RCA),
7-day-old female. b – Left anterior descending artery (LAD), 5-year-old female. c – LAD, 15-year-old female.
d – LAD, 29-year-old female. Bars in a, b, c and d represent 25 μm, 50 μm, 50 μm, 100 μm, respectively. I –
intima, M – media. These microscopic images represent normal morphological changes in coronary arteries
from birth to adult (van Gieson stain). From: Nakashima Y, Chen YX, Kinukawa N, et al: Distributions of
diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an
early age. Virchows Arch 2002, 441:279–288. Used with permission from the publisher and authors.
Copyright © 2002, Springer.
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exact number of cell layers in DIT, although extrapolating from all available reports it can

be approximated as between 20–25 and 35–50 cell layers. Coronary artery DIT has been

found in all studies concerning vertebrates with a body mass similar to or larger than

humans (for review see [69]), and taxonomy-wise starting with fishes [75]. Unfortunately,

these fundamental facts have not been widely appreciated during medical research and

education, which commonly operates on the assumption that normal coronary arterial

tunica intima is always an "ideal" single-layer endothelium covering an acellular compart-

ment [4-6,76], or denying the presence of coronary DIT in animals [77].

Discussion
When considering coronary atherosclerosis, we inevitably focus on atherosclerotic plaques,

their vulnerability and rupture, lipid and necrotic core, fibrous cap and thickness, as these

features determine morbidity and mortality. However, these are features of advanced stages

of the disease, and such lesions [78-80] are extremely resistant to therapeutics. Progress in

plaque stabilization and regression has been reported, but the probability that these patients

will require coronary intervention is very high (for review see [81]). This analysis concerns

initiation and early stages of CA, which should be more receptive to therapeutics and are

potentially reversible. In addition, initial tissue transformations are more informative in

terms of elucidating mechanisms of disease, as later pathological formations (e.g. mature

plaque) include significant secondary lesions, which could mask crucial features of disease

pathogenesis.

An important part of this analysis is devoted to the consistency of the hypothesis that

guides our efforts to understand coronary atherosclerosis, relating to facts concerning

normal coronary morphology and the diseased state. As demonstrated above, the
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morphology of human coronary arteries is not what is commonly claimed in analyses re-

lating to coronary atherosclerosis, which underlies approaches to finding a cure. Unfortu-

nately, this inaccurate perception of coronary artery morphology has led to hypotheses

that imply that DIT is a dimensionally insignificant compartment, e.g. [4-6]. Furthermore,

such depiction appears in articles that include micrographs of coronary artery histological

slides that demonstrate the real ratio between coronary artery coats, e.g. [82]

Therefore, although the coronary tunica intima is a multi-layered cellular compart-

ment equal to or thicker than the tunica media [62,63,67,68,70,72,83-85], there is a

common perception that the human coronary tunica intima is a one-cell layer covering

a thin matrix layer [4-6,82,86]. Since this perception is very persistent in scientific pub-

lications and educational materials, I believe it is worthwhile to look for a reason for

this misinterpretation.

Custom replies such as: “it is just an unimportant visual (or verbal) schematic, but the

foundation of the hypothesis is correct” are not convincing. A schematic that presents a

hypothesis is the essence of the hypothesis. Therefore, if the schematic is incorrect, the

hypothesis must be incorrect too.

Incorrect presentation of human coronary morphology (depicting the tunica intima as

one cell layer covering a thin matrix layer) has several negative consequences, but the

most crucial is that such misperception cannot incorporate the outer lipid deposition

paradox. Even when early intimal lipid deposition is mentioned, incorrect presentation of

tunica intima morphology as a one cell layer structure covering a thin matrix layer does

not make outer lipid deposition surprising (paradoxical) and prevents a hypothesis from

using this observation as a tool during analysis of the disease pathogenesis [82].

One plausible explanation for this oversight could be that medical scientists in main-

stream research are not aware of the exact coronary artery morphology or consider it

an insignificant detail. This is probably a reflection of how coronary histology is taught

to medical students. Any standard textbook of histology, e.g. [87-89], and most mono-

graphs concerning coronary disease, e.g. [90-93], present coronary morphology in this

way. The famous "Color Atlas of Cytology, Histology, and Microscopic Anatomy" used

by medical students and published by Wolfgang Kuehnel [94], which was translated

into all Western languages, does not include coronary artery morphology, leaving read-

ers with the illusion that it has the same morphology as any artery of this caliber. At

best, some textbooks comment briefly that the intima of elastic arteries may be thicker

[95,96] or that the intima of coronary arteries demonstrates the greatest age-related

changes [97,98], still stressing the single-cell layer intimal design. An example of such

misrepresentation appears in the very popular Medscape website (a part of WebMD),

which advertises itself as: “Medscape from WebMD offers specialists, primary care phy-

sicians, and other health professionals the Web's most robust and integrated medical

information and educational tools” [99]. In its recently updated article relating to cor-

onary artery atherosclerosis, Medscape states: “The healthy epicardial coronary artery

consists of the following 3 layers: Intima, Media, Adventitia. The intima is an inner

monolayer of endothelial cells lining the lumen; it is bound on the outside by internal

elastic lamina, a fenestrated sheet of elastin fibers. The thin subendothelial space in be-

tween contains thin elastin and collagen fibers along with a few smooth muscle cells

(SMCs)” [100]. The few modern textbooks presenting correct information, e.g. "Hist-

ology for Pathologist" [101] and “Vascular Pathology” [102], have not changed this
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common perception. Regardless of whether the above explanation is correct or not, this

misperception of coronary artery design persists in research and education.

Failure to incorporate facts concerning coronary artery design into hypotheses relating

to the mechanism(s) of coronary atherosclerosis is worrying. The accepted hypothesis

describes lipid invasion into the coronary DIT from the arterial lumen [5,6,82,86,103,104].

The accepted vector and topology of events is the core of the hypothesis and the assumed

mechanism of the disease: “Lipids enter the arterial wall as compounds with protein frac-

tions of blood plasma directly from arterial lumen” [105]. This pathway is univocally

incorporated in the currently endorsed hypothesis and all offshoot models. Logically, from

these models, initial lipid deposition in the tunica intima should be more proximal to the

lumen. However, it has been demonstrated that lipid accumulation appears not in the

inner layers of DIT, which are proximal to the lumen, but in the distant outer layers

[61,62,64,67]. Obviously, to reach an outer intimal layer, lipids are required to diffuse

through numerous cell layers and a significant amount of matrix situated between the

intimal cells. However, in diffusion or “filtration pressure” [106] models, the highest lipid

accumulation must be most proximal to a lumen, diminishing proportionally to intimal

depth, comparable to patterns of lipid accumulation in tunica intima of non-diseased

human aortas of individuals aged 6–15 years [107]. Therefore, why does lipid accumula-

tion in coronary atherosclerosis start in the deep layers of DIT, just above the internal

elastic lamina, distant from the lumen? To explain this contradiction, the conventional

hypothesis has to relate to certain conditions under which this puzzling pattern could be

theoretically possible: e.g. co-localization of proteoglycan biglycan (which has a high

binding capacity for lipoproteins) in the outer layer of DIT [62,67,82]. However, findings

concerning biglycan location [62,67] could explain retention but not penetration, and

even the former can only be explained with reservations: biglycan is expressed in several

tissues of the body, so why is the outer DIT of coronary the target? Is this complicated

model the only explanation?

Details of coronary artery structure are critically important for this analysis. Therefore,

it is necessary to enumerate undisputed facts concerning coronary artery morphology.

The human heart has coronary arteries in which a single-cell layer of tunica intima differ-

entiates early in life to form DIT, and then continues to self-renew in a controlled manner

throughout life in a majority of the population. When normal DIT becomes diseased, it is

difficult to distinguish early pathology morphologically from the norm [108,109], and

sometimes this is the case with advanced stages (post-transplant coronary atherosclerosis)

[76]. Normal DIT, or normal intimal hyperplasia, is so striking in its resemblance to

diseased hyperplasia that the former is known as "benign intimal hyperplasia" [110-112].

It is important to highlight that normal human coronary tunica intima, evolving from

one cell-layer after birth to DIT in adults, is always the avascular compartment and

remains avascular in the vast majority of hearts throughout life. Several studies have

investigated this topic thoroughly and concluded that coronary tunica intima receives

oxygen and nutrients through diffusion from the arterial lumen [106,113-116]; a previous

suggestion that nutrients from vasa vasorum can meaningfully contribute to coronary

tunica intima nourishment [117] was never confirmed. Past findings concerning the vas-

culature in normal coronary intima [118], later reprinted in [119], were attributed to high

pressure of injected dye (ten times higher than normal) [106]. Therefore, when DIT

attains thickness of up to ten cell layers (at approximately five years old), inner and outer
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compartments of tunica intima are exposed to various concentrations of blood constitu-

ents, as diffusion is inversely proportional to the square of the distance (i.e. DIT thick-

ness). When this distance is increased, as happens in adult coronary DIT, it must be

assumed that contact of outer intimal layers with certain blood constituents would be sig-

nificantly minimized, if not completely diminished. Therefore, for adult or aged-thickened

[120] and diseased-thickened coronary tunica intima, diffusion deficit of the outer intimal

layers can be assumed, similar to the model of Wolinsky and Glagov, known as “critical

depth” of avascular media or “rule 29” [121].

As aforementioned, before plaque formation occurs, diseased DIT, or pathologic in-

timal thickening (PIT), is microscopically indistinguishable from normal DIT. However,

there is one characteristic that distinguishes diseased coronary DIT from normal DIT:

pathological DIT (PIT), even during the beginning of the disease, is always vascularized

[106,113-115,122]. This neovascularization, originating from adventitial vasa vasorum

[123,124], is observed prior to the appearance of any atherosclerotic features except an

increased dimension of DIT [125]. This neovascularization pattern is common in all

diseased arterial DIT [126]. Contrary to a previous report concerning coronary athero-

sclerosis [118,119], in contemporary publications luminal neovascularization, although

reported in one study, was found to be negligible: vasculature originating from adventi-

tial vasa vasorum exceeds luminal vessels 28 times [127]. This intimal neovasculature

exclusively terminates in the outer tunica intima of the atherosclerotic human coronary

artery, just above the internal elastic lamina, [113,116,123,127-131]. A comparable pat-

tern of coronary outer tunica intima neovascularization has been demonstrated in a

porcine model of coronary atherosclerosis [132].

Now, we shall enumerate the facts:

(1) Normal coronary DIT is an avascular compartment, receiving blood constituents

through diffusion from the arterial lumen;

(2) Normal outer DIT is the most distant compartment from the arterial lumen and

adventitial vasa vasorum. Therefore, the probability of diffusion to this depth of some

blood constituents including LDL-C particles is very low;

(3) The outer avascular tunica intima of normal and atherosclerotic coronary is

always reached by proteoglycan biglycan, which has a high capacity for selective

binding of lipoproteins;

(4) In normal coronary artery, biglycan of the outer DIT does not have direct contact

with blood, and interaction with LDL-C is prevented by diffusion distance and the

properties of this molecule (20 nm);

(5) In coronary atherosclerosis, the outer layers of DIT become exclusively

neovascularized, and biglycan comes into direct contact with blood lipoproteins.

If the above statements stand, a simple conclusion can be reached: in coronary ath-

erosclerosis, biglycan of the outer DIT should extract and retain LDL-C particles from

newly formed capillary beds, which are known to be very permeable [133,134]. This

mechanism does not require any conditioning or complicated explanatory pathways.

Furthermore, as we know from observations, lipid accumulation during early stages of

coronary atherosclerosis always begins in the outer layers of the coronary DIT

[61,62,64,67].
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The assumption that neovascularization of the outer tunica intima is the first step in

pathogenesis results in a hypothesis that produces the simplest explanations: (1) an

initial deep localization of lipid deposition in the tunica intima, (2) a certain probability

of coronary lipid deposition and atherosclerosis development when blood LDL levels are

normal if pathological neovascularization has occurred, owing to LDL-C accessibility for

contact with previously avascular structures (biglycan, which has affinity to LDL-C, and

should extract it regardless of LDL-C levels); (3) more probable lipid deposition and

disease contraction at high blood LDL levels; (4) probability of coronary atherosclerosis

development after high LDL levels are lowered through the use of drugs, as neovasculari-

zation has already occurred and LDL-C particles appear in direct contact with previously

avascular structures (biglycan, which has affinity to LDL-C and should extract it regard-

less LDL-C levels). At this point in the analysis, neovascularization of the coronary tunica

intima appears as a cause of coronary atherosclerosis. Therefore, it logically follows that

since the presence of LDL-C in plasma is a fundamental metabolic requirement for

humans [135], theoretically there is no “safe LDL-C level” that would be 100% certain to

prevent coronary atherosclerosis if intimal neovascularization has already occurred.

Therefore, the model predicts that if the coronary intima became vascularized, lipopro-

teins would be extracted and retained by intimal proteoglycan biglycan even if blood LDL

levels were normal. However, lipoprotein extraction and deposition will be faster if LDL

levels are high. These model predictions have been confirmed by clinical observations.

Therefore, contrary to the accepted model, the author’s hypothesis suggests a different

cause of the disease, and the opposite route for invasion of atherogeneic lipoproteins into

the coronary tunica intima.

It is plausible that other intimal components, which were expressed and stored in the

avascular environment, would interact with blood lipoproteins in the neovascularized

environment. Hypothetical affinity to and binding of lipoproteins could be the result of

LDL-C availability and matrix modifications under oxygenized conditions [136].

The author’s hypothesis does not refute the contribution of lipoprotein deposition

from the arterial lumen. It is known that such deposition occurs in normal aorta,

although resulting in a different pattern [107]. However, in the author’s model, lipopro-

tein deposition from the arterial lumen becomes irrelevant. Let us just compare the

probability of two events occurring (i.e. lipid deposition via two pathways): (1) lipopro-

teins travel from the arterial lumen through the endothelium and multiple cell/matrix

layers to be deposited in the outer DIT; (2) lipoproteins exude into the outer DIT from

newly formed capillary beds, which terminate directly into the outer DIT and are very

permeable [133,134]. The greater likelihood of the second model is obvious. The same

logic could be applied to infer a route of monocyte infiltration into the coronary

intima.

In previous publications, a similar mechanism was suggested to contribute to progres-

sion of already formed coronary plaques and inflammation in advanced human coronary

atherosclerosis [137-140]. However, all prior analyses stop short of suggesting that neovas-

cularization of the outer tunica intima is the cause of the disease.

This suggested mechanism of pathology is not unique. The identical mechanism,

involving neovascularization of a normally avascular tissue compartment, followed by

lipoprotein deposition, is well known. Consider corneal lipid keratopathy. The cornea is

normally an avascular compartment [141,142]. More than 50 years ago, Cogan and
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Kuwabara described cornea lipid keratopathy, consisting of lipid deposition followed by

fatty plaque formation, as occurring only in corneal areas that have been previously

neovascularized [143]. Furthermore, the authors pointed to morphological similarities

between cornea lipid plaques and those in atherosclerosis, and suggested common

pathogenesis [143]. In succeeding years, numerous reports reaffirmed a causal role of

neovascularization in corneal lipid deposition and hence the main treatment modality

has become the inhibition of neovascularization [141,142,144-153]. In addition, there is

only a single clinical observation of lipid keratopathy without prior neovascularization

[154], and a single experimental study that disputes the causal role of neovasculariza-

tion in corneal lipid deposition [155]. Furthermore, it has been noted that a role of

inflammation during this pathogenesis is limited to the induction of angiogenesis [152].

Lipoprotein levels in the aqueous humor are thought to be close to those in blood

[156-161]. It is important to note that although the corneal substantia propria is

separated from aqueous humor by only one cell layer of descemet epithelium, lipid

depositions have never been observed prior to corneal neovascularization (except

the one report mentioned above [154]). This strongly favors the model of lipids

exuding from permeable neovasculature into the cornea proper, rather than a diffu-

sion model.

The fact that a similar sequence of events that includes lipid deposition underlines

pathogenesis of the unrelated corneal disease reinforces the suggested new hypothesis

concerning mechanisms of coronary atherosclerosis.

Why does arterial tunica intima become neovascularized in the first place?

Early during life the tunica intima of human coronary arteries differentiates from a

single-layer cell compartment into a multi-layer cellular structure (i.e. DIT) through

proliferation of residual and medial cells, and probably through participation of blood-

born cells. Intimal proliferation with increasing numbers of cells continues until

approximately 30 years of age [68,72] and then maintains self-renewal in a controlled

manner throughout life. The mechanisms that initiate this morphogenesis and control

it later during life are unknown, but it can be concluded that cells in the coronary

tunica intima possess inherently high proliferative capacity. During normal growth

transformations the coronary DIT remains avascular, so its dimension (thickness)

allows all intimal cells to receive sufficient oxygen and nutrients through diffusion from

the arterial lumen.

If we were to choose one feature that would universally reflect the reaction of the

arterial tunica intima, and particularly the coronary intima, to a variety of stimuli,

injuring factors, and interventions in clinics and experiments, the answer is undoubted

- it is intimal cell proliferation. Regardless of the nature and magnitude of stimuli/

insults, cells that appear in the arterial intimal compartment (normal or artificial, e.g.

[162-167]), always proliferate in response. Furthermore, it is known that the arterial

tunica intima can develop two normal variant phenotypes: a one-cell lining and a

multi-layered cellular compartment, i.e. DIT. The first phenotype is maintained in all

small and most medium caliber arteries, but certain arterial segments (e.g. coronary)

normally evolve into the second phenotype. Each intimal type can be maintained as

stable phenotypes or produce excessive intimal cell proliferation. Multiple observations

have demonstrated that cells participating in this morphogenesis can be of different ori-

gins. As to regulations directing normal and pathological morphogenesis, a shear stress
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was suggested as the major factor [168-178]. In addition, I hypothesized that the arterial

blood-tissue interface itself (as a topological entity) contributes to this morphogenesis,

and the enhanced proliferative capacity of the arterial intima is a reflection of phenotype

selection [69,179] (though these statements do not suggest mechanisms of regulation). All

observations demonstrate that intimal proliferation can be induced by a variety of stimuli

and insults that are different in nature and magnitude, which suggests that these stimuli

and insults act as non-specific factors triggering preexisting regulation for proliferative

morphogenesis. The ability of the arterial intima, and particularly coronary intima, to slip

into proliferative morphogenesis was described as a genetic predisposition, which could

manifest in “a hyperplastic vasculomyopathy” [180].

Therefore, cells in the coronary tunica intima respond by proliferating to any stimuli,

exogenous or endogenous. An increase in cell numbers inevitably expands intimal

thickness, which occurs with aging [119,181]. Expanded intimal thickness impairs diffu-

sion of oxygen, as diffusion is inversely proportional to the square of the distance. In-

sufficient oxygen diffusion would inevitably result in hypoxia, specifically of cells in the

outer DIT, because this tissue compartment is the most distant from the lumen and ad-

ventitial vasa vasorum [182].

What would happen when the coronary DIT becomes larger owing to cell prolifera-

tion or excessive matrix deposition (I did not mention a possible participation of

intimal matrix before because there are few facts describing this pathway)? A straight-

forward answer was given by Gladstone Osborn: “When the intima of the coronary

artery exceeds a certain thickness parts must either die or develop secondary blood

supply” [183]. Since tissue hypoxia is a known inducer of angiogenesis and pathological

neovascularization [184,185], neovascularization of the outer compartment of disease

coronary DIT from adventitial vasa vasorum must follow coronary DIT expansion. The

author agrees with Geiringer’s assertion that “. . .intimal vascularization is a function of

intimal thickness and not of atherosclerosis” [105]. Furthermore, the author’s deduction

from the above is that intimal proliferation/thickening and neovascularization are the

causes of coronary atherosclerosis.

Therefore, it is hypothesized herein that proliferation of intimal cells initiates athero-

sclerosis. This is not a new model. This mechanism was suggested some time ago,

although omitting subsequent neovascularization of coronary DIT [186-192]. However,

the viewpoint that intimal cell proliferation is the beginning of atherosclerosis [186-192]

was superseded by the currently endorsed hypothesis, which asserts that arterial intimal

proliferation is an event secondary to lipid/macrophage penetration and inflammation

[2,3,5,6,193]. Reflecting on the convenient hypothesis, the current classification of athero-

sclerosis excludes a variety of arterial pathologies characterized by intimal cell prolifera-

tion [194]. However, the currently endorsed hypothesis is based on an incorrect

perception of coronary artery morphology. DIT enlargement and subsequent neovascular-

ization were not recognized as initiators of the disease, and this view does not acknow-

ledge outer lipid deposition as paradoxical. The currently endorsed model, based on

invasion of lipoproteins from the coronary lumen, is very unlikely in the light of preceding

DIT neovascularization. In the model outlined herein, neovascularization of the deep

layers of DIT from the vasa vasorum makes initial outer intimal lipid deposition logical

not paradoxical. Neovascularization of the previously avascular deep layers of coronary

DIT, resulting in availability of blood lipoproteins to be extracted and retained by the DIT
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matrix, explains controversies regarding normal LDL-C levels (spontaneous or drug-

modulated) and risks for coronary atherosclerosis.

The suggested hypothesis can be presented in the following schematics (Figure 6):

Summary

(1) A hypotheses underlining our efforts to approach coronary atherosclerosis must

be consistent with undisputed facts concerning the subject. Furthermore, a hypothesis

should incorporate logical evaluation, and not contradict established and proven

concepts in biology and medicine without well-grounded reasons.

(2) Atherosclerosis occurs in arteries with normal DIT, while sparing the rest of

arterial bed. However, while normal DIT exists in numerous arteries [120,194], some

of these are never affected by atherosclerosis; coronary arteries are almost always the

target. On logical grounds, an arterial disease that never affects some arteries but

usually affects certain others is not systemic.

(3) Coronary atherosclerosis is not an inflammatory disease, as multiple clinical trials

demonstrate no correlation between anti-inflammatory therapies and risk of disease.

(4) High LDL levels are not a fundamental cause of coronary atherosclerosis, as

lowering such levels protects only 30-40% of those at risk. Furthermore, humans and

animals with normal LDL levels can suffer from coronary atherosclerosis.

(5) Neovascularization of the normally avascular DIT is the obligatory condition for

coronary atherosclerosis development. This neovascularization originates from

adventitial vasa vasorum and vascularizes the outer part of the coronary DIT, where

LDL deposition initially occurs.

(6) It is suggested that excessive cell replication in DIT is a cause of DIT

enlargement. Participation of enhanced matrix deposition is also plausible. An increase

in DIT dimension impairs nutrient diffusion from the coronary lumen, causing

ischemia of cells in the outer part of coronary DIT.

(7) Ischemia of the outer DIT induces angiogenesis and neovascularization from

adventitial vasa vasorum. The newly formed vascular bed terminates in the outer part

of the coronary DIT, above the internal elastic membrane, and consists of permeable

vasculature.

(8) The outer part of the coronary DIT is rich in proteoglycan biglycan, which has a

high binding capacity for LDL-C. While in avascular DIT, biglycan has very limited

access to LDL-C due to diffusion distance and LDL-C properties; after

neovascularization of the outer DIT, proteoglycan biglycan acquires access to LDL-C

particles, and extracts and retains them.

(9) Initial lipoprotein influx and deposition occurs from the neovasculature

originating from adventitial vasa vasorum - and not from the arterial lumen.

(10) Although lipoprotein deposition in the outer part of the coronary DIT is the

earliest pathological manifestation of coronary atherosclerosis, intimal

neovascularization from adventitial vasa vasorum must precede it.

Therefore, in the coronary artery tunica intima, a previously avascular tissue com-

partment becomes vascularized. All other tissue compartments are developed (both

phylogenetically and ontogenetically) with constant exposure to capillary bed and



Figure 6 Schematic representations of the mechanism of CA. a – normal coronary artery. Coronary
tunica intima forms DIT with biglycan accumulations in the outer DIT, which is most distant from the
arterial lumen. b – DIT enlarged by cell proliferation and matrix production. Cells in the outer DIT
underwent hypoxia due to increased diffusion distance. c – neovascularization of the outer DIT from
adventitial vasa vasorum. Newly formed vessels are highly permeable. d – biglycan of the outer DIT comes
in direct contact with blood LDL-C, which facilitates binding, retention and deposition of LDL-C in outer
DIT, while inner DIT is free from lipoproteins. This schematic stage d corresponds to fatty streak Grade 1
and Grade 2 in the Nakashima et al. study [62]. Please note, in the schematic of a normal coronary artery
(a), the number of DIT layers shown is less than my estimation in the text. This alteration was necessary to
present half of the arterial circumference and emphasize DIT enlargement at the same time in the picture.
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blood, therefore their tissue components were selected not to bind LDL. This is why

atherosclerosis is mostly limited to the coronary arteries. To my knowledge the

only other example – the avascular cornea – shows the same lipid deposition after

neovascularization.

The author does not claim that his hypothesis offers an immediate solution. Intimal

cell proliferation, producing DIT and its later expansion, is cell hyperplasia, meaning

that newly arrived cells are similar to normal residual cells, making systemic targeting

very difficult. While the author strongly believes that intimal neovascularization is the

crucial step in the pathogenesis of coronary atherosclerosis, there are obvious concerns

about angiogenesis inhibition in a heart with an already jeopardized myocardial blood

supply. The author does not intend to suggest an immediate solution. The goal was to

evaluate the hypothesis and the perceptions that we exercise in approaching coronary

atherosclerosis logically and factually, and to offer a more coherent model. Further-

more, the intent was to underline paradoxical observations that could provide new

insights into mechanisms of the disease. Atherosclerotic plaque growth and rupture are

not paradoxical but anticipated events. In contrast, initial lipid deposition in outer

layers of DIT with no deposition in inner layers is a paradoxical observation, and

requires an explanatory model that differs from the accepted one. However, to

recognize the paradox, correct perception of the coronary artery structure, where path-

ology occurs, must not be distorted by incorrect illustrations and verbal descriptions.

When we name or depict things incorrectly, often just for nosological reasons, the in-

correct perception of events may persist in spite of growing knowledge, impeding our

attempts to discover the truth.

“It has caused me the greatest trouble, and for ever causes me the greatest trouble, to perceive that unspeakably
more depends upon what things are called, than on what they are.”

Freidrich Nietzsche
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