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Abstract Beam-interface interactions under incidence of a
TE polarized elegant Hermite—Gaussian beam are consid-
ered in order to obtain efficient excitation of higher-order
beam modes at a homogeneous, isotropic metamaterial sur-
face. It is shown by numerical simulations that two transmit-
ted TE and TM polarization beam components are enhanced
more efficiently at a metamaterial surface than in the case of
a dielectric interface. The mixed Poynting vector contribu-
tion to the incident energy flux is evaluated to explain this
enhancement. The numerical results obtained are verified
against energy balance at the interface.

1 Introduction

Since the first Veselago’s publication on artificial materials
characterized by negative permittivity and negative perme-
ability [1], many reports on theoretical and experimental as-
pects on metamaterials have been published. A comprehen-
sive list of papers devoted to this topic can be found, for ex-
ample, in review articles [2—4]. Due to their specific features
the metamaterials offer many possibilities in designing new
photonic structures. A lot of theoretical and numerical work
has been done to explore properties of metamaterials suit-
able for specific applications. In this report, the problem of
beam incidence upon an isotropic interface is considered, in
the context of excitation of higher-order beam modes at such
planar structures [5]. The effectiveness of this excitation, al-
though usually rather small, could be increased by making
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the beam width smaller even beyond the paraxial limit or
by replacing normal incidence of the beam by its critical
incidence [6]. Note that this excitation process critically de-
pends on the incidence angle [7] and its efficiency can be
further increased by using anisotropic, instead of isotropic,
materials. However, it seems that, in certain circumstances,
application of metamaterial isotropic surfaces may also ap-
pear suitable for the same purpose. In this report we will
verify theoretically and numerically such a possibility.

The paper is organized as follows. In the next section
the problem of beam transmission is specified. Elegant
Hermite—Gaussian (EHG) beams [6], selected as suitable
biorthogonal and complete basis in our numerical simula-
tions, together with specification of metamaterial medium
parameters, are briefly described. In Sect. 3 the enhance-
ment of the beam amplitude during transmission through the
metamaterial-air interface is presented. The beam is incident
obliquely on the surface from the metamaterial side. The re-
sults are explained in terms of mixed Poynting vector theory
[8-10]. The dependence of the transmitted beam amplitude
on the incident beam width is also discussed. The main re-
sults are summarized in Sect. 4.

2 Specification of the problem

It is known that the 3D beam impinged upon the interface
exhibits the cross-polarization coupling (XPC) caused by
azimuthal dependence of the beam spectrum [5]. For an in-
cident beam of the specified (TE or TM) polarization, the
refracted portion of the field consists of two polarization
(TE and TM) beam components. One of the two transmit-
ted beam components has the same polarization as the in-
cident beam and is called the direct polarization (DP) com-
ponent. The second component, excited at the interface, has
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Fig. 1 Geometry of the problem. Red line points the direction of the
beam propagation impinged on the surface (bold black line, X axis) at
the angle 6;. n; is the refractive index of the metamaterial or the dielec-
tric, 6); is the angle between real part of the wave vector of the trans-
mitted field and normal to the interface. 71, and 71, point the direction
of phase propagation and the direction of exponentially change of the
beam amplitude, respectively (see also Appendix A). The enhancement
of the XPC is examined in the transmitted beam at the interface surface
(X axis)

the polarization orthogonal to the first one and is called the
cross-polarization (CX) component. In this report a suitably
chosen metamaterial-air interface is proposed to magnify the
amplitude of this component, with respect to the amplitude
level obtained in the case of a dielectric-air interface.

In theoretical aspects of this 3D transmission problem
we follow the analysis presented in [5, 6]. The EHG beam
is defined in the plane z = const transverse to its propa-
gation direction (see Fig. 1). Next, the beam is projected
onto the interface plane Z = const and its polarization is
specified in this plane as well. It is assumed that the cen-
tral spectral beam component reaches the interface at the
beam waist plane defined at z = 0. The harmonic depen-
dence exp[ikz —iwt] on time ¢ and the propagation distance
z are assumed and suppressed. For the obliquely incident TE
polarized EHG beam, each spectral plane-wave component
of the transmitted beam can be written within the first-order
approximation, as [6, 11]

0 .
Ex N, [0 gmm _ 2tex [1] sam )
I::I(f) 1] 7™ kjwysing; 0]t

where the scalar EHG beams G,(,E ™) are defined in the spec-
tral domain by their two-dimensional Fourier transforms:

G (kx, ky, Z) = (iwy,))" Ky ky G (K Ky, Z), 2)
- 1
Gkx, ky, Z) =27 exp|:—§(k§(+k%)v2:|, (3)

The left side of (1) represents a vector composed of
two spectral components of the transmitted beam: the up-
per one represents the TM, CX polarization component, the
lower one represents the TE, DP polarization component.
The standard Fresnel and the XPC transmission coefficients
are ty and tcx = (ntp — t3)/2, respectively, k;wy, is the di-
mensionless, normalized by the wave number 1/k;, beam
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half-width at the waist, ¢; is the polar incident angle of the
beam spectral component. Equation (2) is a spectral repre-
sentation of the incident elegant Hermite—Gaussian beam of
the indices m, n specified in the two transverse to Z direc-
tions [5, 6].

One way to enhance the amplitude of the transmitted CX
component is to manipulate the magnitude of the 7cx coef-
ficient. It can be accomplished by specification of the para-
meters of the metamaterial medium, in which the beam is
traveling, or from which is reflected. We chose the single
negative metamaterial described in [12]. The maximally ef-
ficient excitation of the CX component can be achieved for
the beam of TE polarization traveling from the metamaterial
to air. In this case both transmitted components experience
the highest magnification with relation to the dielectric inter-
face case. The geometry of the problem is plotted in Fig. 1.

Individual elements of metamaterials are typically much
smaller in size in relation to the radiation wavelength. There-
fore, the metamaterials can be considered as homogeneous
and their electromagnetic properties can be characterized by
macroscopic parameters such as effective permittivity & and
permeability p. The refractive index n is then calculated
from values of ¢ and . We consider the cut wires struc-
ture at the left border of the frequency band gap, where n is
not purely imaginary. It exhibits resonant dependence of the
effective permittivity [12]:

Fv?

eW=1—-—Fs——
®) v2— v} +iyv

“

where y is the damping factor and F is the fraction of the
metamaterial volume of the metallic components, v and vy
are the frequency and the resonance frequency, respectively.
Then, the refractive index n(v) = \/e(V)(v) yields the fre-
quency dependence of w. In the frequency interval consid-
ered the imaginary parts of ¢ and p possess opposite signs.
That entails small transmission losses of the beam travel-
ing in the structure. For different frequencies of the beam
the medium possesses different complex values of ¢ and pu.
The effective parameters used in this paper are showed in
Table 1 [12]. They correspond to the situation when the fre-
quency of the incident field is set close to the resonance, at
the midpoint and far from the resonance, near point where
real part of n tends to zero.

To illustrate the enhancement of both transmitted compo-
nents we simulate the case of incidence of the TE polarized
GEEIH ) beam at the metamaterial surface. Three different sets
of effective parameters of the metamaterial are chosen (see
Table 1) where various angles of the incident beam were
examined, first to optimize the excitation of the CX compo-
nent.



Enhancement of cross-polarized beam components at a metamaterial surface 371

Table 1 Complex values of permittivity, permeability and the refractive index of the single negative material taken for numerical simulations. The

resonant frequency is vo & 13.35 GHz [12]

Relation to the v [GHz] &' g " W n n
resonance

close 13.7 —3.23 19.94 0.14 —0.59 3.42 0.70
mid 15.3 -3.14 5.66 0.75 —1.25 2.66 1.54
far 16.7 —-3.77 3.50 1.90 —1.71 2.45 2.68

Fig. 2 Magnitudes of the

DP transmission coefficients

CX transmission coefficients

spectral transmission 8
coefficients (first row) and the
corresponding modified
transmittances (second row).
First three lines are for the
metamaterial interface for three
various frequencies of the
incident field: close to the
resonance, at the midpoint and
far from the resonance, see
Table 1. The fourth line is for
the standard dielectric interface
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3 Enhanced transmission through the metamaterial
surface

In the paraxial range of the beam width, the amplitudes of
the transmitted (TE and TM) beam components are deter-
mined closely by magnitudes of the standard Fresnel and
the XPC coefficients. Here, the DP beam component is of
TE polarization and the CX beam component is of TM po-
larization. Magnitudes of the Fresnel and the XPC coeffi-
cients are plotted in Figs. 2(a) and (b), respectively, as func-
tions of the plane-wave incidence angle, for the specified
above metamaterial interfaces (see Table 1). An additional
plot for a standard dielectric interface is also presented. Cor-
responding modified transmittances (specified below, see (7)
and Appendix A) for the selected spectral component of the
DP and the CX fields are plotted in Figs. 2(c) and (d), re-
spectively.

The maximal amplitude of transmitted field coincides al-
most exactly with the maximal magnitude of the spectral

coefficient for the central plane wave in the spectral decom-
position of this field. Therefore, in order to examine maxi-
mal amplitudes of the transmitted field components, one can
concentrate on the spectral coefficients #; and 7cx for the
central plane waves. The maximal magnitude, greater than 7,
of the DP transmission coefficient, Fig. 2(a), is reached for
the incident angle within the vicinity of 60°, for metama-
terial when we are close to the resonance. The CX spectral
coefficient reaches its maximum in the same range of in-
cident angles. The magnitude achieved is more than three
times greater than in the case of the isotropic dielectric inter-
face. Frequency close to the resonance is not the best choice
for whole range of incident angles. For less oblique inci-
dences, the highest maximal amplitudes of the excited field
are achieved for higher frequencies, i.e. at the midpoint and
far from the resonance.

The greater than two amplitude of transmitted plane-
wave component may be considered as contradictory. Note,
however, that the complex Fresnel refraction coefficient
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Fig. 3 Transmitted beam distributions at the metamaterial-air inter-

face for oblique incidence of a G(IEII-l ) beam. The frequency of the inci-

dent field is close to the resonance. The figure shows the distribution of
(a) the amplitude and (b) the phase of the DP component and of (c¢) the

yields an additional phase shift to the transmitted wave. The
complex reflection coefficient also gives another phase shift.
For the metamaterial-air interfaces, by virtue of the bound-
ary conditions, these shifts lead to higher than two ampli-
tudes of transmitted and reflected plane waves. To verify
these amplitudes the radiant flux balance relations may be
applied. The absorbing-nonabsorbing interfaces were exam-
ined more than 30 years ago in a series of papers published
by Fragstein and his co-workers (see e.g. [8, 9]). A summary
of those considerations, together with balance relations for
nonmagnetic boundaries, expressed by terms of the Fresnel
coefficients, can be found in paper [10].

For the plane waves the radiant flux balance is the real
part of the conservation equation of the normal components
of the complex Poynting vector (see Appendix A):

St 45t =st4+ 5t 5)

Here SI.J- is the incident, S,J- the reflected, S,Jn- the mixed
and S the transmitted normal components of the complex
Poynting vector. The real part of (5) takes the form

ot ol =0t ot (6)

The terms @f‘ =Re SiJ- represents the radiant flux that ar-
rives on the unit area of the interface, ®;* = Re S;- and
@} =Re S} are the parts of the flux reflected and refracted
from this area, respectively, and @;; = Re S, is the addi-
tional mixed flux, being the consequence of medium losses
and/or presence of inhomogeneous waves. The flux @nJ; may
be positive and then may cause an enhancement of the trans-
mitted radiation [8—10]. Analytical calculations indicate that
q),Jn- may be even two orders of magnitude greater than the
incident flux (;bl.L , for particular angles of incidence (see
Appendix A).

The radiant flux balance (6) can be rewritten in terms of
the modified transmittance R’ and reflectance T’ (see Ap-
pendix A):

=R +T @)
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amplitude and (d) the phase of the CX component, respectively. The
angle of incidence is approximately 60°. In the phase decompositions
dark blue is for —m, dark red for 7. The length of the square sides
is 12wy,

where
T =0} /(0 + &), ®)
R =&} /(0i + ;). ()

Analytical forms of (8) and (9) for the metamaterial bound-
aries under consideration are presented in Appendix A
((A.5) completed by (A.4)).

Figures 2(c) and (d) show the modified transmittances 7”,
for one spectral beam component for the two orthogonal
beam polarizations, the DP and the CX, respectively. Fig-
ure 2(d) is obtained in analogical way as Fig. 2(c), but the
transmission coefficients, f,, is replaced by a function of
the fcx and the normalized spectral coordinates. The ver-
tical zoom, shown in the inset, indicates the advantage of
using the metamaterial-air interface over the dielectric-air
one. Note that due to the complex refractive index of the
metamaterial, the transmitted beam consists of inhomoge-
neous plane waves. A short explanation and the analytical
form of these plane waves and corresponding radiant fluxes
are shown in Appendix A.

The spatial distribution of the transmitted fields is pre-
sented in Fig. 3. It represents the most efficient (with re-
spect to the absolute value of the CX component amplitude)
case achieved at the plane of the metamaterial surface. Fig-
ures 3(a) and (b) show the amplitude and the phase of the
DP component, respectively, and correspond to the maximal
value of the coefficient given in Fig. 2(a). Figures 3(c) and
(d) are the amplitude and the phase of the CX component, re-
spectively, and correspond to the maximal value of the coef-
ficient given in Fig. 2(b). The maximal amplitude in the DP
polarization component is equal to 7.4, for the CX compo-
nent it is equal to 0.23, both normalized to the maximal inci-
dent beam amplitude. In the CX component the excitation of
the higher-order mode along the vertical direction is clearly
visible; the index n is changing from 1 to 2 [6, 11]. Figure 3
also reveals a longitudinal beam displacement [6, 13], par-
allel to the interface, visible in the horizontal direction.

It is already known that, for the cross-polarization exci-
tation at the dielectric interface, the amplitude of the excited
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Fig. 4 Maximal amplitude of the distribution of the excited CX
component with reference to the scaled angular spread of the beam
Q2nf =2n/kiw,) at the metamaterial surface, for field frequency
close to resonance. Values on the axis of the abscissa correspond to
ki wy, = 1000, 100, 50, 20, 10, 5 times 27, respectively

component increases with decrease of the beam width [6].
We numerically verified that the same holds for the metama-
terial surfaces. Figure 4 shows that the amplitude of the CX
component increases linearly with increasing angular spread
(f = 1/kjwy,) of the incident beam. Various choices of val-
ues of k;w,, from 5 to 1000 times 27 are examined.

The linear scaling of the CX component is implied by
(1). If changes of rcx = tcx(¥;) with the incidence angle
are small and can be neglected, then the transmitted beam
amplitude is scaled linearly with f. A similar result was
also derived in [13, 14] for the excitation of the first-order
Hermite—Gaussian beams.

4 Conclusion

Significant enhancement of the higher-order beam-mode ex-
citation at the isotropic metamaterial surface has been shown

TE direct polarization component
10

&
DP|(diel)

(1)
br

a |(meta)
Fig. 5 Enhancement of the maximal amplitudes of the DP, (a),
and the CX, (b), field orthogonal components of the transmitted
beam. Red bars represent the beam amplitudes at the dielectric sur-
face. Green bars represent the beam amplitudes at the metamate-
rial surface, for field frequency close to resonance. The cases (a)

by numerical simulations. The results obtained were ex-
plained by the presence of the mixed flux contribution to
the incident flux, which in turn enhances the radiation trans-
mission. For the configuration discussed here both polar-
ization components of the transmitted beam—of the direct
polarization and of the opposite polarization—may be en-
hanced. Maximal amplitudes of the orthogonal components
critically depend on the incident beam width and incidence
direction. Moreover, the amplitude of the transmitted cou-
pled (CX) beam component increases linearly with the in-
crease of the angular spread of the incident beam. This fact
confirms the complete agreement between theoretical pre-
dictions and results of our numerical simulations.

The drawing presented in Fig. 5 summarizes the result
extracted from Fig. 2 (a and b) and Fig. 3, specified for
the incidence angle yielding the beam transmission maxi-
mal in the beam amplitude. For this special case the maxi-
mal amplitudes of both polarization components of the beam
transmitted at the metamaterial interface increase approxi-
mately by a factor of four, with respect to the case of beam
transmission at the dielectric interface. For other angles of
the beam incidence this factor is smaller and different for
the two beam polarization components. The beam field en-
hancement depends, besides the medium parameters, like
the effective impedance and the effective refractive index of
the semi-infinite metamaterial structure, also on the (EHG)
beam parameters like the beam width, the beam incidence
direction and the mode indices of the incident beam. The en-
hancement process should depend also on the type of meta-
material medium [15] applied.

To the best of our knowledge, this is the first numeri-
cal confirmation of the possible enhancement of the cross-
polarization coupling at metamaterial isotropic interfaces,
we report in this paper. This coupling has been here demon-

TM cross-polarized component
0.25

0.20

0.15

0.10

0.06

()] (f)
|E(X {dlf:]) |E(X

0.00
b

|( meta)

and (b) correspond to one point (angle of incidence 6; = 60°)
on the axis of abscissa in Figs. 2(a) and (b). The beam am-
plitudes at the metamaterial interface are enhanced approximately
by four times with respect to the case of the dielectric inter-
face
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strated between the linear, TE and TM, polarization beam
components, composed of elegant Hermite—Gaussian modes
[5, 6]. It seems, however, that the same coupling enhance-
ment can be similarly accomplished in other configura-
tions, for example between circular, left-handed and right-
handed, polarization beam components, composed of ele-
gant Laguerre—Gaussian modes [5—-7]. This feature may ap-
pear particularly interesting in cases of interfaces composed
of chiral metamaterial media [4].

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Modified reflectance and transmittance
for the metamaterial-air interface

For the homogeneous TE polarized plane wave impinged
on the absorbing-nonabsorbing interface, the refracted plane
wave is inhomogeneous, as can be predicted from the con-
servation of tangential components of the wave vector at the
boundary: § x 13 =35 X I_é, (e.g. [10]). The inhomogeneous
plane wave is, usually, described by the complex wave vec-
tor

]; = kon;ﬁ = kO(COSh ﬂl‘ﬁHl +i sinh ﬂ[ﬁj_[). (A])

Together with the conservation of tangential components
given here as

(n; +in))§ x k; = cosh B,§ x A +isinhBS x iy, (A2)

where n’ and n! are the real and the imaginary parts of the
refractive index of the metamaterial, respectively, § is the
unitary vector normal to the interface, k is the wave vector,
i, and iy, are the orthogonal unitary vectors connected
with the complex wave vector of the inhomogeneous plane
wave, and S; is a real parameter, nonzero for inhomoge-
neous plane waves. All these vectors are shown in Fig. 6.
In the case discussed in this paper, 1, points in the direc-
tion of phase propagation and 7, points, if B; < 0, in the
direction of exponential growth of the beam amplitude.

For the metamaterial-air interfaces (A.2) possesses two
solutions. The first is B; < 0 for 0 < 6); < 7 /2 and the sec-
ond is B; > 0 for 7/2 < 6); < . The latter describes the
plane wave of which the normal component of the Poynt-
ing vector is antiparallel to Z direction. This solution is not
covered by the radiant flux balance (6).

For absorbing-nonabsorbing boundaries, the radiant flux
balance, written as the normal components of the real parts
of the complex Poynting vector, S(¥) = (EG) x H*(7))/2,
on two sides of the interface, has the mixed term S’,ﬁ(?) =
§ - (Ei(F) x H*(F) + E,(7) x H*(7))/2, which is nonzero
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Fig. 6 Coordinate system with plotted unitary vectors and angles
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Fig. 7 Ratio (M) of the mixed radiant flux to the incident flux for
three metamaterial surfaces (the frequency of the incident field is close
to the resonance, at the midpoint and far from the resonance) and the
dielectric one, the critical angle equals 45°. M depends on the imagi-
nary part of the Fresnel reflection coefficient and the argument of the
metamaterial impedance

if the imaginary part of Fresnel reflection coefficient is also
nonzero [10].

The radiant flux balance, (6), can be rewritten in terms
of flux coefficients, i.e.: reflection R, transmission 7 and
additional mixed flux coefficient M. By dividing (6) by <Dl.J-
one obtains [10]

1+M=R+T (A.3)
with

R=&;- /o) =y,

M =&, /D =2Imr, - tanpz;+, (A4)

cosh B; cos 6
T =0 /ot =zl P——
COS ¢z cOS 6;
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where Z; = /ui/e; is the complex impedance of the
metamaterial and ¢z;+ is the argument of its conjugate,
ZF =|Z;|expli¢z;+]. For the metamaterials considered, the
greater the frequency of the incident field (farther from the
resonance), ¢z;= is closer to /2. The modified reflectance
and transmittance, (7), can be obtained from (A.3). Dividing
by its left side gives

R =R/(1+ M),

(AS)
T =T/(1+ M),

R’ and T’ became the standard reflectance and transmit-
tance for nonabsorbing interfaces, respectively, for which
the mixed flux coefficient, M, is zero. Figure 7 shows the
mixed flux coefficient M for medium boundaries considered
in this paper.

It appears that in the case of the metamaterial-air in-
terfaces the mixed flux becomes two orders of magnitude
greater than the incident flux. To the best of the authors’
knowledge this unique feature of the isotropic dissipative
boundaries has not been reported yet.

—
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