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Abstract
We propose a generic testbed for evaluating social trust models and we show how
existing models can fit our tesbed. To showcase the flexibility of our design, we
implemented a prototype and evaluated three trust algorithms, namely EigenTrust,
PeerTrust and Appleseed, for their vulnerabilites to attacks and compliance to various
trust properties. For example, we were able to exhibit discrepancies between
EigenTrust and PeerTrust, as well as trade-offs between resistance to slandering attacks
versus self-promotion.
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Introduction
Motivation

With the growth of online community-based systems such as peer-to-peer file-sharing
applications, e-commerce and social networking websites, there is an increasing need to
provide computational trust mechanisms to determine which users or agents are honest
and which ones are malicious. Many models calculate trust by relying on analyzing a
history of interactions. The calculations can range from the simple averaging of ratings
on eBay to flow-based scores in the Advogato website. Thus for a researcher to evaluate
and compare his or her latest model against existing ones, a comprehensive test tool is
needed. However, our research shows that the tools that exist to assist researchers are not
flexible enough to include different trust models and their evaluations. Moreover, these
tools use their own set of application-dependent metrics to evaluate a reputation system.
This means that a number of trust models cannot be evaluated for vulnerabilities against
certain types of attacks. Thus, there is still a need for a generic testbed to evaluate and
compare computational trust models.

Overview of our solution and contributions

In this paper, we present a model and a testbed for evaluating a family of trust algo-
rithms that rely on past transactions between agents. Trust assessment is viewed as a
process consisting of a succession of graph transformations, where the agents form the
vertices of the graph. The meaning of the edges depends on the transformation stage,
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and can refer to the presence of transactions between the two agents or the existence
of a trust relationship between them. Our first contribution is to show that with this
view, existing reputation systems can be adopted under a single model, but they work at
different stages of the trust assessment workflow. This allows us to present a new classi-
fication scheme for a number of trust models based on where they fit in the assessment
workflow. The second contribution of our work is that this workflow can be described
formally, and by doing this, we show that it is possible to model a variety of attacks
and evaluation schemes. Finally, out of the larger number of systems we classified, we
selected three reputation systems, namely EigenTrust [1], PeerTrust [2] and Appleseed
[3], to exemplify the range and variety of reputation systems that our testbed can accom-
modate. We evaluated these three systems in our testbed against simple attacks and
we validated their compliance to basic trust properties. In particular, we were able to
exhibit differences in the way EigenTrust and PeerTrust rank the agents, we observed
the subtle interplay between slandering and self-promoting attacks (higher sensitivity
to one attack can lead to lower sensitivity to the other), and we verified that trust
weakens along a friend-of-a-friend chain and that it is more easily lost than gained
(as it should be).

Organization

This article is organized as follows: section ‘Background and literature review’ provides
background and state of the art on trust models, attacks against them, and existing
testbeds for evaluation. Section ‘Problem description and model’ formulates the research
problem of this article and proposes our model for a testbed. Section ‘Classifying and
chaining algorithms’ shows how some of existing trust algorithms can fit our model, and
how one can combine or compare them using our model and testbed. Section ‘Results and
discussion’ describes the implementation details of our testbed prototype and presents
evaluation results of three different trust algorithms, namely EigenTrust, PeerTrust, and
Appleseed. Section ‘Conclusions’ concludes this article and summarizes the contributions
and limitations of our work.

Background and literature review
Social trust models

Trust management systems aid agents in establishing and assessing mutual trust. How-
ever, the actual mechanisms used in these systems vary. For example, public key infras-
tructures [4] rely on certificates whereas reputation-based trust management systems are
based on experiences of earlier direct and indirect interactions [5].
In this paper we will focus on social trust models based on reputation. The trust model

should provide a means to compare the trustworthiness of agents in order to choose a
particular agent to perform an action. For instance, on an e-commerce website like eBay,
we need to be able to compare the trustworthiness of sellers in order to pick the most
trustworthy one to buy a product from.
Social trust models rely on past experiences of agents to produce trust assertions. That

is, the agents in the system interact with each other and record their experiences, which
are then used to determine whether a particular agent is trustworthy. This model is self-
sufficient because it does not rely on a third party to propagate trust, like it would in
certificate authority-based PKI trust models. However, there are drawbacks to having no
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root of trust. For instance, agents evaluating the trustworthiness of agents with whom
there has been no interaction must use recommendations from others and, in turn,
evaluate the trustworthiness of the recommenders. Social trust models must address this
problem.

Nature of input

Various inputs are used by social trust algorithms to measure the trustworthiness of
agents. In EigenTrust [1], PeerTrust [2], TRAVOS [6] and Beta Reputation System (BRS)
[7], agents rate their satisfaction after a transaction (e.g., downloading a file in a P2P
file-sharing network). These ratings are used to obtain a trust score that represents the
trustworthiness of the agent. In Aberer and Despotovic’s system [5]1, agents may file com-
plaints (can be seen as dissatisfaction) about each other after a transaction. In Advogato
[8], whose goal is to discourage spam on its blogging website, users explicitly certify
each other as belonging to a particular level in the community. Trust algorithms may
also directly use trust scores among agents to compute an aggregated trustworthiness
of agents, as in TidalTrust [9] and Appleseed [3]. In the specific context of P2P file-
sharing, Credence [10] uses the votes on file authenticity to calculate a similarity score
between agents and uses it to measure trust. The trust score is then used to recommend
files.

Direct vs. indirect trust

The truster may use some or all of its own and other agents’ past experiences with the
trustee to obtain a trust score. Trust algorithms often use gossiping to poll agents with
whom the truster has had interactions in the past.
The trust score calculated using only the experiences from direct interactions is

called the direct trust score, while the trust score calculated using the recommenda-
tions from other agents is called the indirect trust score [11]. As mentioned earlier,
reputation systems use different inputs (satisfaction ratings, votes, certificates, etc.) to
calculate direct trust scores and indirect trust scores. PeerTrust uses satisfaction ratings
to calculate both direct and indirect trust scores, whereas EigenTrust and TRAVOS
use satisfaction ratings to calculate direct trust scores, which they then use to calcu-
late indirect trust scores. Therefore, we can categorize the trust algorithms based on
the input required. But how do trust algorithms calculate the trust scores of agents
using the above information? It again varies from algorithm to algorithm. For instance,
PeerTrust, EigenTrust, and Aberer use simple averaging of ratings, TRAVOS and BRS
use the beta probability density function, and Appleseed uses the Spreading Activation
model.

Global vs. local trust

The trust algorithm may output a global trust score or a local trust score [3, 12]. A global
trust score is one that represents the general trust that all agents have on a particular
agent, whereas local trust scores represents the trust from the perspective of the truster
and thus each truster may trust an agent differently. In our survey, we found PeerTrust,
EigenTrust, and Aberer to be global trust algorithms whereas TRAVOS, BRS, Credence,
Advogato, TidalTrust, Appleseed, Marsh [13] and Abdul-Rahman [14] are local trust
algorithms.
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To trust or not to trust

Once the trust score is calculated, it can be used to decide whether to trust the agent. It
can be as simple as comparing the trust score against a threshold: if the trust score is above
a certain threshold, then the agent is trusted. Marsh [13], and Aberer [5] use thresholding
techniques. If the trust algorithm outputs normalized trust scores of agents as in Eigen-
Trust, then the trust scores of agents are ranked. In this case, one may consider a certain
percentage of the top ranked agents as trustworthy. In Appleseed, a graph is first obtained
with trust scores of agents as edge weights, and then, the truster agent is “injected” with
a value called the activation energy. This energy is spread to agents with a spreading fac-
tor along the edges in the graph and the algorithm ranks the agents according to their
trust scores. Trust decisions can also be flow-based such as in Advogato, which calculates
a maximum “flow of trust” in the trust graph to determine which agents are trustworthy
and which are not.
In short, social trust models focus on the following:

1. What is the input to calculate the trust score of an agent?
2. Does the trust algorithm use only direct experience or does it also rely on third

party recommendations?
3. Is the trust score of an agent global or local?
4. How does one decide whether to trust an agent?

Given the above discussion, and to assess the scope of our testbed, we propose tomodel,
evaluate and compare three algorithms from fairly different families. The next sections
provide detailed descriptions of the trust models we selected and that we implemented in
our testbed. The details are given to help understand the output of our experiments, but
readers familiar with EigenTrust, PeerTrust and/or AppleSeed may skip those respective
sections.

PeerTrust

In PeerTrust, agents rate each other in terms of the satisfaction received. These ratings
are weighted by trust scores of the raters, and a global trust score is computed recursively
using Eq. 2.1, where:

• T(u) is the trust score of agent u
• I(u) is the set of transactions that agent u had with all the agents in the system
• S(u, i) is the satisfaction rating on u for transaction i
• p(u, i) is the agent that provided the rating.

T(u) =
I(u)∑
i=1

S(u, i) × T(p(u, i))∑I(u)
j=1 T(p(u, j))

(2.1)

PeerTrust also provides a method for calculating local trust scores. In both local and
global trust score computations, the trust score is compared against a threshold to decide
whether to trust or not.

EigenTrust

Agents in EigenTrust rate transactions as satisfactory or unsatisfactory [1]. These trans-
action ratings are used as input, to calculate a local direct trust score, from which a global
trust score is then calculated.
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An agent i calculates the normalized local trust score of agent j, as shown in Eq. 2.2,
where tij ∈ {+1,−1} is the transaction rating, and sij is the sum of ratings.

sij =
∑
Tij

trij

cij = max(sij, 0)∑
k max(sik , 0)

(2.2)

Note that we cannot use sij as the local trust score without normalizing, because mali-
cious agents can arbitrarily assign high local trust values to fellow malicious agents and
low local trust values to honest agents.
To calculate the global trust score of an agent, the truster queries his friends for their

trust scores on the trustee. These local trust scores are aggregated, as shown in Eq. 2.3.

tik =
∑
j
cijcjk (2.3)

If we let C be the matrix containing cij elements, �ci be the local trust vector for i (each
element corresponds to the trust that i has in j), and �ti the vector containing tik , then,

�ti = CT �ci (2.4)

By asking a friend’s friend’s opinion, Eq. 2.4 becomes �ti = (CT )2 �ci. If an agent keeps
asking the opinions of its friends of friends, the whole trust graph can be explored, and
Eq. 2.4 becomes Eq. 2.5, where n is the number of hops from i.

�t = (CT )n �ci (2.5)

The trust scores of the agents converge to a global value irrespective of the trustee.
Because EigenTrust outputs global trust scores (normalized over the sum of all agents),

agents are ranked according to their trust scores (unlike PeerTrust). Therefore, an agent
is considered trustworthy if it is within a certain rank.

Appleseed

Appleseed is a flow-based algorithm [3]. Assuming that we are given a directed weighted
graph with agents as nodes, edges as trust relationships, and the weight of an edge as
trustworthiness of the sink, we can determine the amount of trust that flows in the graph.
That is, given a trust seed, an energy in ∈ R

+
0 , spreading factor decay ∈[ 0, 1], and conver-

gence threshold Tc, Appleseed returns a trust score of agents from the perspective of the
trust seed.
The trust propagation from agent a to agent b is determined using Eq. 2.6, where the

weight of edge (a, b) represents the amount of trust a places in b, and in(a) and in(b)
represent the flow of trust into a and b, respectively.

in(b) = decay ×
∑

(a,b)∈E
in(a) × weight(a, b)∑

(a,c)∈E weight(a, c)
(2.6)

The trust of an agent b (trust(b)) is then updated using Eq. 2.7, where the decay factor
ensures that trust in an agent decreases as the path length from the seed increases.

trust(b) := trust(b) + (1 − decay) × in(b) (2.7)
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Generally, trust graphs have loops, which makes Eq. 2.7 recursive. Thus a termination
condition like the one below is required, where Ai ⊆ A is the set of nodes that were
discovered until step i and trusti(x) is the current trust scores for all x ∈ Ai:

∀x ∈ Ai : trusti(x) − trusti−1(x) ≤ Tc (2.8)

After Eq. 2.7 terminates, the trust scores of agents are ranked. Since this set is ranked
from the perspective of the seed, Appleseed is a local trust algorithm.
As our brief survey shows, the trust models vary in terms of their input, output, and

the methods they use. To evaluate and compare them, testbeds are needed. In the next
section we take a look at existing testbeds.

Testbeds

We investigated two testbed models, namely Guha’s [15] andMacau [16], and two testbed
implementations, namely ART [17] and TREET [18], which are used to evaluate trust
algorithms. This section provides details of our investigation.

Guha

Guha [15] proposes a model to capture document recommendation systems, where trust
and reputation play an important role. The model relies on a graph of agents where the
edges can be weighted based on their mutual ratings, and a rating function for documents
by agents. Guha then discusses how trust can be calculated based on those ratings, and
evaluates a few case studies of real systems that can be accommodated by the model.
Guha’s model can capture trust systems that take a set of documents and their ratings

as input (such as Credence [10]), but it cannot accommodate systems where the only
input consists of direct feedbacks between agents, such as in PeerTrust (global) [2] or
EigenTrust [1]. Also, the rating of documents is itself an output of Guha’s model, and that
is often not the purpose or output of many more general-purpose trust models.
In short, document recommendation systems can be viewed as a specialization or

subclass of more general trust systems, and Guha’s model is suitable for that subclass.

Macau

Hazard and Singh’s Macau [16] is a model for evaluating reputation systems. The authors
distinguish two roles for any agent: a rater that evaluates a target. Transactions are viewed
as a favor provided by the target to the rater. The target’s reputation, local to each rater-
target pairing, is updated after each transaction and depends on the previous reputation
value. The target’s payoff in giving a favor is also dependent on its current reputation but
also on its belief of the likelihood that the rater will in turn return the favor in the future.
Based on the above definitions, the authors define a set of desirable properties for a

reputation system:

• Monotonicity: given two different targets a and b, the computed reputation of a
should be higher than that of b if the predicted payoff of a transaction with a is
higher than with b.

• Unambiguity and convergence: the reputation should converge over time to a single
fixpoint, regardless of its initial value.

• Accuracy: this convergence should happen quickly, thus minimizing the total
reputation estimation errors in the meantime.
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Macau thus captures an important stage in trust assessment, i.e. the update of one-to-
one trustworthiness based on past transactions. It has been used to evaluate, in terms of
their compliance to the properties defined above, algorithms such as TRAVOS [6] and the
Beta Reputation System (BRS) [7] that model positive and negative experiences as ran-
dom variables following a beta probability distribution. The comparison of trust models
relying on the beta distribution and their resilience to various attacks has also recently
been explored in [19].

ART

The Agent Reputation and Trust testbed (ART) [17] provides an open-source message-
driven simulation engine for implementing and comparing the performance of reputation
systems. ART uses art painting sales as the domain.
Each client has to sell paintings belonging to a particular era. To determine their

market values, clients refer to agents for appraisals for a fee. Because each agent
is an expert only in a specific era, it may not be able to provide appraisals for
paintings from other eras and therefore refers to other agents for a fee. After such
interactions, agents record their experiences, calculate their reputation scores, and
use them to choose the most trustworthy agents for future interactions. The goal
of each agent is to finish the simulation with the highest bank balance, and, intu-
itively, the winning agent’s trust mechanism knows the right agents to trust for
recommendations.
The ART testbed provides a protocol that each agent must implement. The protocol

specifies the possible messages that agents can send to each other. Themessages are deliv-
ered by the simulation engine, which loops over each agent at every time interval. The
engine is also responsible for keeping track of the bank balance of the agents, and assign-
ing new clients to agents. All results are collected and stored in a database and displayed
on a graphical user interface (GUI) at runtime.
ART is best suited for evaluating trust calculation schemes from a first person point

of view. It is not meant as a platform for testing trust management as a service provided
by the system. For example, to evaluate EigenTrust in ART, one would either need to
considerably modify ART itself (for the centralized version of EigenTrust) or to require
cooperation from the participating agents and an additional dedicated distributed infras-
tructure (for the distributed version). Furthermore, as also pointed out in [16] and [20],
the comparison of the performance of different agents is not necessarily based on their
correct ability to assess the reputation of other agents, but rather based on how well they
model and exploit the problem domain.

TREET

The Trust and Reputation Experimentation and Evaluation Testbed (TREET) [18] mod-
els a general marketplace scenario where there are buyers, sellers, and 1,000 different
products with varying prices, such that there are more inexpensive items than expensive
ones. The sale price of the products is fixed, to avoid the influence of market competition.
The cost of producing an item is 75% of the selling price, and the seller incurs this cost.
To lower this cost and increase profit, a seller can cheat by not shipping the item. Each
product also has a utility value of 110% of the selling price, which encourages buyers to
purchase.
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Agents join or exit after 100 simulation days or after a day with a probability of 0.05,
but to keep the number of buyers and sellers constant, an agent is introduced for each
departing agent. At initialization, each seller is assigned a random number of products
to sell. Buyers evaluate the offers from each seller and pick a seller. Sellers are informed
of the accepted offers and are paid. Fourteen days after a sale, the buyer knows whether
he has been cheated or not, depending on whether he receives the purchased item. The
buyer then provides feedback based on his experience of the transaction. The feedback is
in turn used to choose sellers for future transactions.
TREET evaluates the performance of various reputation systems under Reputation Lag

attack, Proliferation attack, and Value Imbalance attack using the following metrics:

1. cheater sales over honest sales ratio
2. cheater profit over honest profit ratio

Multiple seller accounts are needed to orchestrate a Proliferation Attack, but TREET
does not consider attacks such as White-Washing and Self-Promoting, which require
creating multiple buyer accounts.
TREET addresses many of ART’s limitation in a marketplace scenario. To name a

few [21], TREET supports both centralized and decentralized trust algorithms, allows
collusion attacks to be implemented, and does not put a restriction on trust score rep-
resentation. However, like ART, the evaluation metrics in TREET are tightly coupled to
the marketplace domain. It is unclear how ART or TREET can be used to evaluate trust
models used in other systems, such as P2P file-sharing networks, online product review
websites and others that use trust. To our knowledge, there is no testbed that provides
generic evaluation metrics and that is independent of the application domain.

Summary

Trust is a tool used in the decision-making process and it can be computed. There are
manymodels based on social trust that attempt to aid agents in making rational decisions.
However, these models vary in terms of their input and output requirements. This makes
evaluations against a common set of attacks difficult.

Problem description andmodel
Our goal is to have a testbed that is generic enough to accommodate as many trust
management systems and models as possible. Our requirements are:

1. A model that provides an abstraction layer for developers to incorporate existing
and new systems that match the input and output of the model.

2. An evaluation framework to measure and compare the performance of trust models
against trust properties and attacks independently of the application domain.

In this section, we introduce an abstract model for trust management systems. This
model will be the foundation of our testbed. Our model is essentially based on the
following stages:

1. In stage 1 of the trust assessment process, the feedback provided by agents on other
agents is represented as a feedback history graph.
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2. In stage 2, a reputation graph is produced, where the weight of an arc denotes the
reputation of the target agent. “Reputation” here follows [14], as “an expectation
about an individual’s behavior based on information about or observations of its
past behavior”. It is viewed as an estimation of trustworthiness based on a
combination of direct and indirect feedback.

3. In the final stage, a trust graph is produced, where the existence of an arc implies
trust in the target agent. We take “trust” here to mean the “belief by agent A that
agent B is trustworthy” [2, 22], and so it is boolean and subjective in our model.

In the rest of this section, we define the aforementioned graphs in stages.

Stage 1—obtain feedback history graph

We first define a feedback, f (a, b) ∈ R as an assessment made by agent a of an action or
group of actions performed by agent b, where a and b belong to the set A of all the agents
in the system. The list of n feedbacks by a on b, FHG(a, b), is called a feedback history,
represented as follows:

FHG(a, b) �→ (f1(a, b), f2(a, b), . . . , fn(a, b)) (3.1)

The feedback fi(a, b) indicates the ith satisfaction received by a from b’s action. For
example, in a file-sharing network, the feedback by a downloader may indicate the sat-
isfaction received from downloading a file from an uploader in terms of a value in R.
Existing trust models use different ranges of values for feedback, and letting the feedback
value be in R allows us to include these reputation systems in our testbed.
If A is the set of agents, E is the set of labelled arcs (a, b), and the label is FHG(a, b)

when FHG(a, b) 	= ∅, then the feedback histories for all agents in A are represented in a
directed and labelled graph called Feedback History Graph (FHG)2, FHG = (A,E):

FHG : A × A → R
N

∗
(3.2)

Note that we have not included timestamps associated with each feedback (which would
be useful for, among other things, running our testbed as a discrete event simulator), but
our model can be expanded to accommodate it.
Once the feedback history graph is obtained, the next step is to produce a reputation

graph.

Stage 2—obtain reputation graph

A Reputation Graph (RG), RG = (A,E′
), is a directed and weighted graph, where the

weight on an arc, RG(a, b), is the trustworthiness of b from a’s perspective:

RG : A × A → R (3.3)

The edges are added by computing second and nth-hand trust via transitive closure of
edges in E. That is: if (a, b) ∈ E and (b, c) ∈ E ⇒ (a, b), (b, c), and (a, c) ∈ E′ (the value of
the weight of the edges, however, depends on the particular trust algorithm).
Reputation algorithms may also exhibit the reflexive property by adding looping arcs to

indicate that the truster trusts itself to a certain degree for a particular task [1–3].
The existing literature categorizes reputation algorithms into two groups: local and

global (Figs. 1(a) and (b), respectively) [3, 5]. Global algorithms assign a single reputa-
tion score to each agent. Therefore, if a global algorithm is used, then the weights of the
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Fig. 1 Examples of reputation graphs output respectively by a local and global algorithm

incoming arcs of an agent should be the same, as shown in Fig. 1(b) (although for clar-
ity’s sake we will often present the graph simply as a ranking of agents in the rest of this
article). There is no such property for local algorithms.
Reputation algorithms may also differ in how the graphs is produced. One method is

to first calculate one-to-one scores of agents using direct feedbacks and then use them
to calculate the trustworthiness of agents previously unknown to the truster (e.g., Eigen-
Trust). This is shown as 1a and 1b in Fig. 2. The other method (#2 in Fig. 2) skips the
intermediate graph in the aforementioned method and produces a reputation graph (e.g.,
PeerTrust).

Stage 3—obtain trust graph

The graph obtained in stage 2 contains information about the trustworthiness of agents.
But to use this information to make a decision about a transaction in the future, agents
must convert trustworthiness to boolean trust (see [23] for an example), which can also
be expressed as a graph. We refer to this directed graph as the Trust Graph (TG) TG =
(A, F), where a directed edge ab ∈ F represents agent a trusting agent b.
To summarize ourmodel, we can represent the stages as part of a workflow as illustrated

in Fig. 3.

Fig. 2 Two methods to obtain a reputation graph
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Fig. 3 Overview of the stages in our model

In the next section, we see at what stages in our model do various algorithms fit, and
describe criteria for chaining different algorithms.

Classifying and chaining algorithms
By refactoring the trust models according to the stages presented in the above sections,
we start to see a new classification scheme. Let us take EigenTrust, PeerTrust, and Apple-
seed as examples and describe them using our model. EigenTrust takes an FHG with
edge labels in {0, 1}∗ as input and outputs an RG with edge labels in [ 0, 1]. PeerTrust,
on the other hand, takes an FHG with edge labels in [ 0, 1]∗ as input and outputs an
RG with edge labels in [ 0, 1]. Meanwhile, Appleseed requires an RG with edge labels in
[ 0, 1] as input and outputs another RG′ in the same codomain. It is also possible for an
algorithm to skip some stages. For example, according to our model, Aberer [5] skips
stage 2 and does not output a reputation graph. One can also represent simple mecha-
nisms to generate a trust graph by applying a threshold on reputation values (as output
for example by EigenTrust), or by selecting the top k agents. This stage transitions of
algorithms are depicted3 in Fig. 4. In addition to the existing classification criteria in the
state of the art, trust algorithms can now be classified according to their stage transi-
tions (i.e., from one stage to another as well as transitioning within a stage) as shown in
Table 1.
It is important to note that although these three algorithms output a reputation

graph with continuous reputation values between 0 and 1, the semantics of these val-
ues are different. EigenTrust outputs relative (among agents) global reputation scores,
PeerTrust outputs an absolute global reputation score, and Appleseed produces relative
local reputation scores. In other words, EigenTrust and Appleseed are ranking algorithms
(global and local, respectively), whereas PeerTrust is not.
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Fig. 4 Stage transitions of Trust algorithms

As we can see, each step of the trust assessment process can be viewed as a
graph transformation function, and we can use this functional view to easily describe
evaluation mechanisms as well. Suppose an experimenter wants to compare PeerTrust
and EigenTrust. The inputs and outputs of these algorithms are semantically different.
To match the input, we can use a function that discretizes continuous feedback values
(f (a, b)) in [0, 1] to {-1, 1}, using some threshold t:

Table 1 A classification for trust models

Stage Global or
Absolute or

Trust Algorithm
Transitions

Input
Local

Relative
Reputation Scores

EigenTrust 0 → 2
satisfaction

global relativeratings

PeerTrust 0 → 2
satisfaction

global absoluteratings

AppleSeed 2 → 2
reputation

local absolutescores

Aberer & Despotovic 0 → 3 complaints global N/A

Advogato 3 → 3 certificates local N/A

TRAVOS 0 → 2
satisfaction

local absoluteratings

Ranking 2 → 3
reputation

N/A relativescores

Thresholding 2 → 3
reputation

N/A absolutescores
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discretizet : [ 0, 1] → {−1, 1}

x �→ discretizet(x) =
{

−1 if x ≤ t
1 if x > t

(4.1)

To lighten the notations, in what follows we will adopt a default threshold of 0.5 and drop
t. We will also, in an abuse of notation, actually use discretize : FHG→ FHG, which applies
the function defined in 4.1 to every feedback of every edge of the graph.
Let us turn to the output now. Recall that the output of EigenTrust is a relative global

score while PeerTrust’s is also global but absolute. To make the outputs more directly
comparable, we can use a normalization function on PeerTrust’s output, ensuring that the
sum of outgoing weights for each agent is 1. It takes a reputation graph RG2 with edge
labels in [ 0, 1] as input, and outputs another reputation graph RG3 with edge labels in
[ 0, 1], but where the reputation scores are relative to one another. This is achieved using
Eq. 4.2, where N(a) is the set of agents adjacent to a via outgoing edges.

normalize : A × A →[ 0, 1]

(a, b) �→ normalize(a, b) = RG(a, b)∑
c∈N(a) RG(a, c)

(4.2)

Again, in an abuse of notation we will also refer in what follows to normalize as the func-
tion in RG→ RG that applies 4.2 to every edge of the graph. Note again that normalization
isn’t strictly speaking a necessary step if all one is concerned about is the ranking of the
agent, and not the values attached to each agent, especially since the semantics of these
values are still ultimately attached to the algorithm that is computing them. Normaliza-
tion does not affect the ranking. Either way, Spearman’s rank correlation coefficient [24]
can finally be used to compare the rankings output by global trust functions such as Eigen-
Trust and PeerTrust. This metric ∈[−1, 1] specifies the degree to which the ranking order
of the outputs match, where 1 means a perfect match and -1 means no match: spearman:
RG × RG → [−1, 1].
The choice of discretization and normalization methods are important and they may

introduce a bias when comparing two algorithms. For the purpose of demonstrating our
model, we will assume that our choices are good enough.
By combining these algorithms, we can represent the workflow as shown in Fig. 5.
To more clearly capture trust management algorithms as a process consisting of graph

transformation operations, and to be able to express them in our experiments as such,
we introduce named functions that make these transformations explicit. Here is an
illustration of the convention we will follow: the function that captures EigenTrust’s trans-
formation from an FHG to an RGwill be named f 2reigentrust , where “f ” stands for FHG and
“r” for RG. Hence, in functional programming terms, the experiment comparing Eigen-
Trust and PeerTrust using a given feedback history graph FHG0 can be specified very
simply as follows:

spearman(f 2reigentrust(f 2fdiscretize(FHG0)), r2rnormalize(f 2rpeertrust(FHG0)))

In the current implementation of our testbed, we assume that the pre-condition checks
as per Table 1 are enforced by the algorithms rather than the testbed. However, this can
be modified easily in the future.
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Fig. 5 Comparing EigenTrust and PeerTrust

In the next section, we present simple experiments that we ran to analyze trust
algorithms using the model described in this section.

Results and discussion
Using the prototype testbed that we implemented following the model presented in
the previous section, we conducted several experiments and analyzed their results on
three trust algorithms, namely EigenTrust, PeerTrust, and Appleseed. The experiments
that we present in this section are grouped into two categories: vulnerability assess-
ments and trust properties assessments. But first we give a general description of the
implementation.

Implementation

A prototype was designed and built in Java to test the model described in Section ‘Prob-
lem description and model’. The two main components of the testbed are graphs and
algorithms. A Graph can be a feedback history graph, a reputation graph or a trust graph.
These graphs follow our model as described in the previous section.
The graphs can be populated either programatically or by providing a file following

the Attribute-Relation File Format (ARFF) used in the Weka machine learning toolkit
(ARFF was chosen for its simplicity, but other formats could obviously be accommodated
as well in the future if needed). For instance, a feedback history graph is populated with
a file containing a list of relations, each containing 3 attributes: source agent identifier,
sink agent identifier and the feedback value. An example of a ARFF file for populating a
feedback history graph is given in Listing 1:
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Listing 1 An example ARFF file for populating a feedback history graph

@relation feedback
@attribute assessorID string
@attribute assesseeID string
@attribute feedbackValue numeric
@data
0,1,0.6
0,1,0.7
0,1,0.2

In our prototype, even though the algorithms are implemented using object-orientation,
they are ultimately presented to the experimenter as functions that take a graph as input
and return a graph as the output, to fully conform to the model we have presented, and
to make the experiments simple and intuitive to express. Other utility functions, such as
evaluation, discretization and comparison, are also provided. See Listing 2 for an example.

Listing 2 How to create a simple experiment in our testbed

import static trust.Algorithms.*;
FHG fhg = new FHG("ex.arff");
eigentrust(discretize(fhg)); //the experiment!

The testbed’s source code is open and is available on Google Code4. To ensure that our
algorithm implementationsmatch the authors’ intentions and our own understanding, we
also provide a set of unit tests taken from examples found in the literature as well as our
own additional scenarios.

Vulnerability assessments

The security of trust algorithms is measured by their resistance to attacks. In this section,
we subject them to attacks and assess their vulnerabilities. We will purposely try to come
up with the simplest attack scenarios that can exhibit the properties we are looking for.
Thirunarayan et al. [19] follows a similar approach but restricted to trust algorithms
relying on the beta probability distribution.

Normalization-based attack

Setup In this first experiment, we want to exhibit whether two different trust algorithms
(in this case, EigenTrust vs PeerTrust) may output different rankings given the same input.
For this we investigate how reputation is affected by the number of good feedbacks versus
the bad feedbacks. Suppose we were given FHG0 in Fig. 6(a) and FHG1 in Fig. 6(b). Since
there are more good feedbacks on agent 2 in FHG0 than FHG1, it is reasonable to expect
agent 2’s reputation in RG1 to be lower than in RG2.
We normalize the output of PeerTrust simply to make the scale of the reputation num-

bers similar to EigenTrust (we do not claim that the semantics are the same). And as
EigenTrust requires feedbacks to be either positive (+1) or negative (-1), we first need to
convert the 1.0 values in the FHGs to +1 and the 0.0 values to -1, hence the use of the
discretizer function in the experiment specifications below:

spearman
(
f 2reigentrust

(
f 2fdiscretize(FHG0)

)
, f 2reigentrust

(
f 2fdiscretize(FHG1)

))
spearman

(
f 2rpeertrust(FHG0), f 2rpeertrust(FHG1)

)
spearman

(
f 2reigentrust

(
f 2fdiscretize(FHG0)

)
, f 2rpeertrust(FHG0)

)
spearman

(
f 2reigentrust

(
f 2fdiscretize(FHG1)

)
, f 2rpeertrust(FHG1)

)
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Fig. 6 Normalization-based Discrepancy

Results Comparing the rankings in Table 2, we note that EigenTrust reports no change
in agent 2’s rank, whereas in PeerTrust its rank has changed from 1 to 2 (Spearman’s
coefficient = 0.83).
Why did agent 2’s rank not change in the EigenTrust experiment? During the initial cal-

culation of its normalized local trust values (used for the calculation of the reputation
graph) for a given agent, Eigentrust essentially calculates the difference between positive
and negative feedbacks for each neighbour and then it normalizes it over all its neigh-
bours. In our case, agent 1 only has agent 2 as its neighbour and so the normalization
process leads to a loss of information, namely the number of positive feedbacks.
Thus, if an agent has interacted with a malicious agent only, then the malicious agent

can get the victim to trust him fully, as long as the number of positive feedbacks that the
malicious agent received is greater than the number of negative feedbacks. This prob-
lem is acknowledged by EigenTrust’s authors [1]. But PeerTrust does not suffer from this
problem, because it does not attempt to perform a sum of positive and negative feedbacks
in this fashion.

Self-promoting attack

Setup Suppose the least trustworthy agent rates a newcomer (i.e., one that had received
no feedback yet) highly. If the newcomer becomes more trustworthy than before the

Table 2 Rankings before and after slandering in retort (reputations in brackets)

Agent 0 Agent 1 Agent 2 Agent 3

EigenTrust(FHG0) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)

EigenTrust(FHG1) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)

PeerTrust(FHG0) 3 (0.11) 1 (0.44) 1 (0.44) 4 (0.00)

PeerTrust(FHG1) 3 (0.13) 1 (0.52) 2 (0.35) 4 (0.00)
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Fig. 7 Self-promoting attack – EigenTrust

rating, then this can be exploited maliciously, paving the way to collusive self-promoting
attacks [12]. Conversely, if the newcomer becomes less trustworthy than before, then the
newcomer is vulnerable to a slandering attack. Consider FHG1 in Fig. 7(b) which is based
on FHG0 in Fig. 7(a), after agent 3 rates agent 0 highly. The experiment set-up is therefore
as follows:

spearman
(
f 2reigentrust

(
f 2fdiscretize(FHG0)

)
, f 2reigentrust

(
f 2fdiscretize(FHG1)

))
and the output can be seen in Fig. 7(c).

Results Looking at Table 3, we see that agent 0’s reputation relative to agent 3 increased.
Note that it is possible that agent 3 genuinely rated agent 0 highly, in which case Eigen-
Trust’s output is a good assessment, otherwise it might have missed a case of collusive
self-promoting attack. It is also worth noting that this experiment breaks PeerTrust, due
to a division-by-0 problem in an equation. Indeed, when calculating agent 0’s reputa-
tion score, the feedbacks provided by agent 3 and its reputation score must be taken into
account. In this case, agent 3’s reputation score is 0, due to the fact that it received only
0-valued feedbacks. The division by agent 3’s reputation is the problem here.

Slandering attack, scenario 1

Setup When the least trustworthy agent (agent 3) gives a newcomer (agent 0) a very
low rating, it can either be a genuine rating or a slandering attempt [12]. The reputation
algorithm may resist slandering by not decreasing agent 0’s reputation, but the risk or
tradeoff would be the possibility of ignoring a genuine assessment. The inputs for this
experiment are FHG0 and FHG1 as shown in Fig. 8, and the experiment is again therefore
specified as follows:

spearman
(
f 2reigentrust

(
f 2fdiscretize(FHG0)

)
, f 2reigentrust

(
f 2fdiscretize(FHG1)

))

Table 3 Ranking before and after low feedback to newcomer (reputations in brackets)

Agent 0 Agent 1 Agent 2 Agent 3

EigenTrust(FHG0) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)

EigenTrust(FHG1) 3 (0.22) 2 (0.3) 1 (0.36) 4 (0.12)
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Fig. 8 Slandering attack scenario 1 – EigenTrust

Results Comparing the rankings in Table 4, we observe that agent 0’s reputation and
global rank has not changed. If agent 3 has indeed provided a dishonest negative feedback,
then we can say that EigenTrust output is a correct assessment. However, it is also possible
that agent 3 is the one being slandered (by agent 2) and has provided a genuine negative
feedback, in which case, we would expect agent 0’s rank to decrease. Thus, we can only
say that EigenTrust is insensitive to bad feedbacks and therefore resists the slandering of
a newcomer. Note that again PeerTrust would produce invalid results for the same reason
as previously.

Slandering attack, scenario 2

Setup Now going back to the initial situation (Fig. 9(a)), what happens if, as shown
in FHG1 in Fig. 9(b), agent 3 decides to direct its bad feedbacks to agent 2
instead of agent0? Looking purely at the feedbacks, one can make the following
guesses:

• Agent 3 rated agent 2 negatively to cover its malicious acts (a slandering attack).
• Agent 2 cheated agent 3 and thus obtained negative feedbacks but acted honestly

with agent 1 to keep its reputation high (a white-washing attack).

Having received more positive feedbacks than agent 3, if agent 2’s reputation is not
affected, then the algorithm is said to be resistant to a slandering attack but it is vulnerable

Table 4 Ranking before and after high feedback to newcomer (reputations in brackets)

Agent 0 Agent 1 Agent 2 Agent 3

EigenTrust(FHG0) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)

EigenTrust(FHG1) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)
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Fig. 9 Slandering attack scenario 2 – EigenTrust

to a white-washing attack. Both EigenTrust and PeerTrust can be used to run this
experiment, which is specified as follows:

spearman
(
f 2reigentrust

(
f 2fdiscretize(FHG0)

)
, f 2reigentrust

(
f 2fdiscretize(FHG1)

))
spearman

(
f 2rpeertrust(FHG0), f 2rpeertrust(FHG1)

)
spearman

(
f 2reigentrust

(
f 2fdiscretize(FHG1)

)
, r2rnormalize

(
f 2rpeertrust(FHG1)

))

Results The rankings in Table 5 show that both EigenTrust and PeerTrust are resis-
tant to this kind of slandering attack, but, as mentioned earlier, they are vulnerable to
white-washing attacks (because the negative feedbacks by agent 3 did not lower agent 2’s
ranking).

Slandering + Sybil attack for local trust algorithms

Setup We now turn to finding out how many malicious agents it takes to slander
effectively. In a Sybil attack, a malicious agent introduces a number of Sybils (i.e, accom-
plices or pseudonyms), whose purpose is to slander a victim in the system [12]. Suppose
we are given the reputation graph shown in Fig. 10. Let agent 0 be a malicious agent that
slanders agent 1. Assuming this agent has unlimited resources (e.g., an unlimited and

Table 5 Rankings before and after slandering in retort (reputations in brackets)

Agent 0 Agent 1 Agent 2 Agent 3

Eigentrust(FHG0) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)

Eigentrust(FHG1) 3 (0.16) 2 (0.29) 1 (0.39) 3 (0.16)

PeerTrust(FHG0) 3 (0.25) 1 (1.00) 1 (1.00) 4 (0.00)

PeerTrust(FHG1) 3 (0.11) 1 (0.44) 1 (0.44) 4 (0.00)
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Fig. 10 Slandering attack using a feedback history graph

low-cost ability to create pseudonyms), it may introduce an unlimited number of Sybils
to collectively slander agent 1. In such a scenario, it is useful to study how r(0, 1), i.e. the
reputation of Agent 1 from the point of view of Agent 0, changes with respect to other
agents. If r(0, 1) changes such that it is less than r(0, 2), then we can conclude that the slan-
dering attack was successful and we would measure the effectiveness of the attack based
on the number of Sybils required. However, as explained in Section ‘Slandering attack,
scenario 2’, one can also interpret this scenario as a white-washing attack. Thus, if an
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Fig. 11 FHG after adding 10 sybils and slander edges

algorithm is resistant to a slandering attack, then it may be vulnerable to white-washing
attacks.
To measure Appleseed’s attack resistance with the graph in Fig. 10, we first verify

whether the victim’s reputation is less than that of an agent in the attacker’s possession
(in this case, we wish to check if r(0, 1) < r(0, 2)). If it is false, the result is updated and a
Sybil agent x is created. Edges (2, x, 1.0) and (x, 1, 0) are also added to the FHG and Apple-
seed is run again (AppleSeed normally needs a reputation graph as input, but in this case
since each FHG edge has a singleton feedback, the value of the feedback can be directly
used as reputation). This process continues and Sybils are added for a certain number of
iterations or until the attack succeeds (Fig. 11).

Results Appleseed resists this type of attack well. Table 6 summarizes the values of
r(0, 1) and r(0, 2) in RG after adding 1, 10, 50 and 100 Sybils and slander edges to
the FHG. We observe that r(0, 1) > r(0, 2). This confirms the attack resistance prop-
erty of Appleseed described in [3]. This is not the case of global trust algorithms
such as EigenTrust, since the addition of sybils simply dilutes the reputation values of
agents.

Trust properties assessments

In this section, trust algorithms are evaluted for their adherence to trust proper-
ties, namely: (a) weak transitivity and (b) the fact that trust is more easily lost than
gained.

Weak transitivity

Setup Trustworthiness obtained via the transitive closure of trust paths should decrease
as the length of the trust path increases [9, 25]. We subjected Appleseed and EigenTrust
to simple tests to verify this basic rule. Even though the input and output graphs are of
different types for these two algorithms, the same assertions can be applied to test the

Table 6 Reputation scores by Appleseed

No. of slandering edges added r(0, 1) r(0, 2)

1 0.36 0.15

10 0.34 0.15

50 0.34 0.14

100 0.34 0.14
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transitive rules, as they do not depend on the semantics of the weight of edges or whether
the reputation scores are local or global.

Results Table 7 presents the test cases (the "Input FHG/RG" column), expected results
(the "Output RG" column represents the transitive closure resulting from the graph trans-
formation, along with question marks on the edges where the weak transitivity property
is tested) and actual results. Both Appleseed and EigenTrust passed our transitive tests.

Dynamic evolution of global trust

According to Marsh [13], “When considering a simple trusting agent (i.e., one who does
use rules of reciprocation), the trust he has in a trustee will ordinarily increase if coop-
eration occurs, and decrease otherwise”. That is, if trust exists between two parties, then
cooperation between them reinforces trust by increasing some trust score. If there was
no trust, then cooperation builds trust. Furthermore, “a sudden defection from a trusted
friend can result in a drastic reduction of trust, to the extent that a lot of work is neces-
sary to build that trust up again” [13]. That is, if cooperation does not ensue, then trust is
lost at a rate higher that it was gained. Adherence to this property prevents white-washing
atttacks where attackers cheat periodically while maintaining a high reputation.
We propose the following method to evaluate this property.
Let fi(∗, b) be the i’th feedback on b in feedback history FHG(∗, b), which is the list of

feedbacks on b by all agents in the system and ri(b) be b’s global reputation score following
i’th feedback.

Table 7 Transitivity tests and results

Exp Input FHG/RG Output RG Expectation Results

EigenTrust Appleseed

1 r(0, 1) >= r(0, 2)

r(0, 2) == r(0, 3) true true

2 r(0, 5) >= r(0, 2)

r(0, 5) >= r(0, 3) true true

3 r(0, 3) >= r(0, 2)

true true
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Assuming both reputation scores and feedback values are on the same scale and r(b)
is a function of the feedback history FHG(∗, b), then trust must evolve according to con-
ditions 5.1 and 5.2, where we define, for agent b and for any consecutive “instants” i − 1
and i:

• δf := fi(∗, b) − ri−1(b) (the ith feedback is compared to the reputation at instant i-1)
• δr := ri(b) − ri−1(b) where ri(b) is obtained after feedback fi(∗, b)
• δr

δf
+ := δr

δf if
δr
δf ≥ 0, and δr

δf
− otherwise

0 ≤ δr
δf

+
≤ 1 (5.1)

| δr
δf

+
| ≤ | δr

δf

−
| (5.2)

That is:

1. Condition 5.1 verifies that if there is a positive change in feedback, then the change
in reputation is also positive, but the change in reputation is less than the change in
feedback.

2. Condition 5.2 verifies that the magnitude of the rate of change in reputation due to
positive feedbacks is always less than the magnitude of the rate of change in
reputation due to negative feedbacks.

Setup and results We set up two scenarios to investigate the behaviour of PeerTrust. In
the first scenario, there are only two agents a and b, and the feedback history FHG(a, b) is
handcrafted such that a is typically satisfied with b, except once, where f (a, b) is set to 0.
In this scenario, we determine whether trust loss is greater than trust gain. In the second
scenario, we introduce a third agent c and we investigate the impact of r(c, a) on r(a, b)
and whether the above conditions are still held in this scenario.

Scenario 1: evolution due to direct interactions only Consider the feedback histories
between two agents a and b in Table 8, which shows agent a was dissatisfied with b only
once. One could argue that b mounted a white-washing attack in which it behaved hon-
estly in order to cheat once in a while, or it is also possible that a is concealing a slandering
attack, where it unfairly rated b. Even though information such as the intention of an agent
thus cannot be extracted from the feedback history alone, we can use the above condi-
tions to characterize a trust algorithm’s behaviour as to whether reputation evolves as it
should.
Assuming that all agents are pre-trusted equally (i.e., r0(∗, b) = 0.5), Table 8 and

Fig. 12 show the evolution of r0(∗, b). When f3(a, b) (a negative feedback) occurred, r(∗, b)

Table 8 Evolution due to direct interactions only—Scenario 1

i Assessor Assessee f r δf δr

1 a b 1.0 1.0 0.5 0.5

2 a b 1.0 1.0 0 0

3 a b 0 0.66 −1.0 −0.33

4 a b 1.0 0.75 0.33 0.08

5 a b 1.0 0.8 0.25 0.05
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Fig. 12 Evolution of reputation w.r.t feedback – Scenario 1

decreased but it increased at a slower rate when f4(a, b) (a positive feedback) occured.
Thus, PeerTrust has respected conditions 5.1 and 5.2.
In a separate experiment, we also noted that if there were two consecutive negative

feedbacks on b, then r(∗, b) decreased to 0.5. This suggests that an attacker can know
exactly how many positive feedbacks are required in order to restore his lost reputation
after misbehaving.

Scenario 2: evolution due to direct and indirect interactions In this experiment, we use
the feedback history provided in Table 9. Initially, agent c provided a positive feedback to
a (f1), but later provides a negative feedback (f4). Because b’s reputation score is dependent
on a’s reputation score, a negative change in a’s reputation should affect b’s reputation.
However, results show that it is unaffected. We explain the reason in what follows.
If we compare the reputation values shown in Table 10, we note that r(a) changed from

1 to 0.5. However, this change did not affect r(b) after adding f5. This is because of the
normalization technique used by PeerTrust to calculate b’s reputation.
Thus, PeerTrust did not propagate trust as one would have expected (i.e., if c does not

trust a, it should not trust b either) and this can be easily exploited by attackers. For
example, if agents a and b both are part of a collusive group, then agent c cannot recognize
this and therefore cannot break away from a collusive group of attackers.

Table 9 Evolution due to direct and indirect interactions

i Assessor Assessee f r

1 c a 1.0 0

2 a b 0.9 0.9

3 a b 0.9 0.9

4 c a 0 0.9

5 a b 1.0 0.93
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Table 10 Reputation output by PeerTrust

i Assessor Assessee f r(∗, b)
1 c a 1.0 0

2 a b 0.9 0.9

3 a b 0.9 0.9

4 c a 0 0.9

5 a b 1.0 0.93

Limitations

1. By definition, the global trust of an agent reflects the impact of feedbacks by all
other agents in the system. To verify the conditions presented at the beginning of
this section, we only need to know the order of feedbacks for an agent, regardless of
the assessor. However, verifying the evolution of local trust scores according to the
above conditions is subjective. Suppose we obtained Table 11 from a local trust
algorithm. If we only consider direct experience between a and b, then we observe
that r(a, b) increased from 0.1 to 0.3 despite a negative feedback (f6), but this
increase may have been contributed by f5 and the fact that r(a, c) = 0.9. That is,
r(a, b) is an aggregated score obtained through direct and indirect experiences and,
depending on the algorithm, different weights may be given to direct versus
indirect experience [26].

Conclusions
We provided details of our prototype and evaluated trust algorithms for vulnerabili-
ties to attacks and adherence to trust properties. We were able to show that our model
could indeed accommodate various algorithms, and that the specification of experiments
in terms of the model was straightforward and easy to express programmatically. The
experiments that we ran allowed us to make the following observations:

• We were able to exhibit discrepancies between the outputs of EigenTrust and
PeerTrust due to the way the initial normalized local trust values are calculated in
EigenTrust; EigenTrust ignores the excess positive feedbacks once they outnumber
negative feedbacks;

• There are tradeoffs between sensitivity to self-promotion and sensitivity to
slandering. For example, an algorithm that is overly sensitive to slandering might take
too long to incorporate bad feedback, and this allows bad behavior to go unnoticed
for a while. In general, the difficulty is that one cannot always detect an attack just by
looking at feedback history, since multiple interpretations are always possible.

Table 11 Local reputation example

i Assessor Assessee f r(a, b) r(a, c) r(c, b)

1 a c 0.9 - 0.9 -

2 a b 0.6 0.6 0.9 -

3 a b 0.7 0.65 0.9 -

4 a b 0.2 0.1 0.9 -

5 c b 0.9 - 0.9 0.4

6 a b 0 0.3 0.9 0.4
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Clarification may come with the accumulation of feedback data, but multi-agent
systems might not be able to survive to see that accumulation, unless a certain
number of pre-trusted nodes can be provided to bootstrap the system.

• We were able to express and verify basic trust properties, such as weak transitivity
and the fact that trust is more easily lost than gained. These should be building blocks
upon which more complex properties could be expressed.

We have identified the following limitations and future work:

• Since the feedback history graph limits itself to agent-to-agent transaction ratings,
recommender systems such as Credence [10] that use agent-to-object ratings cannot
be included in the testbed.

• Trust systems that rely on different agent types (advisors, trusters, trustees, etc.) such
as in [17] cannot be accommodated in our model.

• Our framework cannot accommodate trust algorithms, such as REGRET [27] or FIRE
[28], that use inputs other than feedback history.

• Different agents might have different reputations in different contexts. Our testbed
does not explicitly represent this context. One would have to create separate graphs
for each context (thus making the assumption that the contexts are independent
from one another), and this might be an oversimplification in cases where trust in
one context partially influences trust in another context. We note however that in
most of the trust algorithms we have classified the notion of context is not explicitly
taken into account either.

• Agent behavior simulation: it would be desirable to use agent simulations to
automatically generate feedback history graphs (stage 1 of the workflow). Such a
feature would be useful for designing large-scale experiments with each agent acting
in a different manner.

• Support for distrust: distrust indicates how much an agent is not trusted (opposite of
trustworthiness) and algorithms such as the distrust-aware version of Appleseed
compute both trust and distrust propagation. Because our reputation graphs do not
include distrust information, such algorithms cannot be evaluated using our testbed.

In addition to addressing the above limitations in our model, future work involves
implementing more trust algorithms, building a user interface for our testbed and
performing large-scale experiments. In particular, experiments using large datasets from
websites such as Epinions, Advogato, and Facebook can yield interesting results.

Endnotes
1In the remainder of the paper we will simply refer to the trust systems or models that

have no specific name by the name of the first author of the paper we are citing, so [5]
will be referred to as “Aberer”.

2in what follows we will use the graph name and the labelling functions
interchangeably to reduce extraneous notations

3Note that in this figure, we have included “0” in A × A �→ {0, 1} for a trust graph for
clarity but in reality, it indicates that there is no edge.

4http://code.google.com/p/repsystestbed/
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