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Abstract

Background: Pulmonary infection of humans by Mycobacterium tuberculosis (Mtb), the causative agent of
tuberculosis (TB), results in active disease in 5-10% of individuals, while asymptomatic latent Mtb infection (LTBI) is
established in the remainder. The host immune responses that determine this differential outcome following Mtb
infection are not fully understood. Using a rabbit model of pulmonary TB, we have shown that infection with the
Mtb clinical isolate HN878 (a hyper-virulent W-Beijing lineage strain) leads to progressive cavitary disease similar to
what is seen in humans with active TB. In contrast, infection with Mtb CDC1551 (a hyper-immunogenic clinical
isolate) is efficiently controlled in rabbit lungs, with establishment of LTBI, which can be reactivated upon treatment
with immune-suppressive drugs. We hypothesize that the initial interaction of Mtb with the cells of the host
response in the lungs determine later outcome of infection.

Results: To test this hypothesis, we used our rabbit model of pulmonary TB and infected the animals with Mtb
HN878 or CDC1551. At 3 hours, with similar lung bacillary loads, HN878 infection caused greater accumulation of
mononuclear and polymorphonuclear leukocytes (PMN) in the lungs, compared to animals infected with CDC1551.
Using whole-genome microarray gene expression analysis, we delineated the early transcriptional changes in the
lungs of HN878- or CDC1551-infected rabbits at this time and compared them to the differential response at
4 weeks of Mtb-infection. Our gene network and pathway analysis showed that the most significantly differentially
expressed genes involved in the host response to HN878, compared to CDC1551, at 3 hours of infection, were
components of the inflammatory response and STAT1 activation, recruitment and activation of macrophages, PMN,
and fMLP (N-formyl-Methionyl-Leucyl-Phenylalanine)-stimulation. At 4 weeks, the CDC1551 bacillary load was
significantly lower and the granulomatous response reduced compared to HN878 infection. Moreover, although
inflammation was dampened in both Mtb infections at 4 weeks, the majority of the differentially expressed gene
networks were similar to those seen at 3 hours.

Conclusions: We propose that differential regulation of the inflammation-associated innate immune response
and related gene expression changes seen at 3 hours determine the long term outcome of Mtb infection in
rabbit lungs.
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Lay abstract
Inhalation of infectious aerosols containing viable Myco-
bacterium tuberculosis (Mtb), results in symptomatic
tuberculosis (TB) in about 5-10% of people, while the
majority of exposed individuals develop asymptom-
atic, latent TB infection (LTBI). These diverse clinical
outcomes following Mtb infection are determined by
intricate host-pathogen interactions that are not fully
understood. We have established a rabbit model of pul-
monary TB that closely mimics the pathological features
of human disease and LTBI. In our model, pulmonary
infection of rabbits with Mtb HN878, a hyper-virulent
W-Beijing strain, results in progressive cavitary disease;
infection with CDC1551 is effectively cleared over time,
establishing LTBI that can be reactivated upon immune
suppression. In the present study, we used our rabbit
model to test the hypothesis that the initial host response
in the lungs within hours of infection determines later
outcome. At similar infection doses, we found increased
accumulation of macrophages and PMN in the lungs of
HN878-, compared to CDC1551-infected rabbits, at 3
hours. Consistently, we observed activation of cellular
networks involved in the inflammatory response, STAT1
activation, recruitment and activation of macrophages
and PMN, and fMLP-stimulation in the lungs of HN878-
infected rabbits. Similar differential expression patterns
in all the tested network genes were seen at 4 weeks, with
infection and pathology reduced in CDC1551-infected
animals compared to HN878 infection. This suggested
that the overall outcome following Mtb infection of rabbit
lungs is significantly influenced by the differential regula-
tion of inflammation-associated innate immune cells and
associated gene expression changes observed already at
3 hours.

Background
In humans, inhalation of aerosol droplets containing
Mtb results in a spectrum of clinical outcomes, ranging
from progressive granulomatous disease (seen in 5-10%
of immune competent individuals), with continued bacil-
lary growth and exacerbated lung pathology, to contain-
ment of infection and establishment of asymptomatic
latent infection (LTBI; seen in about 90%) [1]. The deter-
minants of outcome following Mtb infection have been
shown to be dependent on the host innate immune re-
sponse [2,3]. Polymorphisms in genes encoding the toll-
like receptors (TLR), vitamin D receptors (VDR), and
other innate immune recognition molecules have been
associated with increased susceptibility of individuals
to TB disease [4,5]. In addition, recent studies have
suggested that the nature of the infecting bacilli also
contributes to the outcome of infection [6,7]. Epidemio-
logical studies have shown differential infectivity among
various Mtb strains in the population. Genotypic analysis
of 516 clinical isolates from patients showed that Mtb
strains of the W-Beijing lineage caused the highest num-
ber of TB cases in Taiwan [8]. Similarly, a strong as-
sociation between W-Beijing and HIV infection was
reported among South African patients [9]. Further-
more, a sublineage of the W-Beijing strain has been asso-
ciated with increased disease transmission [10]. However,
the exact mechanism underlying this Mtb strain depend-
ant differential response is not fully understood. To bet-
ter understand the interaction between specific infecting
Mtb strains and host protective immunity, we established
a rabbit model of Mtb infection that mimics the full
range of disease manifestations seen in humans [11-13].
In rabbits, the nature of the infecting Mtb strain signifi-
cantly influences the host-pathogen interactions and de-
termines the outcome of infection. We have used the
clinical Mtb strain CDC1551, which is highly immuno-
genic in animals [14], to infect rabbits by aerosol expos-
ure. Infection with CDC1551 results in early transient
limited bacillary growth, followed by spontaneous clear-
ance of organisms, as manifested by an absence of detect-
able colony forming units (CFU) in the lungs, liver and
spleen by 12 to 16 weeks post-infection, depending
on the initial inoculum [13]. This phenomenon rep-
resents true LTBI rather than tissue sterilization, since
reactivation of the infection is achieved with immune
suppression of rabbits with triamcinolone, a synthetic
corticosteroid. In CDC1551-infected rabbits, control of
infection is associated with small, well-differentiated lung
granulomas and robust activation of the host antimicro-
bial response, characterized by peak activation of mono-
cytes and CD4+ T cells by 4 weeks, that gradually
declines over the next 4 to 8 weeks in parallel with de-
clining CFU numbers. Concurrent with bacillary clear-
ance, the granulomatous lesions resorb with time, and
the lungs regain a normal appearance [11]. In contrast,
infection of rabbits with the less immunogenic, but more
virulent, clinical Mtb strain HN878 leads to progressive
granulomatous TB. In the lungs of these animals, diverse
lesions are observed, including small, cellular granulomas
and larger ones with necrotic centers, as well as liquefied
lesions that eventually cavitate with extensive bacillary
growth at the luminal surface, similar to those seen in
human pulmonary disease [11,12]. HN878 infection is as-
sociated with lung inflammation, followed by a slow and
sub-optimal activation of the host innate and adaptive
immune responses and the sustained presence of acti-
vated CD4+ and CD8+ T cells throughout the course of
infection, which seems to be driven by the bacillary load
in the lungs [12].
To gain insight into the host response that culminates

in the progression of infection to active TB disease ver-
sus establishment of LTBI, we investigated the early
(3 hours) and 4 week response to HN878 and CDC1551
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following equivalent implantation of each Mtb strain
into the lungs of rabbits. Leukocyte recruitment and
granuloma development in response to Mtb infection
were determined by histological analysis of lung tissue.
Using rabbit whole-genome microarray gene expression
analysis, we determined the differential gene expression
induced in the rabbit lungs in response to infection with
each of these two clinical isolates. We evaluated the abil-
ity of early (3 hour) differential changes in the host im-
mune response in the rabbit lungs to predict later
outcome following Mtb infection, by interrogating the
gene networks at 4 weeks. Our results suggest that in
rabbit lungs, the outcome following Mtb infection is sig-
nificantly influenced by the differential regulation of
inflammation-associated innate immune cells and re-
lated network gene expression changes occurring already
at 3 hours.

Results
Early recruitment of mononuclear and activated
polymorphonuclear (PMN) cells into the Mtb-infected
rabbit lungs
To define the early response following pulmonary infec-
tion of rabbits with Mtb HN878 or CDC1551, we evalu-
ated the bacillary load, by the CFU assay, and the
immune cell accumulation, by histology of lung sections,
at 3 hours post-infection (Figure 1). The bacillary load in
the lungs of Mtb HN878- and CDC1551-infected rabbits
was similar at this time point (Figure 1A). However, the
H&E stained lung sections revealed an increased accu-
mulation of leukocytes in the airspaces of lungs infected
with HN878, relative to those infected with CDC1551,
with significantly elevated numbers of PMN in the
former group (Figure 1B, D and E). To confirm the mor-
phological data, we measured the enzymatic activity of
myeloperoxidase (MPO) in lung homogenates of rabbits
infected with HN878 or CDC1551 as a surrogate for
PMN activation [15]. Consistent with the histological
findings, significantly higher MPO activity per gram of
total protein was seen in the lungs of HN878- compared
to CDC1551-infected rabbits (Figure 1C).

Genome-wide transcriptional responses of Mtb-infected
rabbit lungs at 3 hours
To evaluate the immune activation of lung cells in re-
sponse to Mtb infection, we performed a genome-wide
transcriptional analysis using total RNA isolated from
HN878- or CDC1551-infected rabbit lungs at 3 hours
(Figure 2). The quality of microarray data from the unin-
fected, HN878- or CDC1551-infected rabbit lungs was
assessed using Principal Component Analysis (PCA)
(Figure 2A). The three dimensional PCA plot shows
39.9% (x-axis; PC#1), 30.6% (y-axis; PC#2) and 3.9% (z-
axis; PC#3) variation among biological replicates within
each group and between different groups over time
(infected versus uninfected). The PCA analysis also indi-
cated that the individual datasets in each group cluster
together and each cluster segregates from the other
groups, indicating a reproducibility of variance (74.4%)
among the components captured in the x-, y- and z-axis.
To identify the significantly differentially expressed
genes (SDEG), we used a cut-off family-wise error rate
of 0.05 (0.05 FWER). A total of 490 SDEG were identi-
fied in the lungs of Mtb-infected, relative to uninfected,
rabbits (Figure 2B). Infection with both HN878 and
CDC1551 was associated with relatively high numbers of
upregulated SDEG (342 versus 318 genes) and lower
numbers of downregulated SDEG (172 versus 148 genes)
(Figure 2B). The pair-wise analysis (i.e. expression ratio
of Mtb-infected to uninfected rabbit lungs) revealed a
moderately higher number of SDEG in the lungs of rab-
bits infected with HN878 (982), than in those infected
with CDC1551 (923), with 208 genes shared between
both groups (Figure 2C and Additional file 1: Table S2).

Validation of microarray gene expression by real-time
quantitative PCR (qRT-PCR)
A subset of the total SDEG was randomly selected for
qRT-PCR to confirm and validate the microarray gene
expression levels (Additional file 2: Table S3). The 14 se-
lected rabbit genes included TNF, IL4R, CD36, CXCL10,
IL1A, CAV1, TGFB2, SPP1, CCL4, IL18, CCL2, IRF5,
CD38 and STAT1. The qRT-PCR results for all the se-
lected genes were qualitatively congruent with the data
from the microarray analysis.

Gene ontology and pathway analysis
The 13 top canonical pathways were identified from the
SDEG with a 0.05FWER cut-off (p value 2x10–8), as de-
scribed in the Methods (Table 1). The percentage of
upregulated genes in each of the 13 pathways exceeded
the downregulated genes (range: 61% to 100%) in the
HN878-infected rabbit lungs. In contrast, only 10 of the
pathways had more upregulated (range: 45% to 78%)
than downregulated genes in the CDC1551-infected
rabbit lungs. The remaining 3 pathways (chemokine
receptors and chemokine, graft versus host disease
and leishmania infection) had a higher number of
downregulated genes (range: 51-55%) in the CDC1551-
infected samples. In general, the total number of
upregulated or downregulated SDEG differed between
the two infection groups (Table 1).

Early induction of inflammatory response network in Mtb
HN878 infected-rabbit lungs
We interrogated the SDEG to identify the most signifi-
cantly affected biological functions induced in response
to Mtb infection compared to uninfected animals. As



Figure 1 Bacillary load, accumulation of activated PMN in Mtb-infected rabbit lungs. (A) Total lung bacillary load in Mtb HN878- or
CDC1551-infected rabbits at 3 hours post-infection. The values plotted are mean ± standard deviation from four animals per group (B) Numbers
of polymorphonuclear (PMN) cells in the lungs of Mtb HN878- or CDC1551-infected rabbits at 3 hours post-infection. The values plotted are
mean ± standard deviation (C). Levels of myeloperoxidase (MPO) activity used to determine the activation status of PMNs. MPO activity was
measured calorimetrically in the lung homogenates of Mtb HN878- or CDC1551-infected rabbits at 3 hours post-infection and reported as change
in OD460 / min / g protein. The values plotted are mean ± standard deviation from triplicate assays from 3 animals per group. (D and E)
Representative lung section histology of Mtb HN878- (D) or CDC1551- (E) infected rabbits at 3 hour post-infection stained with H&E and
photographed at 400x magnification. Arrows point to PMNs. These cells in the rabbit contain red granules when stained with H&E and are
known as heterophils. The scale bar (50 μM) is same for (D) and (E).
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shown in Table 2, Ingenuity Pathway Analysis (IPA) of
SDEG revealed inflammation and related pathological
conditions as the most significantly affected biological
functions. Of the 281 SDEG comprising the inflammatory
response network, 209 were upregulated in response to
HN878 infection, compared to 179 in CDC1551-infected
rabbit lungs (Figure 3A and Additional file 3: Table S4).
Gene ontology analysis revealed that the SDEG involved
in the inflammatory response encode a variety of mole-
cules including, cytokines, chemokines, surface receptors,
enzymes, growth factors, transporters and transcriptional
regulators that control the inflammatory response network
(Figure 3B).

Early activation of inflammatory response network by
HN878 infection is localized to the lungs
To determine whether the early inflammatory response
elicited by HN878 infection at 3 hours is localized to the
lungs or whether it is systemic, we analyzed the expres-
sion of 12 selected SDEG, including cytokines and
chemokines (TNF, IL18, IL1A, SPP1, CCL2, CCL4,
CXCL10, TGFB2, IL4R, CAV1, CD36 and IRF5), by qRT-
PCR using total RNA from the blood leukocytes of
HN878-infected rabbits at 3 hours, compared to unin-
fected animals (Additional file 4: Table S5). Interestingly,
there was no statistically significant induction observed
for any of the tested genes between uninfected and
HN878-infected blood samples. This observation clearly
suggests that the inflammatory response at 3 hours post-
HN878 infection was localized to the lungs.

Early regulation of STAT1 activation network in Mtb-
infected rabbit lungs
To understand how the early inflammation is regulated
during Mtb infection of rabbit lungs, we analyzed the
SDEG that encode transcription factors and studied their
downstream networks. Of the 14 transcription regulators
involved in the inflammatory response, nine (STAT1, IRF5,
IRF8, IRF7, IRF1, CIITA, JUN, NFKB1A, HMGB1) had a
significant z-score (≥ +2 indicates activation and ≤ −2
denotes inhibition of the downstream network) in the
HN878-infected samples (Additional file 5: Table S6).
Among these transcription factors, STAT1 was the most
highly upregulated (more than 7-fold) in rabbit lungs
infected with HN878, compared to those infected with
CDC1551. The canonical mechanistic pathway from IPA
was used to identify plausible regulatory factors that are
co-regulated by STAT1 to elicit the observed changes
in the level of expression of target genes. As shown in
Figure 4A, STAT1 interacts with 17 regulators, of which
only 3 (NFKB1A, IRF1 and JUN) were differentially
expressed in both HN878- and CDC1551-infected rabbit



Figure 2 Genome-wide rabbit lung transcriptome and profile of significantly differentially expressed genes (SDEG) at 3 hours post-
Mtb-infection. (A). Principal component analysis (PCA) of microarray gene expression datasets from uninfected, Mtb HN878- or CDC1551-
infected rabbit lungs at 3 hours. The elliptical line around each data point represents the standard deviation from the median. (B). Intensity plot
of SDEG in rabbit lungs following HN878 or CDC1551 infection at 3 hours. Gene expression values were sorted in a descending fashion for the
HN878 dataset. The color scale ranges from +3 (red; upregulation) to −3 (blue; downregulation) (C). Venn diagram showing the number of genes
obtained from pair wise comparison between uninfected and Mtb HN878- or CDC1551-infected animals.
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lungs. STAT1, IRF1 and NFKB1A were expressed at 14.2-,
5.4-, and 1.9-fold higher levels in HN878-infected lungs,
relative to uninfected rabbit lungs. In contrast, expres-
sion of JUN was upregulated 3.6-fold in the CDC1551-
infected lungs, compared to uninfected rabbit lungs.
Next, we interrogated the SDEG to identify the target
genes of the STAT1 mechanistic network. Among the
261 SDEG involved in the STAT1 mechanistic net-
work, the expression of 194 (74.3%) and 157 (60.1%)
genes were upregulated in HN878- and CDC1551-infected
rabbit lungs, respectively (Figure 4B and Additional
file 6: Table S7). To decipher the activation status of
the STAT1 network, we analyzed the direction of ex-
pression of STAT1 interaction network genes. These
genes are a subset of the 261 SDEG present in the
mechanistic network. Interestingly, 41 out of 42 genes
in this network were upregulated during HN878 infec-
tion, compared to only 22 in CDC1551-infected lungs
(Figure 4C and D). Importantly, the direction of expres-
sion of these genes showed an early and robust activation
of the STAT1 network in only the HN878- and not in
the CDC1551-infected rabbit lungs at 3 hours. The ex-
pression pattern of all target genes (41 genes) of the
STAT1 interaction network in the HN878-infected rabbit
lungs is consistent with the IPA predicted activation
of the STAT1 network, based on experimentally ob-
served causal effect between the regulators and target
genes (http://ingenuity.force.com/ipa/IPATutorials?id=
kA250000000TNF7CAO).

Gene expression in selected networks affected by Mtb
infection of rabbit lungs
To better understand the causal link underlying the dif-
ferential induction of the inflammatory response and
STAT1 regulon networks, we studied gene networks
involved in macrophage activation, fMLP-stimulation
and recruitment and activation of PMN in infected
rabbit lungs. The macrophage activation network con-
tains a subset of 33 SDEG that encode cytokines and
chemokines (CCL4, CXCL10, CCL5, TNF, CCL3, CCL2,

http://ingenuity.force.com/ipa/IPATutorials?id=kA250000000TNF7CAO
http://ingenuity.force.com/ipa/IPATutorials?id=kA250000000TNF7CAO


Table 1 List of top canonical pathways affected by SDEG

No. Pathway HN878 CDC1551

1 2 3 4 5 6 7 8 9 10 11 12 13 Up / Down Up / Down

1
REACTOME_CHEMOKINE_RECEPTORS_BIND_
CHEMOKINES (41) 23 22 0 0 6 0 0 1 22 0 23 0 0 17 / 6 11/12

2 KEGG_CHEMOKINE_SIGNALING_PATHWAY (144) 1 54 3 0 10 6 0 5 26 0 22 0 0 37 / 17 34 / 20

3 REACTOME_INTERFERON_GAMMA_SIGNALING (40) 0 0.1 26 5 3 5 4 0 0 0 0 5 1 21 / 5 15 / 11

4 KEGG_GRAFT_VERSUS_HOST_DISEASE (21) 0 0 0.3 15 2 8 3 0 3 0 0 14 3 15 / 0 7/8

5 KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY (80) 0.3 0.3 0.1 0.1 29 7 0 0 8 2 6 2 2 27 / 2 17 / 12

6 KEGG_LEISHMANIA_INFECTION (55) 0 0.2 0.2 0.5 0.2 29 4 2 3 1 1 7 4 25 / 4 13 / 16

7 REACTOME_IMMUNOREGULATORY_INTERACTIONS_ 0 0 0.2 0.2 0 0.2 23 6 0 2 1 3 3 21 / 2 17 / 6

BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_
CELL (36)

8 REACTOME_CELL_SURFACE_INTERACTIONS_AT_THE_ 0 0.1 0 0 0 0.1 0.3 37 2 6 2 0 3 23 / 14 27 / 10

VASCULAR_WALL (65)

9 KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION (202) 1 0.5 0 0.2 0.3 0.1 0 0.1 66 0 22 3 13 48 / 18 43 / 23

10 PID_INTEGRIN1_PATHWAY (60) 0 0 0 0 0.1 0 0.1 0.2 0 36 0 0 3 22 / 14 28 / 8

11 REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS (121) 1 0.5 0 0 0.2 0 0 0.1 0.5 0 44 0 0 28 / 16 22 / 22

12 KEGG_ALLOGRAFT_REJECTION (25) 0 0 0.3 0.9 0.1 0.5 0.2 0 0.2 0 0 15 3 14 / 1 8/7

13 KEGG_HEMATOPOIETIC_CELL_LINEAGE (68) 0 0 0 0.2 0.1 0.1 0.1 0.1 0.4 0.1 0 0.2 34 24 / 10 25 / 9

The pathways are ranked 1 to 13 according to their p value and shown in column 1 and row 1. The numbers in parenthesis after the pathway (column 2) refers
to the total number of SDEG involved. This includes unique genes and those that are shared among different pathways. The numbers along the diagonal axis
(underlined) are the number of SDEG involved in a specific pathway. Numbers shown above the diagonal axis are the number of SDEG shared between the
pathways. The fractional numbers shown below the diagonal axis are the portion of SDEG shared by other pathways with reference to the numbers in the
diagonal axis. The last two columns at the right show the number of up and down regulated genes in each pathway.
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IL8, IL15, EDN1, CSF3, IL18 and CSF2), cell surface re-
ceptors (TLR2, BID, CSF1R, TLR4, CR1, S100A9, IL4R,
CD44, PTGER3 and F2), enzymes (HCK, JAK2, PTGS2
and FN1) and transcriptional regulators (STAT1 and
HMGB1) (Figure 5A and B). At 3 hours post-infection,
most of the macrophage activation network genes were
upregulated in HN878-infected lungs, relative to those
infected with CDC1551 (22 versus 14 genes). In con-
trast, a higher number of SDEG were downregulated in
rabbit lungs following CDC1551 infection (15 versus 9
genes). Among the 14 upregulated genes in the CDC1551-
infected animals relative to uninfected lungs, 9 genes
(ANGPT1, F2, PTGER3, HMGB1, EDN1, CSF3, FN1,
S100A9 and IL4R) were expressed at much higher levels
Table 2 Top biological functions affected by SDEG

No. Biological functions p-Value Molecules

1 Inflammatory response 3.04E-72 - 1.69E-17 281

2 Inflammatory disease 9.02E-76 - 1.99E-17 228

3 Immunological disease 2.81E-61 - 2.22E-17 219

4 Skeletal and muscular disorders 9.02E-76 - 2.23E-17 195

5 Connective tissue disorders 9.02E-76 - 1.99E-17 180

The ranking for biological functions was based on the number of
SDEG involved.
than those observed in the lungs of HN878-infected rab-
bits (Figure 5B).
fMLP is a chemoattractant peptide, produced by acti-

vated cells of the immune system, which stimulates
recruited immune cells to produce proinflammatory
molecules [16,17]. Similar to the macrophage activa-
tion network, genes induced by fMLP were differen-
tially expressed in the rabbit lungs in response to
HN878 versus CDC1551 infection (Figure 5C and D).
Of the 32 genes in the fMLP-stimulated network, 24 and
13 genes were upregulated at 3 hours in the HN878- and
CDC1551-infected animals, respectively. A higher number
of genes were significantly downregulated in CDC1551-,
than in HN878-infected lungs (18 versus 8). In this
network, most of the genes that encode cytokines (TNF
and IL8), chemokines (CCL4 and CCL2), enzymes (CYBB,
CD44, NCF4, PTGS2, PRKCB and RAC2) and receptors
(FCGR2A, FPR1, FPR2 and IL1R2) were upregulated
only in the HN878-infected animals (Figure 5C). Six
genes, ITGB1, PTEN, HGF, ICAM2, FN1 and S100A9, were
more upregulated in the CDC1551-infected rabbit lungs
(Figure 5D).
Among the SDEG observed at 3 hours following Mtb

infection, a subset of 40 genes are involved in the recruit-
ment and activation of PMN. Of these, 29 were upregulated
and 10 were downregulated in the HN878-infected rabbit



Figure 3 Expression of inflammatory response network genes in Mtb-infected rabbit lungs. (A). Intensity plot of 281 SDEG involved in
inflammatory response network in the HN878- or CDC1551-infected rabbit lungs at 3 hours. The color scale ranges from +3 (red; upregulation)
to −3 (blue; downregulation) (B). Functional classification of inflammatory response network genes. Numbers on top of each bar refer to subsets
of genes in each functional category. The top right table shows the number of up and down regulated SDEG by Mtb HN878 or CDC1551
infection of rabbit lungs at 3 hours.
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lungs (Figure 5E and F). The majority of upregulated
genes encode cytokines and chemokines, including CCL4,
CXCL10, CCL5, TNF and IL15, as well as cell surface re-
ceptors, such as FCGR2A, FPR1, FPR2 and TLR4, enzymes
(HCK, PIK3CD, SPP1, PRKCD and others) and the
transcriptional regulator, STAT1 (Figure 5E). In contrast,
CDC1551 infection was associated with upregulation of
only 12 genes and downregulation of 26 genes in this path-
way (Figure 5F).
Taken together, both the number of upregulated genes

and the magnitude of their expression in the selected
networks were generally higher in the lungs of HN878-
infected animals. However, in the CDC1551-infected
rabbits, upregulation of a subset of the genes belonging
to these networks was noted.

Interaction between inflammatory response, STAT1,
macrophage and PMN activation networks
To identify key genes involved in the cellular processes
driving the course of infection after implantation of
HN878 or CDC1551 in rabbit lungs, we examined the
number of genes shared among the host inflammatory
response, STAT1 activation, PMN recruitment and acti-
vation, and macrophage activation networks (Additional
file 7: Figure S1). Of the 281 SDEG involved in the host
inflammatory response, 150 were also shared by the
STAT1 regulation network. Moreover, all the genes in-
volved in the PMN recruitment and activation and
macrophage activation networks were part of the host
inflammatory response network and many were also part
of the STAT1 network (13 out of 40 genes in the PMN
recruitment and activation and 20 out of 33 genes in
the macrophage activation network). In addition, there
were 17 genes commonly regulated by all four biological
processes.

The 4 week host response to infection with Mtb HN878
and CDC1551
To validate our hypothesis that the outcome following
Mtb infection is determined by the very early changes
(3 hours) in the host immune response, we analyzed the
bacillary load, histology and the previously selected net-
work gene expression profiles in the lungs of HN878- or
CDC1551-infected rabbits at 4 weeks (Figure 6). As
shown in Figure 6A, rabbit lungs infected with similar
numbers of HN878 and CDC1551 at 3 hours, multiplied
similarly during the first 2 weeks, reaching 5.7 ± 0.7 and
5.4 ± 0.8 log10 CFU, respectively. Thereafter, the number of
CFU in the lungs of CDC1551-infected rabbits stabilized,
while HN878 continued to grow exponentially, reaching



Figure 4 Interaction and expression pattern of canonical STAT1 mechanistic pathway genes and STAT1 interaction network genes in
Mtb-infected rabbit lungs. (A) STAT1 regulation of downstream transcriptional regulators. Solid arrows indicate direct and broken arrow
indicates indirect interactions. Predictions on the direction and intensity of activation and inhibition by STAT1 were made by IPA knowledgebase
based on published literature. (B) Intensity plot of 260 SDEG involved in canonical STAT1 mechanistic pathway in HN878- or CDC1551-infected
rabbit lungs at 3 hours. The color scale ranges from +3 (red; upregulation) to −3 (blue; downregulation). (C and D) Interaction of STAT1 network
genes in HN878- (C) or CDC1551- (D) infected rabbit lungs at 3 hours. Solid lines indicate direct interactions and broken lines denote indirect
interactions of genes. For (C) and (D), gene symbols in red are up and green are down regulated. The color gradient of the gene symbols is
proportional to their relative expression levels.
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significantly higher numbers by 4 weeks. Histological
examination of the lungs at 4 weeks showed striking dif-
ferences in pathology between HN878- and CDC1551-
infected rabbits (Figure 6B and C). Higher numbers of
larger cellular granulomas were observed in the HN878-
infected rabbit lungs compared to the CDC1551-infected
animals. In addition, the cellular composition and distri-
bution in the granulomas was different: in the HN878-



Figure 5 Gene expression pattern and interaction in networks
involved in macrophage activation (A and B), fMLP-stimulation
(C and D) or PMN recruitment and activation (E and F) in the
lungs of Mtb-infected rabbits at 3 hours. (A) Interaction of
macrophage activation network genes in the HN878-infected rabbit
lungs. (B) Intensity plot of macrophage activation network genes in
the Mb-infected rabbit lungs. (C) Interaction among genes involved
in fMLP-stimulated network in the HN878-infected rabbit lungs.
(D) Intensity plot of genes involved in fMLP-stimulated network in
Mtb-infected rabbit lungs. (E) Interaction of PMN recruitment and
activation network genes in the HN878-infected rabbit lungs.
(F) Intensity plot of PMN recruitment and activation network genes
in the Mb-infected rabbit lungs. The legend for the gene symbols in
(A), (C) and (E) is the same as in Figure 4. Gene symbols in red are
up and green are down regulated. The color gradient of the gene
symbols is proportional to their relative expression levels. Solid lines
indicate direct and broken lines denote indirect interactions. For
(B), (D) and (F), the gene expression values were sorted in a
descending fashion for the HN878 dataset. The color scale in
(B), (D) and (F) ranges from +3 (red) to −3 (blue).
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infected rabbits, macrophages and lymphocytes were
intermixed while in CDC1551-infected rabbits the granu-
lomas were much more differentiated with a central area
of macrophages and well demarcated lymphocytic cuffs.
We next analyzed the expression of the same network

genes examined at 3 hours post-infection using a genome-
wide transcriptome of rabbit lungs infected for 4 weeks.
The selected networks included the host inflammatory
response, STAT1 regulation, PMN activation, fMLP stimu-
lation and macrophage activation (Figure 6D-G and
Additional file 8: Figure S2). Of the 284 SDEG in the in-
flammatory network at 3 hours, a subset of 164 (134 up;
30 down) and 67 (53 up; 14 down) genes were also differ-
entially expressed at 4 weeks in the lungs of HN878- or
CDC1551-infected rabbits, respectively (Additional file 8:
Figure S2). Moreover, 120 and 217 genes previously dif-
ferentially expressed, were not significantly expressed at
this time in HN878- or CDC1551-infected rabbit lungs,
respectively. Thus, although the inflammatory response
was generally dampened in both groups by 4 weeks of
infection, similar to the observations at 3 hours, a much
higher number of SDEG were upregulated in the HN878-
infected animals, while the majority of these SDEG
were not significantly expressed in the CDC1551-infected
rabbits.
At 3 hours, we observed an upregulation of 42 of the

43 SDEG involved in the STAT1 interaction network in
the lungs of HN878-, compared to only 23 in CDC1551-
infected rabbit lungs (Figure 4C and D). Consistent with
our findings at 3 hours, 32 of the 43 SDEG involved in
the STAT1 interaction network were upregulated in the
HN878-, compared to only 4 SDEG in the CDC1551-
infected rabbit lungs (Figure 6D). Thus, similar to the
inflammatory response network, the STAT1 interaction



Figure 6 Bacillary load, histology and expression pattern of selected network genes in Mtb-infected rabbit lungs at 4 weeks. (A) Total
lung bacillary load in Mtb HN878- or CDC1551-infected rabbits at 4 weeks post-infection. The values plotted are mean ± standard deviation for
3–5 animals per time point. (B) Hematoxylin and Eosin (H&E) stained lung sections of Mtb HN878-infected rabbits at 4 weeks post-infection.
(C) H&E stained lung sections of Mtb CDC1551-infected rabbits at 4 weeks post-infection. The scale bar (1 mm) is same for (B) and (C). (D-G)
Intensity plots of STAT1 activation (D), macrophage activation (E), fMLP-stimulation (F) and PMN recruitment and activation network genes in the
HN878- (HN) or CDC1551- (CDC) infected rabbit lungs at 4 weeks. For (D-G), the gene expression values were sorted in a descending fashion for
the HN878 dataset. The color scale ranges from +3 (red) to −3 (blue).
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network shows a conservation of the gene expression
pattern between 3 hours and 4 weeks. Relative to 3 hours,
over 50% of the SDEG in each of the networks involved
in the activation of macrophage, PMN and fMLP stimu-
lation were differentially expressed at 4 weeks, with
the majority upregulated only in the lungs of HN878-
infected rabbits (Figure 6E-G). In contrast, only about
20% of SDEG in each of these networks were expressed
in the CDC1551-infected rabbit lungs with the majority
down regulated. Taken together, compared to 3 hours,
the gene expression pattern shows a general dampening
in the activation of PMN, macrophage and, fMLP stimula-
tion networks at 4 weeks in both HN878- and CDC1551-
infected rabbit lungs. However, while most of the genes in
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these networks remain upregulated in the HN878-infected
rabbits, significant reductions in the number of genes and
expression levels were noted in the CDC1551-infected
animals.

Discussion
Using two different Mtb clinical isolates, which give rise
to progressive cavitary disease (HN878) versus spontan-
eous clearance of bacilli and establishment of LTBI
(CDC1551) in rabbit lungs, we show that at similar lung
bacillary burdens, a clear early (3 hours) difference in
leukocyte recruitment and activation was noted. The dif-
ferential leukocyte infiltration, including a significant dif-
ference in the accumulation of activated PMN, was
associated with striking differences in the activation of
gene networks involved in the host inflammatory re-
sponse, STAT1 regulation and PMN recruitment, as well
as in PMN and macrophage activation. Moreover, we
confirmed our hypothesis that the early host immune
response determines outcome following Mtb infection,
by comparing the differential early response in the lungs
to what is seen at 4 weeks of infection. Similar to 3
hours, we observed significantly increased induction of
inflammatory responses, activation of STAT1, PMN and
macrophages, and fMLP stimulation network gene ex-
pression profiles at 4 weeks in the lungs of HN878-
infected animals, compared to CDC1551-infected rabbit
lungs. Based on these findings, we suggest a model
for the host response during early Mtb infection in
the rabbit lungs that links specific patterns of macro-
phage activation in response to phagocytosis of the two
Mtb strains, with differential activation of the STAT1-
regulated inflammatory response (Figure 7). Accordingly,
phagocytosis of HN878 by alveolar macrophages resulted
in an early and robust expression of genes coding for pro-
inflammatory molecules, including TNF-α, IL-8, IL-15,
MCP-1 and CXCL10, that are associated with increased
extravasation and activation of PMN in the lungs [18-20].
In contrast, CDC1551 infection, which failed to induce the
expression of these genes, resulted in less recruitment and
reduced activation of PMN.
The differential gene expression profile in response to

infection with the two clinical Mtb isolates was noted
as early as 3 hours. Clearly, the factors that initiate
and regulate this differential response must have been
activated even earlier. Some of the earliest mediators of
inflammation induced in response to engaging macro-
phage receptors are the arachidonic acid (AA) metabo-
lites (20:4), induced within minutes and shown to peak
at 3 hours post LPS-stimulation of macrophages [21,22].
Aderem et al. showed that LPS-primed macrophages
demonstrate enhanced production of 20:4 upon phago-
cytosis of zymosan, releasing AA into the extracellu-
lar milieu at one hour post-exposure [23]. Similarly,
treatment of J774A.1 cells with AA or infection with
mycobacteria induces NFkB activation and surface ex-
pression of CD69 within one hour; p38 MAP kinase acti-
vation in these cells is noted by 3 hours. Activation of
NFkB and p38 MAP kinase is associated with increased
actin polymerization, phagosome maturation and a TNF-
α-mediated proinflammatory response [24,25]. Indeed,
elevated levels of leukotrienes, a group of proinflammatory
molecules derived from AA, have been found in the
bronchoalveolar lavage (BAL) fluids from patients with
active TB, and pleural macrophages isolated from the
lung exudates of active TB patients show a significant in-
crease in the LTB4 levels 4 hours after LPS stimulation
[26]. Moreover, LTB4 contributes to the elevated chemo-
taxis of PMN from the circulation to the infected lungs
[27,28]. Consistent with the results from these studies,
we noted in the HN878-infected rabbit lungs a signifi-
cant upregulation of PTGS2 (also known as COX2),
which encodes the prostaglandin synthase/cyclooxygenase
enzyme involved in AA metabolism and acute inflamma-
tion [29]. Moreover, expression of PTGER3, an enzyme
involved in prostaglandin metabolism, which mediates
an anti-inflammatory response [30], was upregulated in
CDC1551-infected lungs.
Increased recruitment of PMN to the site of infection is

expected to exacerbate the local inflammatory response.
For example, stimulation of human PMNs with LTB4 or
fMLP, a proinflammatory chemoattractant produced by
activated macrophages in response to Mtb and other ago-
nists, leads to neutrophil activation, increased cell adhe-
sion and improved phagocytic activity in these cells
[31,32]. In the present study we found upregulation of
genes that encode the fMLP receptors (FPR1 and FPR2) in
rabbit lungs as early as 3 hours after infection with
HN878. This observation is consistent with the profound
upregulation of macrophage and PMN activation network
genes. Such activation of mature human blood neutrophils
has been shown to be associated with an elevated tran-
scription of STAT1, as well as increased phosphorylation
of STAT1 protein [33]. Taken together, these observations
support our interpretation of the gene expression patterns
observed in the rabbit model of pulmonary TB. That is,
phagocytosis of selected Mtb strains can be associated
with early and robust macrophage activation, leading to a
PMN-associated inflammatory response that will differen-
tiate between phenotypically diverse Mtb strains. The dif-
ferential macrophage response in the rabbit lungs is
similar to the results from our in vitro infection studies
using mouse bone marrow-derived macrophages infected
with HN878 or CDC1551, where expression of inflamma-
tory genes was significantly upregulated at 6 hours in re-
sponse to HN878 infection while early immune activation
network (EIAN) genes were upregulated in response to
CDC1551 infection [34].



Figure 7 Schematic illustration showing the interaction(s) among components of the early innate immune response at the
transcriptional, cellular and organismal level during Mtb infection of rabbit lungs. Transcription profile refers to the microarray gene
expression data from HN878- or CDC1551-infected rabbit lungs. The arrows in red (HN878) denote unregulation and those in green (CDC1551)
indicate downregulation of pathway genes. Pathogenesis refers to the progression of infection into active disease (HN878) or containment of
infection and establishment of latency (CDC1551) in the rabbit lungs at 4 to 12 weeks post-infection.
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The role of PMN in the control of Mtb infection and
the pathogenesis of TB is not clearly understood. This is
in part due to the short life span of PMN (less than 24
hours) and to the dogma that macrophages, and not
PMNs, are the primary habitat of infecting bacilli during
chronic, pulmonary TB. More recently, studies using
PMN-depleted mice highlighted the importance of these
cells in the host response to Mtb infection [35-37]. In
mice, antibody-mediated neutralization of PMN exacer-
bated bacillary growth in the lung, spleen and liver [35].
In contrast, Mtb infection of genetically susceptible mice
has been shown to be associated with an increased
expression of genes involved in inflammation and neu-
trophil recruitment in the lungs. In these animals,
increased PMN recruitment to the peritoneal cavity was
noted as early as 60 minutes post-infection, resulting in
neutrophilia associated with compromise of the protect-
ive Th1 type immune response [38,39]. In our study, in-
fection with an Mtb strain that is not controlled was
associated with early accumulation (3 hours) of higher
numbers of PMN in the lungs of infected rabbits. Thus,
although our results implicate PMN in the progression
to active disease, it is not clear whether they drive the
differential progression of infection or whether they
are merely associated with differential macrophage re-
sponses. Recently, Berry et al. reported increased levels of
interferon-inducible gene transcripts, originated from
myeloid cells, including PMN, in the blood of active TB
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patients, relative to those in latently infected individuals
[40]. Taken together, these observations support our con-
clusion that during Mtb infection, increased inflamma-
tion with recruitment and activation of PMN is associated
with progression to active disease rather than control of
infection.
Clearly, very early events induced by the interactions

between the phagocyte and the pathogen can result in
radically different outcomes, suggesting that the initial
profile of macrophage differentiation will determine the
nature of both innate and acquired immune responses
[34,41,42]. The range of phagocyte differentiation in-
duced by various Mtb strains is a manifestation of the
plasticity of the cells and their ability to sense and re-
spond to different microbial agonists and mediators of
host immunity [43,44]. However, exactly how the early
inflammatory response subverts the development of a
protective immune response is not fully understood. It
has been shown that TNF-α is important for the
organization and maintenance of granulomas and the as-
sociated host response in animal models of Mtb infec-
tion [45-47]. In this study, we observed increased TNFA
and CCL2 levels in the lungs of rabbits infected with
HN878, relative to CDC1551, at 3 hours. However, pre-
vious studies in human and mouse monocytes/macro-
phages, as well as in mice, have shown that, compared
to HN878, infection with CDC1551 induces higher pro-
duction of inflammatory molecules, including TNF-α
and CCL-2 [14,48,49]. This discordance is most likely
due to the differential kinetics of macrophage activation
in vivo and invitro as well as inherent differences be-
tween the rabbit and mouse models. In the present
study, transcript levels in rabbit lungs were measured at
3 hours post-infection, whereas protein and transcript
levels of TNF-α and CCL-2 were determined at 7, 14,
21, 28 and 60 days in infected mice or 24, 48, 72 and 96
hours in Mtb-infected human PBMC, in other published
reports [14,48,49]. Importantly, increased levels of TNF-
α have been documented in the blood and pleural fluids
of active TB patients, compared to healthy contacts (la-
tent TB) [50,51]. Moreover, a positive correlation has
been observed between increased TNF-α levels and the
severity of clinical disease in active TB patients [51].
In our study, we noted a general dampening of differ-

entially regulated host immune/inflammatory response
network genes in the lungs of HN878- and CDC1551-
infected rabbits at 4 weeks, compared to 3 hours. How-
ever, the direction and pattern of expression of most of
the genes in the inflammation related innate immune re-
sponse networks were conserved between 3 hours and 4
weeks. In contrast to HN878 infection, the majority
of these network genes was not expressed or was
down regulated in the CDC1551-infected rabbit lungs at
both time points. This suggests that the early onset of
inflammation associated innate immune activation in
the HN878-infected rabbit lungs leads to exacerbated
lung pathology and bacterial growth. In contrast, damp-
ened inflammatory networks as early as 3 hours alle-
viates disease progression and facilitates control of
infection in the CDC1551-infected rabbit lungs. These
early changes in the regulation of host immune response,
including recruitment of neutrophils, drive subsequent
cellular events that culminate in the differential out-
come of infection between HN878 and CDC1551 in
rabbits. Consistently, compared to CDC1551, HN878-
infected rabbit lungs show progressively increasing in-
flammation, suboptimal activation of macrophages and
compromised protective Th1 responses from 4 to 12
weeks post-infection, at which time the animals have
established chronic cavitary disease [12,13]. Our re-
sults are supported by recent studies that showed a
prominent inflammation-associated neutrophil tran-
script profile specifically in the peripheral blood of ac-
tive TB patients, compared to individuals with LTBI.
Expression of these biomarkers of active TB was abro-
gated after successful antibiotic treatment and allevi-
ation of clinical disease [40].
In the present study, the increased recruitment of im-

mune cells, including PMNs, likely contributed to the el-
evated transcript levels of SDEG that we observed at 3
hours in the HN878-infected rabbit lungs. To fully
understand how early regulation of inflammation is asso-
ciated with the outcome of Mtb infection a detailed kin-
etic analysis of host immunity is required. By directly
comparing the evolution of the immune response in the
lungs of rabbits infected with HN878 versus CDC1551,
we can identify the immunological determinants of pro-
tection over the course of infection. Such comparative
studies will enable us to identify biomarkers that most
efficiently discriminate between establishment of active
disease and LTBI for use in predicting the outcome of
infection. Since biomarkers of response to infection and
treatment in humans need to be detectable in peripheral
blood, future studies in our rabbit model will require
identification of appropriate biomarkers in the circula-
tion that can discriminate different stages of lung infec-
tion and/or disease.

Conclusions
In this study, we describe the early (3 hours post-
infection) and more chronic (4 weeks) rabbit lung im-
mune response to infection with two clinical isolates of
Mtb that yield differential outcome over time. Based on
our observations, we propose a model where immune
activation as demonstrated by gene expression changes
in the lungs, as early as 3 hours post-infection, and
associated differential recruitment and activation of
inflammation-associated innate immune cells, such as
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PMN and macrophages, significantly influences the
overall outcome of Mtb infection in rabbits at later
time points.

Methods
Ethics statement
All rabbit procedures were performed in accordance
with Animal Welfare Act guidelines and approved by
the Institutional Animal Care and Use and Institutional
Biosafety Committees of UMDNJ.

Mycobacteria for infection
Mycobacterium tuberculosis (Mtb) HN878 and CDC1551
were grown in Middlebrook 7H9 (BD, Sparks, MD); in-
oculum for rabbit infections were prepared, as de-
scribed [52].

Aerosol infection of rabbits
Female New Zealand White rabbits (~2.5 kg; Millbrook
Farms, MA, USA) were exposed to HN878 or CDC1551
aerosols, as described [12]. Uninfected rabbits served as
controls. At 3 hrs and 4 weeks post-infection, rabbits
were sedated with intramuscular administration of Keta-
mine plus Xylazine and euthanized by intravenous injec-
tion of Euthasol. Lung and blood samples were collected
for gene expression analysis.

Enumeration of lung bacillary load
Portions of lung lobes (about 30% of the entire lung)
were homogenized in saline, serially diluted and plated
on 7H11-agar (BD, Sparks, MD), as described [52].
Plates were incubated at 37°C for 4 to 5 weeks; bacterial
CFU were counted and calculated for the entire lung.
Detection limit of this assay was < 25 CFU.

Rabbit lung histology
Five-micron sections of formalin-fixed, paraffin-embedded
lung tissues from Mtb-infected rabbits were stained with
hematoxylin and eosin (H&E). Leukocytes were enumer-
ated microscopically at 40x magnification. Four independ-
ent counts per animal, each of 4 random fields, (four
CDC1551- and seven HN878-infected rabbits) were used
for calculations.

Measurement of myeloperoxidase (MPO) activity
MPO activity was determined calorimetrically in the
lung homogenates, as described [15]. Color development
was read at 460 nm (OD460) at one-minute intervals for
10 minutes and MPO activity was expressed as total
MPO activity/minute/gram of protein. Total protein was
estimated using BCA Kit (Thermo Fisher Scientific,
Rockford, IL).
Isolation of total RNA from rabbit lungs
Portions of tissue were homogenized in TRIzol (Invitrogen,
CA, USA), extracted with bromo-chloropropane, and su-
pernatants were processed using NucleoSpin kit as per in-
structions (Macherey-Nagel, GmbH) to prepare total RNA,
as described [52]. RNA quantity/quality was estimated by
NanoDrop (NanoDrop Products, DE).

Microarray analysis of rabbit gene expression
Total lung RNA from each uninfected or Mtb-infected
rabbit was used for cDNA synthesis, as described [52].
For each infected class, cDNA from 4 infected animals
was hybridized separately with a single pool of cDNA
from 4 uninfected animals using a two-color rabbit
microarray (Agilent Technologies, Santa Clara, CA) fol-
lowing the manufacturer’s procedures. The expression
data sets for the 43,803 probes were collected from two
sets of experiments, HN878 versus uninfected and
CDC1551 versus uninfected. The data was background-
corrected and normalized using Bioconductor software
[53]. The microarray data is submitted to Gene Expres-
sion Omnibus (accession number: GSE49947).

Statistical analysis of microarray data
Microarray data were split into 3 classes: HN878-infected,
CDC551-infected, uninfected and used in a one-way
ANOVA test of the null hypothesis of equal mean of log-
transformed intensities among the 3 classes. ANOVA was
performed with variance stabilization to yield F-statistics/
p-values overall and for the 3 pair-wise comparisons
(lmFit, contrasts.fit, eBayes from Bioconductor limma
package). Permutation tests established with a 0.05
family-wise error rate (0.05 FWER) was used to identify
transcriptome-wide significantly differentially expressed
genes (SDEG). See Additional file 9 section for more de-
tails on methods.

Pathway enrichment analysis
Canonical pathways were obtained from Molecular
Signatures database (MolSigDB) and restricted to genes
present on the microarray; 961 pathways containing
from 15 to 500 genes were retained [54]. Primary
sources of pathways were Reactome (437 pathways),
Pathway Interaction Database (PID) (176 pathways),
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(167 pathways), and Biocarta (114 pathways) [55-57].
For each pathway, the p-value for a null hypothesis of
equal differential expression weight was calculated using
a one-sided, equal-variance t-test, comparing weights for
genes in the pathway to weights for the remaining genes.
Pathways biased towards small p-values were removed
from analysis; the 0.05 FWER thresholds for pathway en-
richment was 2x10–8.
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Gene interaction network analysis
The SDEG were loaded to Ingenuity Pathway Analysis
(IPA) software (Ingenuity Systems, Redwood City, CA)
for functional characterization, as described [52]. We
used the IPA knowledgebase to interrogate top biological
functions, gene interaction networks, and upstream
regulatory factors affected by SDEG. IPA uses a regula-
tion z-score algorithm to predict the activation/inhib-
ition state of transcriptional regulators and associated
networks, where a z-score of ≥ +2 or ≥ −2 predicts acti-
vation or inhibition, respectively.

Quantitative real time pcr analysis (qRT-PCR)
qRT-PCR was performed using total RNA, as described
[52]. Rabbit gene primers are listed in Additional file 10:
Table S1. The threshold cycle (Ct) for each amplified target
was calculated using MxPro software. The house-keeping
gene GAPDH was used for normalization. Fold-change in
gene expression was calculated by 2-ΔΔCt (where ΔCt is the
difference in Ct between target gene and GAPDH). Experi-
ments were repeated at least 3 times with RNA from 2–4
animals per group.

Additional files

Additional file 1: Table S2. Level of expression and p-value
significance of SDEG in the lungs of Mtb-infected rabbits at 3 hours.

Additional file 2: Table S3. Validation of microarray gene expression in
the lungs of Mtb-infected rabbits at 3 hours by qRT-PCR.

Additional file 3: Table S4. List of SDEG involved in inflammatory
response in Mtb-infected rabbit lungs at 3 hours.

Additional file 4: Table S5. qRT-PCR analysis of gene expression in the
blood of uninfected and HN878-infected rabbits at 3 hours.

Additional file 5: Table S6. List of top transcription regulator genes
differentially expressed in the lungs of Mtb-infected rabbits at 3 hours.

Additional file 6: Table S7. List of SDEG involved in the canonical
STAT1 mechanistic network in the lungs of Mtb-infected rabbits at
3 hours.

Additional file 7: Figure S1. Venn diagram showing distribution of the
SDEG among the selected networks in the lungs of Mtb-infected rabbits
at 3 hours.

Additional file 8: Figure S2. Expression of inflammatory response and
STAT1 activation network genes in Mtb-HN878- or CDC1551 infected-
rabbit lungs at 3 hours and 4 weeks.

Additional file 9: Methods. Updated annotation of rabbit gene probes
for microarray and Statistical analysis of microarray data.

Additional file 10: Table S1. List of oligonucleotide primers used for
qRT-PCR experiments.
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