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act in isolation, but rather in concert with cholinergic recep-
tors in other parts of prefrontal circuitry. This review urges 
an intensification of focus on the cellular mechanisms and 
plasticity of prefrontal attention circuitry. Disruptions in 
attention are one of the greatest contributing factors to dis-
ease burden in psychiatric and neurological disorders, and 
enhancing attention may require different approaches in the 
normal and disordered prefrontal cortex.

Keywords Nicotinic acetylcholine receptors · Attention · 
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Attention has been eloquently described as the ‘search-
light’ that focuses on relevant information in the midst 
of distraction in order to support goal-directed behavior 
[1]. In particular, it plays a pivotal role in mediating the 
executive functions of the prefrontal cortex [2, 3], a site 
of sensorimotor and emotional integration that is uniquely 
positioned to execute top-down control permissive to the 
orchestration of complex, flexible, and purposeful behav-
ior such as problem solving, planning, and decision mak-
ing [1, 3–5]. Given its intimate relationship to awareness, 
attention has also been qualified as the gateway to con-
sciousness [2, 3, 6, 7].

Acetylcholine has long been known to play a role in 
cognition [8–10]. Non-specific lesions of the cholinergic 
neurons of the basal forebrain first suggested a more spe-
cific involvement of acetylcholine in attention [11–16], and 
it subsequently became clear that cholinergic projections to 
the prefrontal cortex are especially important in this regard 
[17, 18]. The importance of cholinergic modulation of pre-
frontal cortex can be seen in the detrimental effects for 
attention of specific lesions to its cholinergic projections. 
These projections, as shown in the schematic in Fig. 1, 

Abstract Cholinergic modulation of prefrontal cortex 
is essential for attention. In essence, it focuses the mind 
on relevant, transient stimuli in support of goal-directed 
behavior. The excitation of prefrontal layer vI neurons 
through nicotinic acetylcholine receptors optimizes local 
and top-down control of attention. Layer vI of prefrontal 
cortex is the origin of a dense feedback projection to the 
thalamus and is one of only a handful of brain regions that 
express the α5 nicotinic receptor subunit, encoded by the 
gene chrna5. This accessory nicotinic receptor subunit 
alters the properties of high-affinity nicotinic receptors in 
layer vI pyramidal neurons in both development and adult-
hood. Studies investigating the consequences of genetic 
deletion of α5, as well as other disruptions to nicotinic 
receptors, find attention deficits together with altered cho-
linergic excitation of layer vI neurons and aberrant neu-
ronal morphology. Nicotinic receptors in prefrontal layer 
vI neurons play an essential role in focusing attention 
under challenging circumstances. In this regard, they do not 
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include a dense cholinergic innervation from the basal fore-
brain, principally from the basal nucleus and parts of the 
diagonal band, but also from the magnocellular preoptic 
nucleus and substantia innominata [19–26]. Intrabasalis 
infusions of the cholinergic immunotoxin 192 IgG-saporin 
lead to the loss of cortical cholinergic afferents, reduced 
acetylcholine efflux in the prefrontal cortex, and significant 
impairments on attention tasks [27, 28]. Bilateral infusions 
of 192 IgG saporin in medial prefrontal cortex are equally 
detrimental and demonstrate that its deafferentation of 
cholinergic projections is sufficient to produce attentional 
impairments [17, 18, 29].

The importance of prefrontal cholinergic modulation 
was further suggested by microdialysis studies showing 
robust acetylcholine efflux within the prefrontal cortex 
during the performance of attention tasks [30–32], which 
reflects both attentional effort [33, 34] and behavioral con-
text [35]. Moreover, the development of choline-sensitive 
microelectrodes, which offer greater temporal resolution 
than microdialysis probes, has further revealed that ace-
tylcholine release in the prefrontal cortex increases rapidly 
and transiently—on the timescale of seconds to minutes—
during the performance of attention tasks [29] where, as we 
will emphasize in this review, it can exert profound effects 

on corticothalamic neurons via the nicotinic acetylcholine 
receptors [36–38].

Layer VI corticothalamic neurons of the prefrontal 
cortex play a central role in attention

Acetylcholine optimizes prefrontal cortical circuitry for 
top-down control [39–41]. Corticothalamic neurons, which 
constitute a large proportion of layer vI pyramidal cells 
[42], are uniquely positioned to exert these top-down influ-
ences and are robustly excited by acetylcholine [36]. These 
neurons integrate highly processed information from layer 
v pyramidal cells, from layer vI cortico-cortical neurons, 
and from direct thalamic inputs [42]. In turn, they exert 
powerful feedback influences on the thalamus [43–46]. 
while not all neurons in layer vI are corticothalamic, it is 
important to note that there are ten times more corticotha-
lamic feedback projections than there are thalamocortical 
afferents [47], such that cholinergic modulation of these 
neurons will exert important influences on the circuits of 
attention.

Layer vI corticothalamic neurons constitute the major 
source of excitatory afferents to the thalamus [48], where 
they affect both the inhibitory reticular thalamic neurons 
[49] and the excitatory thalamocortical projection neurons 
[50]. During the tonic firing of wakefulness, the overall 
effect of this corticothalamic feedback is to focus thalamic 
and thalamocortical excitation [51], in part by modulating 
the sensitivity of thalamic neurons to incoming sensory 
stimuli [48, 52–54]. Prefronto-thalamic connectivity is fur-
ther privileged in its modulation of attention due to its rela-
tionship with the midline and intralaminar thalamic nuclei 
that have long been implicated in awareness and attention 
[54–58].

The high percentage of layer vI neurons responding 
to acetylcholine [59] suggests that corticothalamic neu-
rons are not the exclusive population of neurons subject to 
cholinergic modulation. This point should be emphasized 
since recent work has shown that layer vI neurons as a 
class exert powerful gain control over all the other corti-
cal layers [60]. Cholinergic innervation is present in all 
layers of the prefrontal cortex [24, 26], but appears biased 
toward activation of the deepest layers [61]. Clear labe-
ling of cholinergic fibers is observed in the deep cortical 
layers [24, 26], as demonstrated with immunostaining for 
choline-acetyltransferase (ChAT), the enzyme that cata-
lyzes the synthesis of acetylcholine from acetyl-CoA and 
choline. Furthermore, anterograde labeling of ChAT posi-
tive cholinergic afferents from the basal forebrain indicate 
preferential projection to deep layers v/vI [62]. The apical 
dendrites from a large fraction of layer vI neurons extend 
all the way to the pial surface [63], where they may also 
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Fig. 1  a The medial prefrontal cortex shown in gray receives cho-
linergic innervation from the basal forebrain. Figure adapted from 
woolf [25] and Paxinos and Franklin [277] and is based on findings 
from Rye et al., Luiten et al., and Gaykema et al. [23, 160, 278]. The 
dashed line indicates the approximate location of the coronal sec-
tion shown below. b Coronal brain section showing the subregions 
of rodent medial prefrontal cortex (in gray). Cg cingulate cortex, DB 
diagonal band, IL infralimbic cortex, MS medial septal nucleus, NB 
nucleus basalis, PFC prefrontal cortex, PL prelimbic cortex
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be stimulated by cholinergic projections (and possibly also 
by cholinergic interneurons [64]) in superficial layers II/III 
[26, 64].

Nicotinic acetylcholine receptors and their modulation 
of prefrontal layer VI neurons

The neurotransmitter acetylcholine acts on two classes of 
receptors—the ionotropic nicotinic receptors, which are the 
main focus of this review, and the metabotropic muscarinic 
acetylcholine receptors, which are G-protein coupled. Nic-
otinic acetylcholine receptors are pentameric ligand-gated 
cation channels [65, 66], permeable to Na+, K+, and Ca2+ 
ions [65, 67]. Two families of subunits can contribute to 
the pentameric structure necessary for functional nicotinic 
receptors: the α subunits (α2–α10) and the β subunits (β2–
β4) [65, 66, 68]. They are arranged in a pinwheel around 
a central pore, assembled either as α-containing homomers 
or α/β heteromers. Nicotinic receptors are widely expressed 
in the central nervous system, and subunit composition dif-
fers from one region to the next [65, 66]. The subunit com-
position and stoichiometry of nicotinic receptors influence 

their functional properties, with important implications for 
nicotinic signaling [37, 69–72].

The most widely expressed nicotinic acetylcholine 
receptors in the brain are the α4β2-containing receptors 
(α4β2*) [65, 73–75], which are prominently expressed 
throughout cortex [76–79]. The homomeric α7 nicotinic 
receptors are also expressed in cortex, although only weak 
labeling has been documented in cortical layer vI [80]. 
Interestingly, while the α4, α5, α7, and β2 nicotinic recep-
tor subunits show similar expression patterns in rodent and 
primate brain [81], there are some species differences in the 
expression of nicotinic receptors with potential implica-
tions for cholinergic modulation of attention circuitry. For 
example, the α2 nicotinic subunit is only widely expressed 
in primate brain [81], although it is not enriched in layer 
vI.

The α4β2* receptors have high affinity for nicotinic 
agonists (including acetylcholine and nicotine) and desen-
sitize slowly, on the timescale of seconds [65, 82–84]. As 
illustrated in the schematic in Fig. 2, the α4β2* nicotinic 
receptors can assume different stoichiometries, includ-
ing (α4)2(β2)3 and (α4)3(β2)2. In the relatively rare brain 
regions that express the accessory α5 nicotinic subunit, 
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Fig. 2  Subunit composition and layout of nicotinic acetylcholine 
receptor subunits in layer vI of medial prefrontal cortex. a Schemat-
ics showing three possible compositions of α4β2* nicotinic receptors 
within layer vI neurons of medial prefrontal cortex. Figure adapted 
from McKay et al. [279]. b Photomicrograph of mouse medial pre-
frontal cortex immunostained for YFP-tagged nicotinic acetylcholine 

receptor α4 subunits, putatively expressed in α4β2*-containing cells 
as shown at lower resolution by Marks and colleagues [93]. white 
matter on the right and the medial pial surface is on the left; adapted 
from Alves et al. [92]. Scale bar 200 μm. c In situ hybridization 
showing a dense band of α5 nicotinic subunit mRNA expression in 
layer vI of the medial prefrontal cortex; adapted from wada et al. [86]
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such as layer vI of prefrontal cortex [86], these recep-
tors can also incorporate the accessory α5 subunit to form 
(α4)2(β2)2(α5) receptors (α4α5β2) [65, 66, 85–88]. The 
accessory α5 subunits cannot form functional channels by 
themselves, since they do not contribute to the acetylcho-
line binding site and thus require co-assembly with other 
α and β subunits [65, 79]. However, inclusion of α5 can 
alter α4β2* nicotinic receptor properties substantially [71, 
87, 88]: it can enhance receptor assembly and expression 
[87, 89], modulate receptor sensitivity to acetylcholine [37, 
65, 69, 88, 90, 91], increase Ca2+ permeability [88], and 
confer sensitivity to allosteric modulation by galanthamine 
[36, 88].

Immunohistochemistry for YFP-tagged nicotinic α4 
subunits in a knockin mouse suggests that high-affinity 
nicotinic receptors are densely expressed in layer vI of pre-
frontal cortex [92], where the accessory α5 subunit is also 
prominently expressed [86, 93–95]. Interestingly, while 
only one-fifth of all α4β2* nicotinic receptors in the brain 
are estimated to contain the α5 accessory subunit [65, 89, 
96], prefrontal layer vI nicotinic receptors appear to incor-
porate α5 to a disproportionately large extent [37]. Indeed, 
functional concentration–response analyses of prefrontal 
corticothalamic neurons from wT and α5 knockout mice 
(α5−/−) suggest that the vast majority of α4β2* nicotinic 
receptors of its layer vI neurons are affected by this subu-
nit [37]. As we will see, this unique expression pattern has 
ramifications for attentional signaling and behavior [37].

During the performance of attention tasks, brief tran-
sients of acetylcholine are released in medial prefrontal 
cortex [97, 98]. Population calcium imaging in slices of 
prefrontal cortex has demonstrated that nicotinic receptor 
stimulation by acetylcholine predominantly activates neu-
rons within the deep cortical layers v/vI [61]. At the cellu-
lar level, acetylcholine elicits robust excitatory responses in 
the layer vI corticothalamic neurons of the medial prefron-
tal cortex that appear to be directly mediated by stimulation 
of somatodendritic postsynaptic α4α5β2 nicotinic receptors 
[36, 37, 59]. Acetylcholine binding to the nicotinic receptor 
leads to rapid conformational changes that result in chan-
nel opening and the flow of Na+, K+, and Ca2+ cations 
through the pore [65, 66, 83]. Nicotinic receptors rectify 
at more depolarized membrane potential [99, 100], such 
that acetylcholine likely exerts more profound effects near 
the resting membrane potential, where the effect of nico-
tinic stimulation is excitatory and results in depolarization. 
when sufficiently large, this membrane depolarization can 
lead to the generation of action potentials. Acetylcholine 
depolarizes the vast majority of layer vI pyramidal cells in 
this way [36], but these excitatory nicotinic responses are 
completely eliminated in β2−/− mice [38, 59], which lack 
functional α4β2* nicotinic receptors, and are significantly 
reduced in α5−/− mice [59].

The nicotinic responses that result from the current car-
ried by the flow of Na+, K+, and Ca2+ ions through the 
nicotinic receptor pore can be examined electrophysiologi-
cally in voltage clamp (where the membrane potential can 
be held constant experimentally so as to allow the measure-
ment of the nicotinic current) or in current clamp (where 
the membrane potential is allowed to fluctuate and the 
injected current, or lack thereof, is held constant). Figure 3 
illustrates the robust excitatory effects of nicotinic stimu-
lation that were recorded in retrogradely labeled cortico-
thalamic neurons in slices of prefrontal cortex [36]. Since 
corticothalamic neurons can also be distinguished from 
cortico-cortical cells based on electrophysiological prop-
erties [101, 102], Kassam et al. [36] were further able to 
establish that nicotinic stimulation exerts more profound 
excitation of cortico-thalamic than cortico-cortical neurons 
of layer vI prefrontal cortex.

The excitatory nicotinic responses of layer vI pyramidal 
neurons are directly mediated by postsynaptic somatoden-
dritic receptors since currents are resistant to blockade of 
synaptic transmission by the Na+ channel antagonist tet-
rodotoxin and to pharmacological inhibition of ionotropic 
and metabotropic glutamate receptors [36]. Pharmacologi-
cally, these nicotinic currents are suppressed by the α4β2* 
competitive antagonist DHβe, insensitive to the α7 antago-
nist MLA and potentiated by the α5 allosteric modulator 
galanthamine [36, 88]. These findings are consistent with 
α4α5β2 nicotinic receptor involvement [36]. Most convinc-
ing, however, is the demonstration that nicotinic excita-
tion of layer vI pyramidal cells is substantially reduced in 
mice in which the α5 subunit has been genetically deleted 
(α5−/−) [37]. Together, these findings highlight that the rel-
atively rare α5 subunit plays an important role in mediating 
optimal cholinergic excitation of layer vI neurons of the 
prefrontal cortex, where it is densely expressed and incor-
porated into α4β2* nicotinic receptors.

Nicotinic receptors and attentional performance

At the behavioral level, the α5 subunit is required for nor-
mal attention performance under challenging conditions 
[37]. The five-choice serial reaction time task (5-CSRTT) 
is a commonly used attention task that involves sustained 
and divided attention [103]. Briefly, the animal is placed in 
an operant chamber, illustrated in Fig. 4. A light stimulus, 
whose duration can be varied to alter the difficulty of the 
attention task, is randomly flashed in one of five apertures. 
The animal is required to attend to, and subsequently accu-
rately recall, the location of this stimulus within a fixed 
time period. Attention performance is assessed by correct 
identification of the location of the stimulus by nose poke. 
This task measures various aspects of attentional control, 
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including accuracy (correct responses), omissions (lack of 
response, reflects inattentiveness), perseveration (repeated 
responses at the same location, reflects lack of flexibility), 
and premature responses (responding before the end of the 
inter-trial interval, reflects impulsivity). The α5−/− mice 
show deficits in accuracy on the 5-CSRTT when stimulus 
duration is brief, a condition that requires greater atten-
tional demand, but perform normally under baseline train-
ing conditions, when stimulus duration is longer. Inter-
estingly, equivalent deficits in attention performance in 
humans are highly disruptive to cognitive function [104–
107]. Mice lacking the β2 subunit (β2−/−) also show sig-
nificant impairments on the 5-CSRTT, and these deficits 

can be rescued by lentiviral vector-mediated re-expression 
of β2-containing nicotinic receptors in the prefrontal cor-
tex [38]. The 5-CSRTT studies in α5−/− and β2−/− mice 
employed different training and testing approaches, which 
may explain subtle differences in the nature of the attention 
deficit observed [37, 38].

Compensatory plasticity of cholinergic responses 
in prefrontal layer VI neurons

The question arises whether the differences in attention 
performance observed in α5−/− mice result completely 

Fig. 3  Acetylcholine (ACh) 
excites labeled corticothalamic 
neurons in layer vI of medial 
prefrontal cortex. a Retrograde 
labeling of corticothalamic neu-
rons through in vivo stereotaxic 
surgery to inject rhodamine 
microspheres into the medial 
dorsal thalamus. b Prominent 
retrograde labeling of layer vI 
neurons in a coronal prefrontal 
brain slice. The asterisk marks 
the location of a patch pipette 
for electrophysiologcal record-
ings. Scale bar 240 μm. Figure 
adapted from Kassam et al. 
[36]. c A high-magnification 
view of a labeled pyramidal 
cell body. Scale bar 20 μm. 
Figure adapted from Kassam 
et al. [36]. d Schematic show-
ing the closed and open states 
of the nicotinic acetylcholine 
receptor. e A retrograde-labeled 
corticothalamic neuron in layer 
vI of medial prefrontal cortex 
responds to acetylcholine in (1) 
current clamp and (2) voltage 
clamp. Figure adapted from 
Kassam et al. [36]
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from the impaired nicotinic stimulation of α4α5β2-
containing nicotinic receptors within corticothalamic 
circuits of adult prefrontal cortex or whether the loss of 
this nicotinic stimulation leads to functional or structural 
alterations of attention circuitry. It is conceivable that plas-
ticity in the cholinergic system might ameliorate attention 
deficits that might otherwise be more severe; for example, 
allowing α5−/− mice to perform at near-normal levels of 
accuracy when longer stimulus durations are used in the 
5-CSRTT [37].

we have observed that cholinergic excitation of the layer 
vI pyramidal cells primarily involves nicotinic receptors 
in wild-type mice [59]; however, genetic deletion of the 
nicotinic α5 or β2 subunits (α5−/− and β2−/−, respectively) 
leads to the compensatory upregulation of muscarinic ace-
tylcholine receptor excitation [59]. These G-protein cou-
pled receptors couple to second messenger cascades and 
exert slower excitatory actions, significantly changing the 
mechanisms and timing of the cholinergic response in these 
layer vI neurons [59]. A schematic of this compensatory 
plasticity is shown in Fig. 5; it appears to affect neurons 
from β2−/− mice to a greater degree than those from α5−/− 
mice [59]. This unusual plasticity of layer vI cholinergic 
responsiveness indicates that the attention impairments 
associated with disruption of nicotinic signaling are more 
complex than originally anticipated. It is unclear at what 
stage of maturation this plasticity occurs and whether it can 
be reversed given sufficient time after adult rescue of the 
missing nicotinic receptor subunits [38].

Nicotinic receptor α5 subunit and morphological 
maturation of prefrontal layer VI neurons

The maturation of executive function and attention requires 
the normal development of prefrontal cortex [108–110], 
and developmental lesions of the cholinergic system dis-
rupt neuronal morphology and cortical circuitry [111–114]. 
Cortical nicotinic acetylcholine receptors play an important 
role in the development of attention circuitry [36, 63, 115], 
and aberrations in cortical nicotinic binding are reported 
to occur in many neurodevelopmental disorders, including 
autism [116, 117], epilepsy [118], and schizophrenia [119, 
120].

Cholinergic innervation of the prefrontal cortex is well 
developed by the third week of postnatal life in rodents 
[121, 122], a time period equivalent to the perinatal period 
in humans [123, 124]. Dense ChAT immunostaining can 
be seen in the frontal cortex at this time [122], and high 
levels of α4β2* nicotinic binding are observed in prefron-
tal layer vI [125]. Furthermore, peak mRNA levels for the 
α5 subunit are seen in layer vI during the first 2–3 weeks 
of postnatal development [95]. By contrast, cortical mRNA 
levels for the α4 and β2 subunits show a somewhat differ-
ent pattern with a peak at birth and a slight decline before 
maintaining relatively constant expression across postnatal 
development [126, 127].

Developmental differences in nicotinic excitation and 
dendritic morphology coincide temporally with changes in 
α5 expression. The excitatory nicotinic currents of layer vI 

Fig. 4  Under challenging 
conditions, mice lacking the 
nicotinic α5 subunit (α5−/−) 
respond with decreased accu-
racy relative to wild-type (wT) 
mice in the 5-choice serial 
reaction time task (5-CSRTT). 
a Schematic of the operant 
chamber for the 5-CSRTT. b 
Four typical responses of mice 
performing the 5-CSRTT. 
From left to right: the correct 
response, the incorrect response, 
an omission, and a premature 
response. Figure adapted from 
Dalley et al. [280]. c Nicotinic 
receptor α5−/− mice perform 
significantly worse than wild-
type controls in the 5-CSRTT 
when stimulus duration is brief. 
Figure adapted from Bailey 
et al. [37]
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neurons exhibit a developmental profile, peaking within the 
first postnatal month [36]. Nicotinic stimulation can influ-
ence neuronal morphology and spur neurite retraction [128, 
129], and in the first morphological analysis of these cells, 
Bailey et al. [63] showed that key developmental changes 
in neuronal complexity appear to be initiated within this 
critical time period. Specifically, there appears to be a 
developmental retraction of the apical dendrites of layer vI 
prefrontal cortex: whereas almost all the apical dendrites 
of layer vI pyramidal neurons extend to the pial surface in 
young mice at postnatal week 3, half of them terminate in 
the mid-layers by adulthood [63]. As illustrated in Fig. 6, 
these maturational changes in the dendritic morphology of 
layer vI neurons are absent in the α5−/− mice, without any 
further differences in overall cortical morphology [63]. Fur-
thermore, layer vI neurons of α5−/− mice show negligible 

developmental changes in nicotinic excitation [63]. Thus, 
the α5 subunit appears to be essential for the normal matu-
ration of corticothalamic circuitry and drives developmen-
tal differences in layer vI excitation and morphology.

In summary, there are extensive differences between 
wT and α5−/− mice in development and adulthood. These 
differences are relevant to the deficits in attention perfor-
mance seen in α5−/− mice in adulthood and are summa-
rized in Table 1.

Sex differences in nicotinic excitation of layer VI 
neurons during postnatal development

Interestingly, there are also developmental sex differences 
in nicotinic excitation [92]. Prefrontal layer vI nicotinic 

Fig. 5  Plasticity between 
nicotinic and muscarinic acetyl-
choline (ACh) receptors in layer 
vI neurons of medial prefrontal 
cortex. Typical responses in 
layer vI pyramidal neurons 
are highly driven by nicotinic 
receptors, whereas muscarinic 
effects are less prominent. In 
knockout mice with decreased 
nicotinic receptor function, 
muscarinic responses are 
enhanced. This compensatory 
upregulation in muscarinic 
receptor function is apparent in 
α5−/− mice and very pro-
nounced in β2−/− mice. Figure 
summarizing results from Tian 
et al. [59]
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currents show a similar developmental profile in males and 
females, with peak nicotinic excitation achieved around the 
3rd week of postnatal life and declining by the 5th week. 
However, within the 1st postnatal month, nicotinic currents 

are larger and observed in a greater proportion of cells in 
males than in females. It is not known whether there are 
any sex differences in α5 expression or function, although 
it appears that a similar percentage of layer vI neurons 
express α4 nAChRs in developing male and female mice 
[92]. In fact, this sex difference in nicotinic excitation of 
layer vI neurons during postnatal development may arise 
from differences in cortical neurosteroid levels between 
males and females. The sex steroid progesterone, for exam-
ple, can directly suppress nicotinic currents through nega-
tive allosteric modulation of α4β2* nAChRs [130, 131]. 
The pre-pubertal rodent brain expresses all the enzymes 
necessary for the de novo synthesis of progesterone from 
cholesterol [132, 133], and the rate-limiting enzyme in this 
pathway shows a trend toward greater cortical expression 
in females than males at this stage of development [132]. 
Furthermore, evidence suggests that estrogenic steroid hor-
mones may directly interact with the nicotinic receptor to 
potentiate excitatory ACh responses [134]. Developmen-
tal sex differences in the maturation of attention circuitry 
may help account for vulnerability to attention deficit dis-
orders, which are twice as prevalent in males than females 
[135–137].

Additional mechanisms of cholinergic modulation 
of prefrontal cortex

Although nicotinic receptors located on pyramidal neurons 
in layer vI of the medial prefrontal cortex play a critical 
role in mediating attentional processes, they do not act in 

1

2/3

5

6

Pial surface

White matter α5-/-WT

Fig. 6  The morphology of layer vI neurons in medial prefrontal 
cortex differs between wild-type and α5−/− mice. In adult wild-type 
mice, there is a roughly equal distribution of layer vI pyramidal neu-
rons that have long apical dendrites that terminate at the pial surface 
and those that have short apical dendrites that terminate within the 
mid-layers of the medial prefrontal cortex. In contrast, layer vI neu-
rons of α5−/− mice show a preponderance of neurons with long api-
cal dendrites. In this sense, it could be said the layer vI neurons of 
α5−/− mice retain a developmental phenotype in the pattern of their 
apical dendritic morphology. In young mice of both genotypes, layer 
vI neurons have only long apical dendrites. Figure adapted from Bai-
ley et al. [63]. Of note, these morphological changes can be recapitu-
lated in wild-type mice by chronic in vivo nicotine treatment during 
development [281], likely mediated through desensitization of nico-
tinic receptors [281]

Table 1  Categories of differences between wT and α5−/− mice

Data are shown as mean ± SeM (where appropriate)

* Indicates a statistically significant difference from wT with P < 0.05

** Indicates a statistically significant change from baseline with P < 0.05

effects wT α5−/−

Neuropharmacology in layer vI pyramidal cells [37, 59, 63]

 ACh-elicited nicotinic receptor currents (1 mM) 40 ± 5 pA 14 ± 1 pA*

 Nicotine-elicited nicotinic receptor currents (300 nM) 16 ± 2 pA 6 ± 1 pA*

 Desensitization (% decrease) of ACh response after nicotine 36 ± 4 % 73 ± 4 %*

 ACh-elicited muscarinic depolarization from rest 2.9 ± 0.5 mv 6.5 ± 1.3 mv*

 ACh-elicited muscarinic increase in spiking frequency in excited state 309 ± 23 % 462 ± 65 %*

 Developmental changes in ACh-induced currents Peak in young mice No change*

Dendritic morphology of layer vI pyramidal cells [63]

 Young mice: % apical dendrites extending to the pial surface 82 % 92 %

 Adult mice: % apical dendrites extending to the pial surface 45 % 92 %*

Attention behavior [37]

 Performance accuracy on non-demanding attention tasks 98 ± 1 % 97 ± 1 %

 Performance accuracy on demanding attention tasks 63 ± 3 % 54 ± 3 %*

 Systemic nicotine changes attentional accuracy on demanding tasks −5 ± 1 %** −1 ± 4 %
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isolation. There are cholinergic receptors on other pre-
frontal neurons and on neurons in other brain regions that 
also contribute to attentional processing in prefrontal cor-
tex. Relevant cholinergic receptors within prefrontal cortex 
itself include those on layer v neurons, on the terminals of 
thalamocortical projections, monoaminergic projections, 
and on cortical interneurons.

Acetylcholine exerts layer-specific effects in the pre-
frontal cortex [61], and although nicotinic stimulation 
exerts many effects across the prefrontal cortical column, 
it appears to enhance preferentially deep layer activation 
[61]. An elegant optogenetic study by Olsen et al. [60] has 
recently demonstrated that in the visual cortex, activation 
of layer vI cells exerts powerful gain control by means 
of feedback inhibition of the cortical column. It is tempt-
ing to speculate that preferential activation of the deep 
layers of prefrontal cortex by acetylcholine facilitates 
such information processing. As we have seen, layer vI 
pyramidal neurons show a robust excitatory response to 
acetylcholine mediated by postsynaptic somatodendritic 
nicotinic receptors [36, 37]. In contrast to layer vI, the 
layer v pyramidal neurons of the prefrontal cortex are 
predominantly subject to muscarinic modulation [138], 
although a rapid α7-mediated nicotinic response has been 
documented in the prefrontal cortex of juvenile mice [61]. 
Importantly in this layer, α4β2*-containing nicotinic 
receptors on thalamocortical terminals strongly facilitate 
thalamic excitation of layer v pyramidal neurons [139–
141], an indirect effect that translates into a large increase 
in the frequency of rapid, glutamatergic excitatory post-
synaptic currents. Of note, a positive feedback relation-
ship has been demonstrated between nicotinic-elicited 
prefrontal glutamatergic release and the release of ace-
tylcholine itself from cholinergic terminals in prefrontal 
cortex [97, 98, 142]. Nicotinic receptors have also been 
implicated in the modulation of monoamine release in the 
prefrontal cortex [143–145].

Nicotinic modulation of prefrontal GABAergic 
interneurons also likely contributes to attentional process-
ing. Although α4β2*- and α7-containing nicotinic recep-
tors excite only limited subpopulations of interneurons in 
the cerebral cortex [146, 147], many layer-specific effects 
have been documented. In layer vI, fast-spiking interneu-
rons are excited indirectly by nicotinic stimulation [36], 
presumably due to innervation by corticothalamic axon 
collaterals [101]. In layer v, stimulation of nicotinic recep-
tors on GABAergic interneurons increases the frequency 
of inhibitory postsynaptic currents on pyramidal neurons 
[148, 149], promotes intracolumnar inhibition [150], and 
modulates spike timing-dependent synaptic plasticity 
[149]. Most pyramidal neurons in layer II/III do not con-
tain nicotinic receptors, nor do they receive glutamatergic 
inputs subject to nicotinic modulation ([61], but see [151, 

152]). Instead, nicotinic receptors are found on interneu-
rons that exert feedforward inhibition onto layer II/III 
pyramidal cells [61]. Nicotinic stimulation of the super-
ficial layer I interneurons enhances synchronous activity 
of inhibitory cortical networks in superficial cortex [153, 
154].

Nicotinic receptor and prefrontal attention circuitry 
in health and disease

The prefrontal cortex is a critical node in widespread and 
dynamic brain networks that sustain higher cognitive func-
tion in health and that perpetuate executive dysfunction in 
psychiatric illness [155, 156]. The cholinergic modulation 
of prefrontal cortex is especially powerful in its ability to 
subsequently influence downstream cortical and subcor-
tical networks [4, 157, 158], as well as being uniquely 
positioned to exert feedback control on neuromodulatory 
centers [159], including the cholinergic nuclei [160, 161]. 
Neuroimaging studies have revealed that the prefrontal 
cortex is consistently activated on attention tasks, often 
in conjunction with the parietal cortex [162–165], which 
is recruited by the prefrontal cortex under conditions of 
increased attentional demand [157].

A substantial body of work addresses the effects of 
acetylcholine on attention by manipulating endogenous 
levels of acetylcholine and by pharmacologically or 
genetically altering nicotinic acetylcholine receptors. 
Indeed, many genetic and pharmacological studies using 
both animal models and human subjects have found that 
nicotinic acetylcholine receptors are of particular impor-
tance for attention, as summarized in Table 2. Knockout 
mouse strains for the α5, β2, and α7 nicotinic receptor 
subunits have all been found to display impaired atten-
tion performance on the 5-CSRTT [37, 38, 166, 167], 
and human subjects expressing genetic variations in the 
α5, α4, or β2 genes are associated with increased risk 
for nicotine dependence [168–174], which may in part 
develop as a result of attention deficits that promote early 
experimentation with drugs and alcohol [168, 170, 172]. 
Pharmacologically, various nicotinic agonists have been 
found to improve attention performance in animal studies 
[175–180], whereas nicotinic antagonists appear to dis-
rupt attention [178, 181]. However, it is important to note 
that the effects of nicotine may depend on the history of 
nicotine exposure [182] and on strain/species differences 
[37, 183].

The agonist nicotine is an interesting example since it is 
selective for nicotinic receptors and has been used in a large 
number of animal and human studies. Overall, the effects 
of nicotine in humans are far more complex and contro-
versial, with inconsistent effects on attention performance 
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Table 2  Nicotinic receptor effects on attention

Manipulation Species Task effects on attention References

Genetic studies

α5 subunit KO Mice 5-CSRTT ↓ [37]

β2 subunit KO Mice 5-CSRTT ↓ [38]

α7 subunit KO Mice 5-CSRTT ↓ [166, 167,  234]

Mice 5-CSRTT – [38]

Human polymorphisms (arrow indicates effect of the risk allele)

α5 subunit Humans Selective and sustained attention 
(CPT)

↓ [168]

n-back/CPT ↓ [235]

α4 subunit Humans ADHD inattentive symptoms ↓ [236]

Cued visual search task ↓ [237]

Selective and sustained attention 
(CPT)

↓ [168]

Multiple object tracking and 
visual search

↓ [238]

β2 subunit Humans Selective attention (CPT) ↓ [168]

α7 subunit Humans Sustained attention (CPT) ↑ in smokers
↓ in nonsmokers

[168]

Lesion studies

Basal forebrain lesions Rats 5-CSRTT ↓ [13, 176, 239, 240]

Nucleus basalis of Meynert 
lesions

Rats 5-CSRTT ↓ [28, 31, 32]

mPFC lesions Rats 5-CSRTT ↓ [241, 242]

mPFC lesions Rats Attentional set-shifting ↓ [243]

Lesions of PFC cholinergic 
fibers

Rats 5-CSRTT ↓ [17]

Lesions of PFC cholinergic 
fibers

Rats SAT/dSAT ↓ [18]

Pharmacological studies

 Nicotine (agonist of nicotinic receptors, but act as an antagonist by desensitization)

 Nicotine Monkeys Covert orienting ↑ [244]

 Nicotine Monkeys DMTS-D ↑ [175]

 Nicotine Rats 5-CSRTT ↑ [245]

 Nicotine Rats 5-CSRTT – [246]

 Nicotine Rats Stimulus detection ↑ [178, 247–249]

 Nicotine Rats 5-CSRTT ↑ [180, 182, 250–253]

 Nicotine Rats (two strains) 5-CSRTT ↑ in Sprague–Dawley
–in Lister

[177]

 Nicotine Rats 5-CSRTT –(acute), ↑ (chronic) [182]

 Nicotine (local to HIP or 
mPFC)

Rats 5-CSRTT –(HIP), ↑ (mPFC) [180]

 Nicotine Mice 5-CSRTT ↑ [234]

 Nicotine (local to mPFC) Rats 3-CSRTT ↑ (mPFC) [141]

 Nicotine Rats 5-CSRTT ↑ (acute and chronic) [254]

 Nicotine Mice (three strains) 5-CSRTT –(acute)
↑ (chronic) in all strains

[183]

 Nicotine Mice 5-CSRTT ↓ [37]

 Nicotine Rats SAT ↓ [98]

 Nicotine Rats Attention set-shifting ↑ (acute and sub-chronic) [255]

 Nicotine Mice 5-CSRTT ↑ [256]

 Nicotine (tablets) Humans Rapid info processing ↑ [186]
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Table 2  continued

Manipulation Species Task effects on attention References

 Nicotine (gum) Humans Two-letter/digit recall ↓ [191, 193]

 Nicotine (subcutaneous) Humans Reaction time – [189]

 Nicotine (subcutaneous) Humans Digit recall ↓ [192]

 Nicotine (patch) Humans POMS/CPT/Digit recall ↑ [188]

 Nicotine (gum) Humans Flight simulator ↑ [187]

 Nicotine (patch) Humans Digit recall – [257]

 Nicotine (patch) Humans Covert orienting – [258]

 Nicotine (subcutaneous) Humans N-back ↑ [162]

 Nicotine (gum) Humans ANT – [190]

 Nicotine (gum) Humans Cue target detection ↑ [259]

 Nicotine (gum) Humans Discrimination (Posner-type) – [260]

 Nicotine (patch) Humans Stroop – [261]

 Nicotine (gum) Humans Discrimination (Posner-type) ↑ [262, 263]

 Nicotine (patch) Humans Multiple tasks ↑ [264]

 Nicotine (gum) Humans RvIP ↑ [265]

 Nicotine (patch) Humans Stroop/ANT ↑ (Stroop), ↓ (ANT) [266]

 Nicotine (intranasal) Humans CPT ↑ [267]

 Agonists of nicotinic receptors                   

 ABT-418/ABT-089 Rats DMTS-D ↑ [175, 176]

 SIB-1533A Rats 5-CSRTT – [250]

 Dizocilpine then SIB-1533A Rats 5-CSRTT ↓ (diz), attenuation with SIB [268]

 SIB-1533A Monkeys DMTS-D ↑ [268]

 epibatidine/ABT-
418/isoarecolone/AR-R 
17779

Rats 5-CSRTT ↑ (epi, ABT, iso), –(AR-R) [180]

 ABT-594/ABT-582941 Monkeys DMTS-D ↑ (ABT-594, ABT-582941) [269]

 R3487/galanthamine Rats Signal detection ↑ (R3487), –(gal) [270]

 S 38232 Rats SAT/dSAT ↑ [98]

 ABT-594 Rats 5-CSRTT ↑ [271]

 Dizocilpine/scopolamine then 
sazetidine-A

Rats Signal detection ↓ (diz, sco), attenuation with 
saz

[179]

 ABT-418 Mouse 5-CSRTT ↑ [256]

 PNU 282987 Mouse 5-CSRTT – [256]

Antagonists of nicotinic receptors

 Mecamylamine Rats 5-CSRTT ↓ [272]

 Mecamylamine/hexametho-
nium

Rats 5-CSRTT ↓ (mec), –(hex) [273]

 Mecamylamine Rats Signal detection ↓ [178, 248]

 Mecamylamine Mice 5-CSRTT ↓ (mec) in three strains [183]

 Mecamylamine Humans Digit vigilance, RvIP –(mec) [274]

Acetylcholinesterase inhibitors

 Physostigmine Rats 5-CSRTT – [272]

 Donepezil Humans Flight simulator ↑ [275]

 Donepezil Humans Anti-cueing ↑ (voluntary attention only) [276]

Acetylcholine reuptake blockers

 Hemicholinium Rats 5-CSRTT ↓ [13]
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[184, 185]. while nicotine has also been shown to improve 
attention in humans [186–188], this is not always the case 
[189–193]. evidence suggests that nicotine may have dif-
ferential effects in human smoker and non-smoker popula-
tions [185, 194–196], and in patients with attention deficits 
[197, 198].

At the cellular level, nicotinic receptors are subject 
to desensitization; that is, they can become temporarily 
inactive in the continued presence of agonist, leading to a 
reduction in response [83, 84]. Nicotine, at levels normally 
seen in the blood of smokers (~300 nM) [199–201], can 
have such an effect on α4β2* receptors [36, 37], as illus-
trated in Fig. 7. Interestingly, Bailey et al. [37] reported that 
the α5 subunit normally protects against nicotine-induced 
desensitization, since layer vI neurons from wT mice 
show half as much desensitization as those of α5−/− mice. 
The low-affinity α7* nicotinic acetylcholine receptors, on 
the other hand, do not appear to desensitize at these con-
centrations [202].

Deficits in attention have been reported in normal 
human aging [203] as well as a multitude of neurologi-
cal and psychiatric disorders, such as Alzheimer’s disease 
and schizophrenia [204–207]. Decreases in prefrontal 
nicotinic receptor binding are observed in patients suffer-
ing from mild cognitive impairment [208, 209] as well as 
Alzheimer’s disease [210–215], and schizophrenia has 
been associated both with α7 subunit polymorphisms and 
expression changes [216, 217], as well as a with a higher 
incidence of the noncoding α5 nicotinic subunit polymor-
phism [218, 219]. what is more, nicotinic agonists of the 
α4β2* and α7 nicotinic receptors have been proposed as 
potential therapeutics for schizophrenia [220], Alzheimer’s 
disease [221–224], and attention deficit hyperactivity disor-
der [225–229].

In conclusion

Layer vI nicotinic receptors are integral components of 
prefrontal attention circuitry in development and adult-
hood. Despite recent advances, there remains much to be 
understood about their effects on the maturation of the 
prefrontal cortex and the modulation of its neurons and 
networks. Fundamental questions about the regulation of 
nicotinic receptors in neurons of the living brain remain 
unanswered. An apparently large reserve of nicotinic recep-
tors within layer vI prefrontal neurons [63, 92], for exam-
ple, suggests the potential for targeted upregulation to the 
membrane [230, 231]. It is interesting to note that nicotinic 
receptor trafficking abnormalities have been documented 
in psychiatric illness [232]. The issue of physiological and 
structural plasticity [59, 63] further suggests that the brain 
may be fundamentally different in certain conditions, and 
the best treatments may not be those that would improve 
the performance of the normal brain. In this regard, it is 
essential for research to examine the realities of prefrontal 
attention circuitry in different conditions associated with 
attention deficits. These issues are all the more important to 
resolve given that nicotinic receptors in layer vI of prefron-
tal cortex are positioned to be potential drug targets in the 
treatment of the attention deficits associated with psychiat-
ric and neurological diseases [233].
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Fig. 7  A concentration of 
nicotine similar to that seen in 
the blood of smokers markedly 
reduces subsequent nicotinic 
receptor-mediated responses 
to acetylcholine (ACh). a 
Schematic of the acetylcholine 
response, nicotine response, 
and acetylcholine response fol-
lowing receptor desensitization 
by nicotine. b Representative 
whole-cell recordings of a layer 
vI pyramidal neurons showing: 
(1) an initial response to ACh, 
(2) response to nicotine, and 
(3) response to ACh following 
desensitization by nicotine. 
Figure adapted from Bailey 
et al. [37]
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