
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2009, Article ID 930625, 11 pages
doi:10.1155/2009/930625

Research Article

Incorporating the Conditional Speech Presence
Probability inMulti-ChannelWiener Filter Based
Noise Reduction in Hearing Aids

KimNgo (EURASIPMember),1 Ann Spriet,1, 2 Marc Moonen (EURASIPMember),1

JanWouters,2 and Søren Holdt Jensen (EURASIPMember)3

1Department of Electrical Engineering, Katholieke Universiteit Leuven, ESAT-SCD, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
2Division of Experimental Otorhinolaryngology, Katholieke Universiteit Leuven, ExpORL, O.& N2, Herestraat 49/721,
B-3000 Leuven, Belgium

3Department of Electronic Systems, Aalborg University, Niels Jernes Vej 12, DK-9220 Aalborg, Denmark

Correspondence should be addressed to Kim Ngo, kim.ngo@esat.kuleuven.be

Received 15 December 2008; Revised 30 March 2009; Accepted 2 June 2009

Recommended by Walter Kellermann

A multi-channel noise reduction technique is presented based on a Speech Distortion-Weighted Multi-channel Wiener Filter
(SDW-MWF) approach that incorporates the conditional Speech Presence Probability (SPP). A traditional SDW-MWF uses
a fixed parameter to a trade-off between noise reduction and speech distortion without taking speech presence into account.
Consequently, the improvement in noise reduction comes at the cost of a higher speech distortion since the speech dominant
segments and the noise dominant segments are weighted equally. Incorporating the conditional SPP in SDW-MWF allows to
exploit the fact that speech may not be present at all frequencies and at all times, while the noise can indeed be continuously
present. In speech dominant segments it is then desirable to have less noise reduction to avoid speech distortion, while in noise
dominant segments it is desirable to have as much noise reduction as possible. Experimental results with hearing aid scenarios
demonstrate that the proposed SDW-MWF incorporating the conditional SPP improves the signal-to-noise ratio compared to a
traditional SDW-MWF.
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1. Introduction

Background noise (multiple speakers, traffic, etc.) is a
significant problem for hearing aid users and is especially
damaging to speech intelligibility. Hearing-impaired people
have more difficulty understanding speech in noise and
in general need a higher signal-to-noiseratio (SNR) than
people with normal hearing to communicate effectively [1].
To overcome this problem both single-channel and multi-
channel noise reduction algorithms have been proposed. The
objective of these noise reduction algorithms is to maximally
reduce the noise while minimizing speech distortion.

One of the first proposed single-channel noise reduction
algorithms is spectral subtraction [2], which is based on
the assumption that the noise is additive, and the clean
speech spectrum can be obtained by subtracting an estimate

of the noise spectrum from the noisy speech spectrum.
The noise spectrum is updated during periods where the
speech is absent, as detected by a Voice Activity Detection
(VAD). Another well-known single-channel noise reduction
technique is the Ephraim and Malah noise suppressor [3,
4], which estimates the amplitude of the clean speech
spectrum in the spectral or in the log-spectral domain
based on a Minimum Mean Square Error (MMSE) criterion.
Common for these techniques are usually noticeable artifacts
known as musical noise [5] mainly caused by the short-
time spectral attenuation, the nonlinear filtering and, an
inaccurate estimate of the noise characteristic. A limitation
of single-channel noise reduction is that only differences in
temporal and spectral signal characteristics can be exploited.
In a multiple speaker scenario also known as the cocktail
party problems the speech and the noise considerably
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overlap in time and frequency. This makes it difficult for
single-channel noise reduction schemes to suppress the
noise without reducing speech intelligibility and introducing
speech distortion or musical noise.

However, in most scenarios, the desired speaker and the
disturbing noise sources are physically located at different
positions. Multi-channel noise reduction can then exploit
the spatial diversity, that is, exploit both spectral and spatial
characteristics of the speech and the noise sources. The Frost
beamformer and the Generalized Sidelobe Canceler [6–8]
are well-known multi-channel noise reduction techniques.
The basic idea is to steer a beam toward the desired speaker
while reducing the background noise coming from other
directions. Another known multi-channel noise reduction
technique is the Multi-channel Wiener filter (MWF) that
provides an MMSE estimate of the speech component in
one of the microphone signals. The extension from MWF
to Speech Distortion-Weighted MWF (SDW-MWF) [9, 10]
allows for a trade-off between noise reduction and speech
distortion.

Traditionally, these multi-channel noise reduction algo-
rithms adopt a (short-time) fixed filtering under the implicit
hypothesis that the clean speech is present at all time. How-
ever, the speech signal typically contains many pauses while
the noise can indeed be continuously present. Furthermore,
the speech may not be present at all frequencies even during
voiced speech segments. It has been shown in single-channel
noise reduction schemes that incorporating the conditional
Speech Presence Probability (SPP) in the gain function or
in the noise spectrum estimation better performance can
be achieved compared to traditional methods [4, 11–13]. In
these approaches the conditional SPP is estimated for each
frequency bin and each frame by a soft-decision approach,
which exploits the strong correlation of speech presence in
neighboring frequency bins of consecutive frames.

A traditional SDW-MWF uses a fixed parameter to a
trade-off between noise reduction and speech distortion
without taking speech presence or speech absence into
account. This means that the speech dominant segments
and the noise dominant segments are weighted equally in
the noise reduction process. Consequently, the improvement
in noise reduction comes at the cost of a higher speech
distortion. A variable SDW-MWF was introduced in [14]
based on soft output voice activity detection to a trade-
off between speech dominant segments and noise dominant
segments. This paper presents an SDW-MWF approach that
incorporates the conditional SPP in the trade-off between
noise reduction and speech distortion. In speech dominant
segments it is then desirable to have less noise reduction
to avoid speech distortion, while in noise dominant seg-
ments it is desirable to have as much noise reduction as
possible. Furthermore, a combined solution is introduced
that in one extreme case corresponds to an SDW-MWF
incorporating the conditional SPP and in the other extreme
case corresponds to a traditional SDW-MWF solution.
Experimental results with hearing aid scenarios demonstrate
that the proposed SDW-MWF incorporating the conditional
SPP improves the SNR compared to a traditional SDW-
MWF.

The paper is organized as follows. Section 2 describes the
system model and the general set-up of a multi-channel noise
reduction algorithm. The motivation is given in Section 3.
Section 4 explains the estimation of the conditional SPP.
Section 5 explains the derivation of the SDW-MWF incorpo-
rating the conditional SPP. In Section 6 experimental results
are presented. The work is summarized in Section 7.

2. SystemModel

A general set-up of a multi-channel noise reduction is shown
in Figure 1 with M microphones in an environment with one
or more noise sources and a desired speaker. Let Xi(k, l), i =
1, . . . ,M, denote the frequency-domain microphone signals

Xi(k, l) = Xs
i (k, l) + Xn

i (k, l), (1)

where k is the frequency bin index, l the frame index, and
the superscripts s and n are used to refer to the speech and
the noise contribution in a signal, respectively. Let X(k, l) ∈
CM×1 be defined as the stacked vector

X(k, l) = [X1(k, l) X2(k, l) · · ·XM(k, l)]T

= Xs(k, l) + Xn(k, l),
(2)

where the superscript T denotes the transpose. In addition,
we define the noise and the speech correlation matrices as

Rn(k, l) = ε
{

Xn(k, l)Xn,H(k, l)
}

,

Rs(k, l) = ε
{

Xs(k, l)Xs,H(k, l)
}

,
(3)

where ε{} denotes the expectation operator, and H denotes
Hermitian transpose.

2.1. Multi-channel Wiener Filter (MWF and SDW-MWF).
The MWF optimally estimates a desired signal, based on a
Minimum Mean Squared Error (MMSE) criterion, that is,

W∗(k, l) = arg min
W

ε
{∣∣∣Xs

1(k, l)−WHX(k, l)
∣∣∣2
}

, (4)

where the desired signal in this case is the speech component
Xs

1(k, l) in the first microphone. The MWF has been extended
to the SDW-MWF that allows for a trade-off between noise
reduction and speech distortion using a trade-off parameter
μ [9, 10]. The design criterion of the SDW-MWF is given by

W∗(k, l) = arg min
W

ε
{∣∣∣Xs

1(k, l)−WHXs(k, l)
∣∣∣2
}

+ με
{∣∣∣WHXn(k, l)

∣∣∣2
}
.

(5)

If the speech and the noise signals are statistically indepen-
dent, then the optimal SDW-MWF that provides an estimate
of the speech component in the first microphone is given by

W∗(k, l) = (Rs(k, l) + μRn(k, l)
)−1Rs(k, l)e1, (6)
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Figure 1: Multi-channel noise reduction set-up in an environment with one or more noise sources and a desired speaker.
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Figure 2: Illustration of a concatenated noisy speech signal with
noise-only periods which is a typical input signal for multimicro-
phone noise reduction.

where the M × 1 vector e1 equals the first canonical vector

defined as e1 = [1 0 · · · 0]
T

. The second-order statistics
of the noise are assumed to be stationary which means that
Rs(k, l) can be estimated as Rs(k, l) = Rx(k, l)−Rn(k, l) where
Rx(k, l) and Rn(k, l) are estimated during periods of speech
+ noise and periods of noise-only, respectively. For μ = 1 the
SDW-MWF solution reduces to the MWF solution, while for
μ > 1 the residual noise level will be reduced at the cost of
a higher speech distortion. The output Z(k, l) of the SDW-
MWF can then be written as

Z(k, l) = W∗,H(k, l)X(k, l). (7)

2.2. MWF in Practice. A typical input signal for a multi-
channel noise reduction is shown in Figure 2, where several
speech sentences are concatenated with sufficient noise-only
periods. By using a VAD the speech+noise and noise-only
periods can be detected, and the corresponding correlation
matrices can be estimated/updated. MWF is uniquely based
on the second-order statistics, and in the estimation of
the speech+noise and the noise-only correlation matrices
an averaging time window of 2-3 seconds is typically used
to achieve a reliable estimate. This suggests that the noise
reduction performance of the MWF depends on the long-
term average of the spectral and the spatial characteristics of

the speech and the noise sources. In practice, this means that
the MWF can only work well if the long-term spectral and/or
spatial characteristics of the speech and the noise are slowly
time-varying.

3. Motivation

The success of any NR algorithm is based on how much
information is available about the speech and the noise
[1, 15, 16]. In general speech and noise can be nonsta-
tionary both temporally, spectrally, and spatially. Speech
is a spectrally nonstationary signal and can be considered
stationary only in a short time window of 20–30 milisec-
onds. Background noise such as multitalker babble is also
considered to be spectrally non-stationary. Furthermore, the
speech characteristic contains many pauses while the noise
can be continuously present. These properties are usually not
taken into consideration in multi-channel noise reduction
algorithms since the spatial characteristics are assumed to be
more or less stationary, which then indeed justifies the long-
term averaging of the correlation matrices. This long-term
averaging basically eliminates any short-time effects, such as
musical noise, that typically occur in single-channel noise
reduction.

The motivation behind introducing the conditional SPP
in SDW-MWF is to allow for a faster tracking of the non-
stationarity of the speech and the noise as well as for
exploiting the fact that speech may not be present at all
time. This then allows to apply a different weight to speech
dominant segments and to noise dominant segments in
the noise reduction process. Furthermore incorporating the
conditional SPP in the SDW-MWF also allows the NR to be
applied in a narrow frequency band since the conditional SPP
is estimated for each frequency bin; see Section 4.

4. Speech Presence Probability Estimation

The conditional SPP is estimated for each frequency bin
and each frame by a soft-decision approach [12, 15, 17],
which exploits the strong correlation of speech presence in
neighboring frequency bins of consecutive frames.

4.1. Two-State Speech Model. A two-state model for speech
events can be expressed given by two hypotheses H0(k, l)
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and H1(k, l) which represent speech absence and speech
presence in each frequency bin, respectively, that is,

H0(k, l) : Xi(k, l) = Xn
i (k, l),

H1(k, l) : Xi(k, l) = Xs
i (k, l) + Xn

i (k, l).
(8)

Assuming a complex Gaussian distribution of the Short-
Time Fourier Transform (STFT) coefficients for both the
speech and the noise, the conditional Probability Density
Functions (PDFs) of the observed signals are given by

p(Xi(k, l) | H0(k, l)) = 1
πλni (k, l)

exp

{
−|Xi(k, l)|2

λni (k, l)

}
,

p(Xi(k, l) | H1(k, l)) = 1
π
(
λsi(k, l) + λni (k, l)

)

× exp

{
− |Xi(k, l)|2
λsi(k, l) + λni (k, l)

}
,

(9)

where λsi(k, l) � ε{|Xs
i (k, l)|2H1(k, l)} and λni �

ε{|Xn
i (k, l)|2} denote the power spectrum of the speech

and the noise, respectively. Applying Bayes rule, the
conditional SPP p(k, l) � P(H1(k, l) | Xi(k, l)) can be
written as [4]

p(k, l) =
{

1 +
q(k, l)

1− q(k, l)
(1 + ξ(k, l)) exp(−υ(k, l))

}−1

,

(10)

where q(k, l) � P(H0(k, l)) is the a priori Speech Absence
Probability (SAP); ξ(k, l) and γ(k, l) denote the a priori SNR
and a posteriori SNR, respectively,

ξ(k, l) � λsi(k, l)
λni (k, l)

, γ(k, l) � |Xi(k, l)|2
λni (k, l)

,

υ(k, l) � γ(k, l)ξ(k, l)
(1 + ξ(k, l))

.

(11)

The noise power spectrum λni is estimated using recursive
averaging during periods where the speech is absence, that
is,

H′
0(k, l) : λ̂ni (k, l + 1) = ρλ̂ni (k, l) +

(
1− ρ

)|Xi(k, l)|2,

H′
1(k, l) : λ̂ni (k, l + 1) = λ̂ni (k, l).

(12)

where ρ is an averaging parameter, and H′
0(k, l) and H′

1(k, l)
represents speech absence and speech presence, respectively.
The noise power spectrum is updated using a perfect VAD
such that the noise power is updated at the same time as the
noise correlation matrix; see Figure 2. The noise spectrum
can also be estimated by using the Minima Controlled
Recursive Averaging approach presented here [13]. The main
issue in estimating the conditional SPP p(k, l) is to have
reliable estimates of the a priori SNR and the a priori SAP
used in (10). Since speech has a non-stationary characteristic
the a priori SNR and the a priori SAP are estimated for each
frequency bin of the noisy speech.

4.2. A Priori SNR Estimation. The decision-directed
approach of Ephraim and Malah [4, 12, 17] is widely used
for estimating the a priori SNR and is given by

ξ̂(k, l) = κ
|X̂i(k, l − 1)|2

λni (k, l − 1)
+ (1− κ) max

{
γ(k, l)− 1, 0

}
,

(13)

where |X̂i(k, l − 1)|2 represents an estimate of the clean
speech spectrum, and κ is a weighting factor that controls the
trade-off between noise reduction and speech distortion [4,
5]. The first term corresponds to the SNR from the previous
enhanced frame, and the second term is the estimated SNR
for the current frame.

4.3. A Priori SAP Estimation. Reliable estimation of the a
priori SNR is important since it is used in the estimation
for the a priori SAP. In [12, 17] an a priori SAP estimator
is proposed based on the time-frequency distribution of the

estimated a priori SNR ξ̂(k, l). The estimation is based on
three parameters that each exploits the strong correlation of
speech presence in neighboring frequency bins of consecu-
tive frames. The first step is to apply a recursive averaging to
the a priori SNR, that is,

ζ(k, l) = βζ(k, l − 1) +
(
1− β

)
ξ̂(k, l − 1), (14)

where β is the averaging parameter. In the second step
a global and local averaging is applied to ζ(k, l) in the
frequency domain. Local means that the a priori SNR is
avaraged over a small number of frequency bins (small
bandwidth), and global means that the a priori SNR is
averaged over a larger number of frequency bins (larger
bandwidth). The local and global averaging of the a priori
SNR is given by

ζη(k, l) =
i=ωη∑

i=−ωη

hη(i)ζ(k − i, l), (15)

where the subscript η represents either local or global
averaging, and hη is a normalized Hanning window of size
2ωη + 1. The local and global averaging of the a priori SNR
is then normalized to values between 0 and 1 before it is
mapped into the following threshold function:

Pη(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if ζη(k, l) ≤ ζmin

1, if ζη(k, l) ≥ ζmax

log
(
ζη(k, l)/ζmin

)

log(ζmax/ζmin)
, otherwise

(16)

where Plocal(k, l) is the likelihood of speech presence when the
a priori SNR is avaraged over a small number of frequency
bins, and Pglobal(k, l) is the likelihood of speech presence
when the a priori SNR is averaged over a larger number
of frequency bins. ζmin and ζmax are empirical constants
that decide the threshold for speech or noise. The last term
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Pframe(l) represents the likelihood of speech presence in a
given frame based on the a priori SNR averaged over all
frequency bins, that is,

ζframe(l) = mean
1≤k≤N/2+1

{
ζ(k, l)

}
, (17)

where N is the FFT-size. A pseudocode for the computation
of Pframe(l) is given by

if ζframe(l) > ζmin then

if ζframe(l) > ζframe(l − 1) then

Pframe(l) = 1

ζpeak(l) = min
{

max
[
ζframe(l), ζp min

]
, ζp max

}

else

Pframe(l) = δ(l)

else

Pframe(l) = 0

end if

end if

(18)

where

δ(l)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if ζframe(l) ≤ζpeak(l) ·ζmin

1, if ζframe(l) ≥ζpeak(l) ·ζmax

log
(
ζframe(l)/ζpeak(l)/ζmin

)

log(ζmax/ζmin)
, otherwise

(19)

represents a soft transition from speech noise, ζpeak is a con-
fined peak value of ζframe, and ζp min and ζp max are empirical
constants that determine the delay of the transition. The
proposed a priori SAP estimation is then obtained by

q̂(k, l) = 1− Plocal(k, l) · Pglobal(k, l) · Pframe(l). (20)

This means that if either of the previous frames or recent
frequency bins does not contain speech, that is, if the three
likelihood terms are small, then q̂(k, l) becomes larger and
the conditional SPP p(k, l) in (10) becomes smaller.

Two examples of the normalized a priori SNR for
different frames are shown in Figures 3 and 4. If the lower
threshold ζmin is set too high, then there is a greater chance
for noise classification, and at the same time weaker fre-
quency components might also be ignored. If ζmin in Figure 3
is increased, then the weak high-frequency component will
be classified as noise. On the other hand if ζmax is increased
in Figure 4, the weaker low-frequency component will not
be classified as a speech dominant segment. The estimated
conditional SPPs for the two examples given above are
shown in Figures 5 and 6. As mentioned above the weak
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Figure 3: Local and global averaging of the a priori SNR for a given
frame. Example of a high a priori SNR at low frequency.
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Figure 4: Local and global averaging of the a priori SNR for a given
frame. Example of a high a priori SNR at high frequency.

high-frequency component in Figure 5 will be ignored if
ζmin is increased, and the speech dominant segment at
low-frequency in Figure 6 will not be as significant if ζmax

is increased. In general, classifying noise when speech is
present is more harmful than classifying speech when noise
is present. By setting ζmin and ζmax low more speech will
be detected, and the same goes for the setting of ζp min and
ζp max. The goal is then to incorporate this conditional SPP
into the SDW-MWF such that speech dominant segments
will be attenuated less compared to speech dominant seg-
ments. By exploiting the conditional SPP shown in Figures 5
and 6 the noise can be reduced in a narrow frequency band,
that is, when the conditional SPP is low.



6 EURASIP Journal on Advances in Signal Processing
C

on
di

ti
on

al
SP

P

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

0 2000 4000 6000 8000

ζmin = 0.1 and ζmax = 0.3162
ζmin = 0.1 and ζmax = 0.6

Figure 5: Conditional SPP with high-speech presence at low
frequency.

C
on

di
ti

on
al

SP
P

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

0 2000 4000 6000 8000

ζmin = 0.1 and ζmax = 0.3162
ζmin = 0.1 and ζmax = 0.6

Figure 6: Conditional SPP with two distinct speech dominant
segments.

The frequency bin index k and frame index l are omitted
in the sequel for the sake of conciseness.

5. SDW-MWF Incorporating the Conditional
Speech Presence Probability

In this section, we derive a modified SDW-MWF, which
incorporates the conditional SPP in the filter estimation,
which is referred to as SDW-MWFSPP from now on. Tradi-
tionally, the trade-off parameter in SDW-MWFμ in (5) is set
to a fixed value, and any improvement in noise reduction
comes at the cost of a higher-speech distortion. Furthermore,

the speech + noise segments and the noise-only segments
are weighted equally, whereas it is desirable to have more
noise reduction in the noise-only segments compared to the
speech+noise segments. With an SDW-MWFSPP it is possible
to distinguish between the speech+noise segments and noise-
only segments. The conditional SPP in (10) and the two-
state model in (8) for speech events can be incorporated
into the optimization criteria of the SDW-MWF, leading to a
weighted average where the first term corresponds to H1 and
is weighted by the probability that speech is present, while
the second term corresponds to H0 that is weighted by the
probability that speech is absent, that is,

W∗ = arg min
W

pε
{∣∣∣Xs

1 −WHX
∣∣∣2 | H1

}

+
(
1− p

)
ε
{∣∣∣WHXn

∣∣∣2
}

,

(21)

where p = P(H1 | Xi) is the conditional probability that
speech is present when observingXi, and (1−p) = P(H0 | Xi)
is the probability that speech is absent when observing Xi.
The solution is then given by

W∗ =
(
pε
{

XXH | H1

}
+
(
1− p

)
ε
{

XnXn,H
})−1

× pε
{

XsXs,H
1 | H1

}

=
(
pε
{

XsXs,H | H1

}
+ pε

{
XnXn,H

}

+
(
1− p

)
ε
{

XnXn,H
})−1

pε
{

XsXs,H
1 | H1

}

=
(
pε{XsXs,H | H1} + ε{XnXn,H}

)−1
pε
{

XsXs,H
1 | H1

}
.

(22)

The SDW-MWF incorporating the conditional SPP can then
be written as

W∗
SPP =

(
Rs +

(
1
p

)
Rn

)−1

Rse1. (23)

Compared to (6) with the fixed μ the term 1/p, which is
defined as the weighting factor, is now adjusted for each
frequency bin and for each frame, making the SDW-MWFSPP

changes with a faster dynamic. Figure 7 presents a block
diagram of the proposed SDW-MWFSPP. First an FFT is
performed on each frame of the noisy speech. Then on
the left-hand side the conditional SPP is estimated, which
includes the estimation of the a posteriori SNR, the a priori
SNR, and the a priori SAP. On the right-hand side the
frequency domain correlation matrices are estimated, which
are used to estimate the filter coefficients after weighting with
the conditional SPP. Notice that the updates of the frequency
domain correlation matrices are still based on a longer time
window; see Section 2.2. The difference is now that the
weights applied in the filter estimation are now changing for
each frequency bin and each frame based on the conditional
SPP. The last steps include the filtering operation and the
IFFT. The conditional SPP weighting factor 1/p offers more
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Figure 7: Block diagram of the proposed SDW-MWFSPP incorpo-
rating the conditional SPP.

noise reduction when p is small, that is, for noise dominant
segments, and less noise reduction when p is high, that is,
for speech dominant segments, as shown in Figure 8 (solid
line). This concept is compared to a fixed weighting factor μ
used in a traditional SDW-MWFμ that does not take speech
presence or absence into account as follows.

(i) If p = 0, that is, when the probability that speech
is present is zero, the SDW-MWFSPP attenuates the
noise by applying W∗ ← 0.

(ii) If p = 1, that is, when the probability that
speech is presence is one, the SDW-MWFSPP solution
corresponds to the MWF solution (μ = 1).

(iii) If 0 < p < 1, there is a trade-off between noise reduc-
tion and speech distortion based on the conditional
SPP.

5.1. Undesired Noise Modelling. The problem with
SDW-MWFSPP derived in (23) is that the inverse of the
conditional SPP is used, which can cause large fluctuations
in different frequency bands especially if the weighting
factor 1/p is used, as shown in Figure 7. For example,
if the conditional SPP shown in Figure 5 is used, the
SDW-MWFSPP will apply a NR corresponding to μ = 1
below 2000 Hz, and between 2000 Hz, and 4500 Hz the NR
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Figure 8: Speech presence probability-based weighting factor
compared to a fixed weighting factor.

will be much larger. This transition between low and high
NR in different frequency bands can cause speech distortion
or musical noise.

It is also worth noting that in the derivation of the
SDW-MWFSPP the term (1 − p) = P(H0 | Xi) is not present
in (22) anymore. This can be explained by the fact that the
SDW-MWF estimates the speech component in one of the
microphones under hypothesis H1 while under hypothesis
H0 the noise reduction filter is set to zero. In [18] the gain
function is similarly derived under hypothesis H1, which is
due to the fact that the method aims to provide an estimate of
the clean speech spectrum, so that when the speech is absent
the gain is set to zero. This property negatively affects the
processing of the noise-only bins which results in undesired
modelling of the noise making the residual noise sounds
unnatural.

5.2. Combined Solution. In [12, 17] a lower threshold is
introduced for the gain under hypothesis H0. This lower
threshold is based on subjective criteria for the noise nat-
uralness. Applying a constant attenuation when the speech
is absent results in a uniform noise level, and therefore
any undesired noise modelling can be avoided so that the
naturalness of the residual noise can be retained.

Following the concept with the lower threshold a solution
is proposed that in one extreme case corresponds to the
SDW-MWFSPP and in the other extreme case corresponds to
a traditional SDW-MWFμ. The combined solution can then
be written as

W∗
SPP =

(
Rs +

(
1

α(1/μ) + (1− α)p

)
Rn

)−1

Rse1, (24)

where μ in this case is the constant attenuation factor, and α is
a trade-off factor between SDW-MWFμ and SDW-MWFSPP.
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The weighting factor for the combined solution is shown in
Figure 9 for α = 0.5 and for different values of μ. The concept
then goes as follows.

(i) If α = 1, the solution corresponds to a traditional
SDW-MWFμ given in (6).

(ii) If α = 0, the solution corresponds to the
SDW-MWFSPP given in (23).

(iii) If 0 < α < 1, there is a trade-off between the two
solutions based on μ and α and p given in (24).

(iv) If p = 0, that is, when the probability that speech
is present is zero, the SDW-MWFSPP attenuates the
noise by applying a constant weighting, that is, μ/α
corresponding to the desired lower threshold.

The conditional SPPs for ζmin = 0.1 and ζmax = 0.3162
in Figures 5 and 6 for the combined solution are shown
in Figures 10 and 11. When α is increased, the solution
gets closer to the standard SDW-MWFμ (μ = 2). The
importance of SDW-MWFSPP is that different amount of NR
can be applied to the speech dominant segments and to the
noise dominant segments. With the combined solution the
overall amount of NR might not exceed SDW-MWFμ, but
the distinction between speech and noise is the important
part in order to enhance speech dominant segments and
further suppress the noise dominant segments. Increasing
α limits the distortion but in the same time also limits the
NR in a narrow frequency band; that is, the ratio between
the speech dominant segments and the noise dominant
segments are reduced. Furthermore the weak high-frequency
component might also be less emphasized since less NR
is applied to frequencies prior to the weak high-frequency
component; see Figures 10 and 11. This combined solution
does not only offer a flexibility between the SDW-MWFSPP

and a traditional SDW-MWFμ. In this case α effectively
determines the dynamics of the SDW-MWFSPP and the
degree of nonlinearity in the weighting factor.

6. Experimental Results

In this section, experimental results for the proposed
SDW-MWFSPP (α = 0) are presented and compared to a
traditional SDW-MWFμ (α = 1). In-between solutions of
these two approaches are also presented.

6.1. Experimental Set-up. Simulations have been performed
with a 2-microphone behind-the-ear hearing aid mounted
on a CORTEX MK2 manikin. The loudspeakers (FOSTEX
6301B) are positioned at 1 meter from the center of the head.
The reverberation time T60 = 0.21 seconds. The speech is
located at 0◦, and the two multitalker babble noise sources are
located at 120◦ and 180◦. The speech signals consist of male
sentences from the HINT-database [19], and the noise signals
consist of a multi-talker babble from Auditec [20]. The
speech signals are sampled at 16 kHz and are concatenated
as shown in Figure 2. For the estimation of the second-
order statistics access to a perfect VAD was assumed. An FFT
length of 128 with 50% overlap was used. Table 1 shows the
parameters used in the estimation of the conditional SPP.
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6.2. Performance Measures. To assess the noise reduction
performance the intelligibility-weighted signal-to-noise ratio
(SNR) [21] is used which is defined as

ΔSNRintellig =
∑

i

Ii
(
SNRi,out − SNRi,in

)
, (25)

where Ii is the band importance function defined in [22],
and where SNRi,out and SNRi,in represent the output SNR
and the input SNR (in dB) of the ith band, respectively.
For measuring the signal distortion a frequency-weighted
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Table 1: Parameters used for the estimation of the conditional SPP.

β = 0.7 ρ = 0.95 κ = 0.98

ωlocal = 1 ζmin = −10 dB (0.1) ζp min = 4 dB

ωglobal = 10 ζmax = −5 dB (0.3162) ζp max = 10 dB

log-spectral signal distortion (SD) is used defined as

SD = 1
K

K∑

k=1

√√√√
∫ fu

fl
wERB

(
f
)(

10 log10

Ps
out,k( f )

Ps
in,k( f )

)2

df , (26)

where K is the number of frames, Ps
out,k( f ) is the output

power spectrum of the kth frame, Ps
in,k( f ) is the input power

spectrum of the kth frame, and f is the frequency index. The
SD measure is calculated with a frequency-weighting factor
wERB( f ) giving equal weight for each auditory critical band,
as defined by the equivalent rectangular bandwidth (ERB) of
the auditory filter [23].

6.3. SDW-MWFSPP versus SDW-MWFμ . The performance of
the SDW-MWFSPP (α = 0) and SDW-MWFμ (μ = 1 and
2) is evaluated for different input SNRs ranging from 0 dB
to 25 dB. The combined solution is evaluated for different
values of α = 0.25, 0.50, and 0.75, since this provides a trade-
off between a traditional SDW-MWFμ and the proposed
SDW-MWFSPP.

The SNR improvement and SD for different input SNRs
are shown in Figures 12–15. It is clear that when α → 0
the SNR improvement is larger, but at the same time the SD
also increases. When α is increased, the SNR improvement
decreases, and at the same time the SD also decreases.
It was found that an α value around 0.25 to 0.5 reduces
the signal distortion significantly, but this obviously comes
at the cost of less improvement in SNR. As mentioned
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Figure 12: SNR improvement for SDW-MWFSPP (α = 0) and
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Figure 13: Signal distortion for SDW-MWFSPP (α = 0) and
SDW-MWFμ (α = 1) with μ = 1 at different input SNRs.

the goal of SDW-MWFSPP is not to necessarily outperform
SDW-MWFμ in terms of SNR or SD. The motivation behind
SDW-MWFSPP is to apply less NR to speech dominant seg-
ments and more NR to noise dominant segments. Therefore
the overall weighting factor in the combined solution might
not be higher than SDW-MWFμ. Actually when μ = 2 and
α = 0.5, the NR applied when the conditional SPP is larger
than 0.5 is lower than μ = 2; see Figure 9 (solid line).

6.4. Residual Noise. A reason for the increased SD can be
caused by the sharp transition between speech dominant



10 EURASIP Journal on Advances in Signal Processing

Δ
SN

R
in

te
lli

g
(d

B
)

0

2

4

6

8

10

12

14

16

Input SNR (dB)

0 5 10 15 20 25

α = 0
μ = 2,α = 1
μ = 2,α = 0.75

μ = 2,α = 0.5
μ = 2,α = 0.25

Figure 14: SNR improvement for SDW-MWFSPP (α = 0) and
SDW-MWFμ (α = 1) with μ = 2 at different input SNRs.

SD
(d

B
)

1

2

3

4

5

6

7

8

Input SNR (dB)

0 5 10 15 20 25

α = 0
μ = 2,α = 1
μ = 2,α = 0.75

μ = 2,α = 0.5
μ = 2,α = 0.25

Figure 15: Signal distortion for SDW-MWFSPP (α = 0) and
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segments and noise dominant segments; see Figures 5 and 6
and Section 5.1. A softer transition in this case will probably
be desired, for example, by applying smoothing to the
conditional SPP or by modifying the threshold functions in
(16) and (19).

One way of interpreting the results from the SD measure
is to look at the residual noise. When α → 0, the musical
noise phenomenon occurs, while it is less significant when
α → 1 which partly can be supported by the SD measure
shown in Figure 13. Using an α value around 0.25 to 0.5
reduces the musical noise and makes the noise sound more

natural. It is also observed that the noise modelling of the
residual noise is more significant in the noise-only periods
where the update of the SDW-MWFSPP occurs, see Figure 2.
The goal of SDW-MWFSPP is to attenuate the noise dominant
segments more compared to speech dominant segments. The
question is still whether this SD measure has any effect on
the speech intelligibility. This may not be the case if only
the noise dominant segments are attenuated more compared
to the speech dominant segments. If the conditional SPP
is accurate, the speech dominant segments can be made
more significant compared to the noise dominant segments,
especially if the NR is able to reduce the noise in a narrow
frequency band. The benefit of this concept is still something
that needs to be analyzed.

Musical noise is not an effect normally encountered
in multi-channel noise reduction. This typically appears
in single-channel noise reduction that is based on short-
time spectral attenuation. Increasing α reduces the musical
noise, which basically means that the fast tracking of
speech presence in each frequency bin and each frame is
constrained. The function of α is to a trade-off between a
traditional SDW-MWFμ , that is, a linear slow time-varying
system and a SDW-MWFSPP, that is, a nonlinear fast time-
varying system.

7. Conclusion

In this paper an SDW-MWFSPP procedure has been pre-
sented that incorporates the conditional SPP. A traditional
SDW-MWFμ uses a fixed parameter to a trade-off between
noise reduction and speech distortion without taking speech
presence into account. Incorporating the conditional SPP
in SDW-MWF allows to exploit the fact that speech may
not be present at all frequencies and at all times, while
the noise can indeed be continuously present. This concept
allows the noise to be reduced in a narrow frequency band
based on the conditional SPP. In speech dominant segments
it is then desirable to have less noise reduction to avoid
speech distortion, while in noise dominant segments it is
desirable to have as much noise reduction as possible. A
combined solution is also proposed that in one extreme case
corresponds to an SDW-MWFSPP and in the other extreme
case corresponds to a traditional SDW-MWFμ solution. In-
between solutions correspond to a trade-off between the two
extreme cases.

The SDW-MWFSPP is found to significantly improve
the SNR compared to a traditional SDW-MWFμ. The SNR
improvement however comes at the cost of audible musical
noise, and here the in-between solutions offer a way to
reduce the musical noise while still maintaining an SNR
improvement that is larger than SDW-MWFμ. The explana-
tion of this is due to the fact that a traditional SDW-MWFμ

implementation is a linear filter and is based on a long-
term average of the spectral and spatial signal characteristics,
whereas the SDW-MWFSPP has a weighting factor changing
on a faster dynamic for each frequency bin and each frame,
which corresponds better to the nonstationarity of the speech
and the noise characteristics.
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