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Abstract The potential role of antibodies and T lympho-
cytes in the eradication of cancer has been demonstrated in
numerous animal models and clinical trials. In the last
decennia new strategies have been developed for the use of
tumor-speciWc T cells and antibodies in cancer therapy.
EVective anti-tumor immunotherapy requires the identiWca-
tion of suitable target antigens. The expression of tumor-
speciWc antigens has been extensively studied for most
types of adult tumors. Pediatric patients should be excellent
candidates for immunotherapy since their immune system
is more potent and Xexible as compared to that of adults. So
far, these patients do not beneWt enough from the pro-
gresses in cancer immunotherapy, and one of the reasons is
the paucity of tumor-speciWc antigens identiWed on pediat-
ric tumors. In this review we discuss the current status of
cancer immunotherapy in children, focusing on the identiW-
cation of tumor-speciWc antigens on pediatric solid tumors.
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Introduction

Despite major advances in the treatment of childhood
malignancies, cancer remains in the developed world the
second most common cause of death for children >1 year of
age [76]. Children and adolescents with primary multifocal,
refractory, or relapsed malignant solid tumors still have a
poor prognosis. Moreover, most cancer therapies are asso-
ciated with signiWcant toxicity leading to long-term mor-
bidity and an increased second malignancy rate [75, 135].
Therefore, new treatment strategies are warranted. One of
them is immunotherapy, in which the patient’s own
immune system is mobilized to Wght the cancer in a speciWc
way, thereby causing only mild toxicity [101].

The immune system can reject tumors

Early studies in mice showed that the immune system can
recognize and reject tumors [39]. Numerous mouse tumor
models have been developed to identify which part of the
immune system is responsible for the eradication of tumors.
These studies indicate that both CD8+ and CD4+ T cells
play a critical role in tumor rejection or in inhibition of
tumor growth [13]. The cytolytic activity of CD8+ T cells
exerts a direct anti-tumor eVect [66]. CD4+ T cells partici-
pate through the activation and maintenance of CD8+ T
cells and the recruitment of inXammatory cells such as
macrophages, granulocytes, natural killer (NK) cells, and B
cells [24, 47, 51, 93, 131].

Tumor-inWltrating immune cells have frequently been
observed in a wide variety of pediatric tumors [103, 125].
Tumor inWltration of lymphocytes is generally associated
with a more favorable prognosis and occasionally tumor
regression [34, 119]. Another element is the observation
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that immunosuppressed patients, such as graft recipients,
are at higher risk to develop cancer [36, 89]. Initial studies
have consistently shown a role of the immune system in the
prevention of virally induced cancers in adults such as
Kaposi’s sarcoma (linked with human herpes virus 8), cer-
vix carcinoma (human papilloma virus), and hepatocellular
carcinoma (hepatitis B and C) [96] but also in children with
certain lymphomas (induced by the Epstein-Barr virus) [42,
114]. These data suggest that the immune system plays an
important role in preventing or controlling malignancy in
both adults and children. In spite of the blood-brain-barrier
and lack of conventional lymphatics in the brain, there is
accumulating evidence that even brain tumors can cause
immune activation [10, 72, 99].

Immunotherapy strategies in pediatric cancer patients

Immunotherapy can be deWned as any approach that
seeks to mobilize or manipulate the immune system of a
patient for therapeutic beneWt (Fig. 1) [61, 116]. Clinical
experience of immunotherapy in the pediatric oncological

setting has been gained in treating hematologic malignan-
cies with allogeneic bone marrow transplantations and
infusions of donor lymphocytes to generate graft versus
leukemia responses [98]. Other clinical trials for pediat-
ric patients have involved general immunostimulation
with cytokines such as IL-2, TNF-�, and IFN-�, as adju-
vant therapies to eradicate minimal residual disease [62,
112, 123, 133]. Immunotherapeutic therapies targeting
identiWed tumor-associated antigens are discussed in the
following.

Antibodies

The identiWcation of tumor-speciWc cell-surface molecules
opened the possibility for antibody-mediated passive
immunotherapy. Antibodies (Ab) against tumor-associated
antigens can induce complement dependent cytotoxicity
(CDC) and Ab-dependent cell-mediated cytotoxicity
(ADCC) [70]. Promising pediatric clinical phase I trials
have been described using monoclonal Ab against ganglio-
sides, which are highly expressed in neuroblastoma
and osteosarcoma [40, 87, 88, 128]. Tumor-speciWc Ab

Fig. 1 Immunotherapeutic strategies applied in pediatric clinical
trials. A Administration of tumor antigens either directly into the body
or loaded onto APC. The TAAs are presented by the APC to lympho-
cytes in secondary lymphoid organs to initiate a tumor-speciWc im-
mune response. B Non-speciWc stimulation of the immune response by
cytokines, for example IL-2, TNF-� and IFN-� and GM-CSF which
induces T cell proliferation. C Adoptive transfer of donor lymphocytes
or natural killer cells for complete eradication of leukemic cells

following allogeneic transplantation. D  Monoclonal antibodies (mAb)
that bind speciWcally to cancer cells can induce an immune response.
Alternatively, mAb can be modiWed for targeted delivery of a toxin,
radioisotope, cytokine, or other active conjugate. TAA tumor-associ-
ated antigens, APC antigen-presenting cell, PBL peripheral blood lym-
phocyte, CDC complement dependent cytotoxicity, ADCC antibody
dependent cell-mediated cytotoxicity
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conjugated to toxins are under investigation as targeted
drug-vehicles for embryonal tumors [86, 105].

Adoptive cellular immunotherapy

Reconstituting or increasing cellular immunity can be
achieved through the infusion of tumor-speciWc T cells.
Autologous CD4+ or CD8+ T cells can be manipulated
ex vivo in various ways to obtain high numbers of clinical
grade tumor-speciWc T cells [23]. The therapeutic eVect of
infused tumor-speciWc T cells depends on the viability of
the cells, their homing to the tumor, and their ability to kill
within the tumor microenvironment.

Another aspect is the renewed appreciation of the role of
the innate immune system. Immune-mediated tumor lysis is
the result of a combined action of adaptive and innate
immunity, in which NK cells are important eVector cells.
NK cell activation is regulated by a balance between sig-
nals mediated through activating receptors such as NKG2D
and inhibitory receptors such as killer immunoglobulin-like
receptors (KIRs). Upon cellular transformation in tumor
cells, MHC class I ligands for inhibitory receptors are often
downregulated and ligands for activating NK cell receptors
are upregulated on the tumor cell. Together, these events
can shift the balance toward NK-mediated tumor-cell kill-
ing [78]. Next to the direct cytotoxic eVect on tumor cells,
NK cells produce type I interferons that create a proinXam-
matory tumor microenvironment [106, 113]. Clinical stud-
ies on adoptive transfer of NK cells in adults have shown
that NK cells can have a role in the treatment of selected
malignancies [84]. Adoptive transfer of NK cells in pediat-
ric patients with leukemia is feasible [68]. Ongoing clinical
studies further investigate NK cell-mediated immunother-
apy for pediatric patients with leukemia or neuroblastoma
(http://www.clinicaltrials.gov).

In vivo induction of tumor-speciWc lymphocytes

The advantage of active immunization over adoptive trans-
fer is the possibility of inducing memory T cells that can
control tumor relapse [37]. On the basis of the successes of
attenuated pathogen vaccines and owing to the initial lack
of deWned tumor antigens, the Wrst active immunizations
were carried out with whole tumor cells that were previ-
ously irradiated or otherwise inactivated [134]. In children,
most of the clinical experience using whole tumor cell vac-
cines is obtained with neuroblastoma patients. In these tri-
als, the neuroblastoma cells are (gene-) modiWed to express
various co-stimulatory molecules or cytokines to increase
their immunogenicity [9, 16, 107].

When tumor-associated antigens are identiWed, thera-
peutic vaccination can involve the administration of the
antigen either as a whole recombinant protein or as

antigenic peptides presented by HLA class I or class II mol-
ecules. One clinical trial reports on using chimeric anti-
genic peptides encoded by translocated genes expressed in
Ewing’s sarcoma and rhabdomyosarcoma [26]. Another
strategy is the administration of autologous antigen-pre-
senting cells, such as dendritic cells, loaded with deWned
tumor antigens or with tumor cell lysates. We reported that
clinical grade dendritic cells can be cultured from blood
monocytes of pediatric cancer patients [55]. Others have
reported that such dendritic cells can induce tumor-speciWc
T cells that can cause regression of high-risk malignancies
in pediatric patients [19, 29, 30, 43].

Advances in gene transfer technology have added new
possibilities to optimize vaccine preparation [74, 94]. These
include transferring genes encoding pro-inXammatory pro-
teins to tumor cells and transferring tumor antigen-encod-
ing genes into professional antigen-presenting cells. Tumor
cells can be engineered to express MHC class I and class II,
costimulatory molecules, or cytokines, and used as vac-
cines. Several gene therapy applications to induce antitu-
mor immunity have been reported for pediatric cancer
patients in preliminary phase I studies [9].

Current research also focuses on vaccinating directly
with antigen-encoding DNA. Studies in animal models
have demonstrated the feasibility of utilizing DNA vac-
cines to elicit protective cellular and humoral antitumor
immune responses [95]. In humans, DNA vaccines are
being tested in phase I to III clinical trials for cervical
cancer, melanoma, renal cell carcinoma, and prostate
cancer [80]. Preliminary results conWrm the safety and
immunogenicity of these vaccines. DNA vaccinations
have not been studied in pediatric patients. However,
Wrst steps are being taken with murine studies showing
that DNA-vaccination is potentially eVective to treat
neuroblastoma and prevent neuroblastoma metastases
[79, 97].

Tumor-associated antigens

One of the reasons for the paucity of clinical trials of thera-
peutic anti-cancer vaccination in children is the lack of
information about the expression of tumor-speciWc antigens
on many pediatric tumors. In the second part of this review
we will summarize the current data on the expression of
tumor antigens recognized by T cells on a selection of the
most common solid pediatric tumors.

Tumor antigens that can be recognized by T lympho-
cytes are complexes of HLA class I or class II molecules
presenting small antigenic peptides. The antigens can be
classiWed into four major groups, based on the pattern of
expression of the genes encoding the antigenic peptide
[14, 90].
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Antigens resulting from mutations or translocations

These antigens are encoded by genes that are mutated in
tumor cells as compared to the normal cells of the patient;
the antigens can therefore be considered strictly tumor-
speciWc. The mutations can be point mutations, or translo-
cations, in genes that are expressed ubiquitously. The muta-
tion aVects a coding region of the gene, and antigenic
peptides contain mutated residues or straddle the junction
of chimeric proteins encoded by translocated genes.

Antigens encoded by cancer-germline genes

Cancer-germline genes are expressed in diVerent types of
human tumors. They are not expressed in normal tissues
with the exception of male germline cells which do not
express HLA molecules and therefore cannot present anti-
genic peptides to T cells [115]. For this reason the antigens
encoded by cancer-germline genes are strictly tumor-
speciWc.

DiVerentiation antigens

DiVerentiation antigens are encoded by lineage-speciWc
genes that are expressed in tumor cells as well as in the nor-
mal cells from which the tumor arises. The natural toler-
ance to these antigens is not complete, and the induction of
an immune response against diVerentiation antigens is
possible [35].

Antigens encoded by genes that are overexpressed
in tumors

This last group of tumor antigens is encoded by genes that
are overexpressed in tumors as compared to normal tissues.
Some oncogenes are expressed in normal tissues at a low
level and overexpressed in several tumors [17, 38]. Since
both diVerentiation antigens and overexpressed antigens are
expressed in normal tissues, autoimmunity can be a side
eVect when these antigens are used as immunotherapeutic
target.

T cell deWned antigens in pediatric solid tumors

For usefulness in immunotherapy, an antigen has to meet
two important criteria. It has to be expressed by the tumor
of the patient, and it has to be immunogenic. These criteria
can be tested with gene/protein expression and lymphocyte
recognition/tumor lysis assays (Fig. 2). For an eVective cel-
lular immune response, the tumor-speciWc antigen must be
processed into peptides and presented on HLA molecules.
Many tumor-associated antigens and epitopes have been

described that are recognized by CD4+ and/or CD8+ T cells.
Detailed lists of antigen-encoding genes and of epitopes
can be found at http://www.cancerimmunity.org.

Tables 1 and 2 summarize T cell deWned antigens on a
selection of the most important pediatric solid tumors. The

Fig. 2 In vitro assays to assess target suitability. a Immunohistochem-
istry of MAGE-1 expression in a neuroblastoma tumor (antibody
MA454) demonstrates the heterogeneous expression of MAGE-1 in
this tumor sample. b Visualization of MAGE-3 speciWc CD8+ cells us-
ing labeled CD8-Ab and A1/MAGE-3-tetramers. Dot plot of periphe-
ral blood mononuclear cells from a patient who received a vaccine
containing MAGE-3.A1 peptides. Twelve percent of the CD8+ cells
are tetramer-positive after 2 weeks of in vitro re-stimulation with the
MAGE-3.A1 peptide (EVDPIGHLY) [63]. c Chromium release assay
using cytotoxic T lymphocyte clone EH-1 B2.C10, which recognizes
peptide MAGE-3168¡176 presented by HLA-A1 molecules. Lysis was
tested after 4 h at 37°C, as previously described [12]. Only the HLA-
A1+, MAGE-3+ SK-N-SH neuroblastoma cell line (white dots) is
eYciently lysed by the CTL clone. Cell lines that are either HLA-A1
negative (IMR-32, black dots) or do not express gene MAGE-3 (EB81-
EBV-B, gray dots) are not lysed
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antigens are categorized according to the four groups men-
tioned in the previous paragraph. To produce a clinically
relevant list, we have included only antigens of which (1)
peptides recognized by T cells are identiWed, (2) the HLA
presenting molecule is identiWed, (3) evidence exists that
the peptide is processed and presented by tumor cells, and
(4) a certain level of tumor- or tissue-speciWcity is reported.

Virus-encoded and artiWcially modiWed epitopes are
excluded from this list. Antigens of solid tumors outside the
central nervous system are shown in Table 1, and those of
brain tumors in Table 2. The percentages indicate the
proportions of tumors expressing the gene, tested with
RT-PCR or immunohistochemistry. Original papers are
only referred to if expression has been investigated in at

Table 1 T cell deWned antigens in extra-cranial pediatric solid tumors

The percentages indicate the proportion of tumors expressing the gene, tested with RT-PCR or IHC

GAGE G antigen, HER-2 human epidermal receptor 2, MAGE melanoma-associated antigen, ND not determined, NY-ESO-1 New York esopha-
gous 1, P53 protein 53, WT-1 Wilms’ tumor 1 gene
a Expression in alveolar rhabdomyosarcoma; no expression of MYCN in embryonal rhabdomyosarcoma

Antigen (refs) Neuroblastoma (%) Rhabdomyosarc. (%) Osteosarc. (%) Ewing’s sarc. (%)

Antigens from fusion proteins:

PAX3/FKHR [67] 0 60a 0 0

EWS/FLI 1 [31] 0 0 0 85

Cancer-germline genes: 82 9–16 ND 100

GAGE [20, 27]

MAGE-1 [25, 27, 52, 54, 117, 118] 18–60 25–38 55–88 0

MAGE-2 [21, 27, 54, 118] 60–61 33–51 55–78 0

MAGE-3 [25, 27, 52, 117, 118] 33–76 35–42 52–100 28

NY-ESO-1 [54, 104, 117] 36–82 25 88 0

Overexpressed antigens:

HER-2 [3, 41, 49, 83, 124, 139] 14 11 0–44 0

MYCN [33, 46, 130] 20–25 43–60a ND ND

P53 [3, 6, 28, 91, 121, 124, 126] 84 19–67 14–27 11–43

Survivin [1, 53, 122] 47–54 ND 58 ND

Table 2 T cell deWned antigens in pediatric brain tumors

The percentages indicate the proportion of tumors expressing the gene, tested with RT-PCR or IHC

GAGE G antigen, gp100 glycoprotein 100, HER-2 human epidermal receptor 2, IL interleukin, MAGE melanoma-associated antigen, ND not deter-
mined, NY-ESO-1 New York esophagous 1, P53 protein 53, WT-1 Wilms’ tumor 1 gene

Antigen (refs) Low grade astrocytoma (%) High grade astrocytoma (%) Ependymoma (%) Medulloblastoma (%)

Cancer-germline genes:

GAGE [110] ND 11 43 13

MAGE-1 [11, 22, 57, 102, 110] 0–33 0–100 0 9–13

MAGE-2 [57, 110] 12–18 10–11 57 18–60

MAGE-3 [22, 57, 108, 110] 18–35 20–33 0–33 13–18

NY-ESO-1 [57, 108] 0–14 0–10 ND 9

Overexpressed antigens:

HER-2 [44, 45, 77, 111] 0–77 5–93 83 38–86

IL-13R [59, 65] 79 100 67 67–100

MYCN [2, 8, 50, 71] ND 43 ND 5–21

P53 [58, 69, 73, 85, 132] 8–72 52–63 28–48 17–27

Survivin [60, 64, 92, 109] 37–64 80–92 100 100

WT-1 [32] 40 56 56 39

DiVerentiation antigens:

Tyrosinase [22] 67 38 50 ND

Gp100 [22, 77] 33 38–47 50 ND
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least ten histologically similar tumors, with no restriction as
to the year of publication.

All tumors reviewed here, except neuroblastoma, also
occur in adults. Most papers about antigen expression do
not report whether tumor samples are derived from adults
or children. Only a few papers speciWcally report on antigen
expression in pediatric tumors [44, 54, 57, 65, 73, 85, 92].
It is important to note that the expression of a given antigen
in tumors of adult patients does not guarantee that this anti-
gen is also expressed in the tumor of that same subtype
from a pediatric patient. We and others observed signiWcant
age-related diVerences in the expression of tumor antigens
in glioblastoma samples [57, 92, 100, 120]. For some anti-
gens we noticed important diVerences in the expressions
reported by diVerent groups. They can be due to the sensi-
tivity/speciWcity of the techniques used (microarray, RT-
PCR and immunohistochemistry), to diVerent antibodies or
primer-pairs for the same antigen, and to diVerently chosen
cut-oV points.

Which antigens to choose for pediatric clinical trials?

Table 1 and 2 list T cell deWned antigens expressed on pedi-
atric tumors that can be used as immune target in clinical
trials. So far, these antigens have primarily been used in
clinical trials in adult patients with the exception of clinical
trials in pediatric patients targeting the following antigens:
PAX3/FKHR and EWS/FLI1 [26, 82], WT-1 (ongoing
clinical trial, http://www.clinicaltrials.gov) and MAGE-A1
(Jacobs et al., manuscript in preparation). Choosing the best
antigen in a speciWc immunotherapy trial depends on the
individual needs for that study such as the immunogenicity
of the antigen, the level of antigen expression by the
tumors, the tumor-speciWcity of the antigen, the availability
of clinical grade antigenic products, and the HLA-type of
the included patients.

Mutated tumor antigens are attractive antigens for can-
cer immunotherapy because of their strict tumor-speciWc-
ity and because of their potential resistance to
immunoselection when the mutated gene product plays an
important role in the oncogenic process. One drawback is
that most point mutations, in contrast to chromosomal
translocations, are not shared by tumors from diVerent
patients. Examples of chimeric proteins in the pediatric
setting are the PAX3-FKHR, EWS-FLI 1, TEL-AML1,
and BCR-ABL fusion proteins seen in alveolar rhabdo-
myosarcoma, Ewing’s sarcoma, acute lymphatic leuke-
mia, and chronic myeloid leukemia, respectively [18, 81,
129, 137]. For all four fusion proteins several MHC class
I and class II chimeric peptides have been described that
induce speciWc T cells and can be considered for immuno-
therapy [82, 136–138].

The other genetic mechanism responsible for tumor-
speciWcity of antigens is the aberrant expression in tumor
cells of genes that are silent in normal cells. When the anti-
gens are encoded by genes that are expressed in many
diVerent tumors they are called ‘shared tumor-speciWc anti-
gens’. Most of the shared tumor-speciWc antigens are
encoded by cancer-germline genes. Cancer-germline genes
such as MAGE, GAGE, or LAGE/NY-ESO-1, are
expressed in diVerent types of pediatric tumors (Tables 1,
2). Numerous peptides, binding to diVerent HLA class I and
HLA class II molecules have been identiWed [15]. Because
of their tumor-speciWcity and immunogenic potential, anti-
gens encoded by cancer-germline genes have been one of
the main components of antitumor vaccines tested in the
clinic during the last decade [115].

Approximately 20% of all identiWed tumor antigens are
encoded by genes that are overexpressed in cancer cells as
compared to normal cells. Overexpression in this context
means more antigenic peptides presented on MHC mole-
cules at the cell surface, explaining the tumor-speciWcity of
the T lymphocytes. As shown in Tables 1 and 2, many of
the identiWed antigens in pediatric solid tumors are classi-
Wed as overexpressed antigens. HER-2, WT-1, and MYCN
are the most interesting candidates for immunotherapy
since these genes are involved in cell proliferation and
their overexpression plays a direct functional role in tumor
progression. This role in oncogenesis implies that it is
more diYcult for the tumor to escape immune attack
through downregulation of antigen expression. The
absence of autoimmune tissue damage in cancer patients
with HER-2, WT-1, or MYCN speciWc CTLs suggests that
these antigens can be safely used as immunotherapeutic
target [5, 7, 48].

With the observation that tumor-speciWc CTL clones
derived from melanoma patients could also recognize nor-
mal melanocytes it became obvious that natural tolerance
to diVerentiation antigens was incomplete [4]. Gp100 and
tyrosinase are the only diVerentiation antigens expressed
in pediatric tumors for which T cell speciWc peptides are
identiWed (Table 2). Autoimmunity can be a side eVect
when diVerentiation antigens are used for vaccination.
Since gp100 and tyrosinase are expressed in normal mela-
nocytes, it is possible that pediatric patients will develop
vitiligo when these antigens are used in a vaccine [56,
127].

For safety concern, the target antigens used in pediat-
ric clinical trials should be strictly tumor-speciWc. If
such an antigen is not available, the normal tissue
expressing the antigen must be dispensable, to avoid
serious autoimmune toxicity. Finally, it is probably pref-
erable to use combinations of antigens to decrease the
probability of in vivo selection of antigen-negative
tumor cells.
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Conclusion

Immunotherapy against cancer is a Weld of growing inter-
est. Most therapies are still experimental and focus on adult
patients. However, the Wrst immunotherapeutic trials for
pediatric cancer patients have been published, and more are
ongoing. These novel trials aim at stimulating both humoral
and cellular anti-tumor immune responses. The identiWca-
tion of many tumor-associated antigens, including for most
pediatric solid tumor types, should facilitate this clinical
endeavor.

Acknowledgments This work is supported by grants from The Qual-
ity of Life Gala and Stichting (Vrienden van het) Kinderoncologisch
Centrum Zuid-Oost Nederland and grants from the EU projects
Cancerimmunotherapy (#LSHC-CT-2006-518234) and DC-Thera
(#LSHB-CT-2004-512074).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC
(1998) Anti-apoptosis gene, survivin, and prognosis of neuro-
blastoma. Lancet 351:882–883

2. Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Fried-
man HS, McLendon RE (2002) MYCC and MYCN oncogene
ampliWcation in medulloblastoma. A Xuorescence in situ hybrid-
ization study on paraYn sections from the Children’s Oncology
Group. Arch Pathol Lab Med 126:540–544

3. Amir G, Issakov J, Meller I, Sucher E, Peyser A, Cohen IJ, Yaniv
I, Ben Arush MW, Tavori U, Kollender Y, Ron N, Peylan-Ramu
N (2002) Expression of p53 gene product and cell proliferation
marker Ki-67 in Ewing’s sarcoma: correlation with clinical out-
come. Hum Pathol 33:170–174

4. Anichini A, Maccalli C, Mortarini R, Salvi S, Mazzocchi A,
Squarcina P, Herlyn M, Parmiani G (1993) Melanoma cells and
normal melanocytes share antigens recognized by HLA-A2-
restricted cytotoxic T cell clones from melanoma patients. J Exp
Med 177:989–998

5. Asemissen AM, Keilholz U, Tenzer S, Muller M, Walter S,
Stevanovic S, Schild H, Letsch A, Thiel E, Rammensee HG,
Scheibenbogen C (2006) IdentiWcation of a highly immunogenic
HLA-A*01-binding T cell epitope of WT1. Clin Cancer Res
12:7476–7482

6. Ayan I, Dogan O, Kebudi R, Bavbek B, Alatli C, Dervisoglu S,
Disci R, Demiryont M (1997) Immunohistochemical detection of
p53 protein in rhabdomyosarcoma: association with clinicopath-
ological features and outcome. J Pediatr Hematol Oncol 19:48–
53

7. Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA,
Perez SA, Cacoullos NT, Papamichail M (2006) Immunogenic
HER-2/neu peptides as tumor vaccines. Cancer Immunol Im-
munother 55:85–95

8. Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD,
Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic anal-
ysis of medulloblastomas and supratentorial primitive neuroec-
todermal tumors by using conventional banding, comparative

genomic hybridization, and spectral karyotyping. J Neurosurg
93:437–448

9. Biagi E, Bollard C, Rousseau R, Brenner M (2003) Gene Therapy
for Pediatric Cancer: State of the Art and Future Perspectives.
J Biomed Biotechnol 2003:13–24

10. Bodey B, Bodey B Jr, Siegel SE (1995) Immunophenotypic char-
acterization of inWltrating polynuclear and mononuclear cells in
childhood brain tumors. Mod Pathol 8:333–338

11. Bodey B, Siegel SE, Kaiser HE (2002) MAGE-1, a cancer/testis-
antigen, expression in childhood astrocytomas as an indicator of
tumor progression. In Vivo 16:583–588

12. Boon T, Van Snick J, Van Pel A, Uyttenhove C, Marchand M
(1980) Immunogenic variants obtained by mutagenesis of mouse
mastocytoma P815. II. T lymphocyte-mediated cytolysis. J Exp
Med 152:1184–1193

13. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van
Pel A (1994) Tumor antigens recognized by T lymphocytes.
Annu Rev Immunol 12:337–365

14. Boon T, Coulie PG, Van den Eynde B (1997) Tumor antigens
recognized by T cells. Immunol Today 18:267–268

15. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P
(2006) Human T cell responses against melanoma. Annu Rev
Immunol 24:175–208

16. Bowman L, Grossmann M, Rill D, Brown M, Zhong WY, Alex-
ander B, Leimig T, Coustan-Smith E, Campana D, Jenkins J,
Woods D, Kitchingman G, Vanin E, Brenner M (1998) IL-2
adenovector-transduced autologous tumor cells induce antitumor
immune responses in patients with neuroblastoma. Blood
92:1941–1949

17. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM
(1984) AmpliWcation of N-myc in untreated human neuroblastomas
correlates with advanced disease stage. Science 224:1121–1124

18. Browett PJ, Cooke HM, Secker-Walker LM, Norton JD (1989)
Chromosome 22 breakpoints in variant Philadelphia transloca-
tions and Philadelphia-negative chronic myeloid leukemia. Can-
cer Genet Cytogenet 37:169–177

19. Caruso DA, Orme LM, Neale AM, RadcliV FJ, Amor GM, Maix-
ner W, Downie P, Hassall TE, Tang ML, Ashley DM (2004)
Results of a phase 1 study utilizing monocyte-derived dendritic
cells pulsed with tumor RNA in children and young adults with
brain cancer. Neuro Oncol 6:236–246

20. Cheung IY, Cheung NK (1997) Molecular detection of GAGE
expression in peripheral blood and bone marrow: utility as a tu-
mor marker for neuroblastoma. Clin Cancer Res 3:821–826

21. Cheung IY, Cheung NK (2001) Detection of microscopic disease:
comparing histology, immunocytology, and RT-PCR of tyrosine
hydroxylase, GAGE, and MAGE. Med Pediatr Oncol 36:210–212

22. Chi DD, Merchant RE, Rand R, Conrad AJ, Garrison D, Turner
R, Morton DL, Hoon DS (1997) Molecular detection of tumor-
associated antigens shared by human cutaneous melanomas and
gliomas. Am J Pathol 150:2143–2152

23. Cooper LJ (2008) Adoptive cellular immunotherapy for child-
hood malignancies. Bone Marrow Transplant 41:183–192

24. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar
H, Hersh EM (2002) Antigen-driven oligoclonal expansion of
tumor-inWltrating B cells in inWltrating ductal carcinoma of the
breast. J Immunol 169:1829–1836

25. Corrias MV, ScaruY P, Occhino M, De Bernardi B, Tonini GP,
Pistoia V (1996) Expression of MAGE-1, MAGE-3 and MART-
1 genes in neuroblastoma. Int J Cancer 69:403–407

26. Dagher R, Long LM, Read EJ, Leitman SF, Carter CS, Tsokos M,
Goletz TJ, Avila N, Berzofsky JA, Helman LJ, Mackall CL
(2002) Pilot trial of tumor-speciWc peptide vaccination and con-
tinuous infusion interleukin-2 in patients with recurrent Ewing
sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH
study. Med Pediatr Oncol 38:158–164
123



838 Cancer Immunol Immunother (2009) 58:831–841
27. Dalerba P, Frascella E, Macino B, Mandruzzato S, Zambon A,
Rosolen A, Carli M, Ninfo V, Zanovello P (2001) MAGE, BAGE
and GAGE gene expression in human rhabdomyosarcomas. Int
J Cancer 93:85–90

28. de Alava E, Antonescu CR, Panizo A, Leung D, Meyers PA,
Huvos AG, Pardo-Mindan FJ, Healey JH, Ladanyi M (2000)
Prognostic impact of P53 status in Ewing sarcoma. Cancer
89:783–792

29. De Vleeschouwer S, Van Calenbergh F, Demaerel P, Flamen P,
Rutkowski S, Kaempgen E, WolV JE, Plets C, Sciot R, Van Gool
SW (2004) Transient local response and persistent tumor control
in a child with recurrent malignant glioma: treatment with com-
bination therapy including dendritic cell therapy. Case report.
J Neurosurg 100:492–497

30. De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F,
Van Loon J, GoYn J, Sciot R, Wilms G, Demaerel P, Warmuth-
Metz M, Soerensen N, WolV JE, Wagner S, Kaempgen E, Van
Gool SW (2008) Postoperative adjuvant dendritic cell-based
immunotherapy in patients with relapsed glioblastoma multi-
forme. Clin Cancer Res 14:3098–3104

31. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter
M, Kovar H, Joubert I, de Jong P, Rouleau G (1992) Gene fusion
with an ETS DNA-binding domain caused by chromosome trans-
location in human tumours. Nature 359:162–165

32. Dennis SL, Manji SS, Carrington DP, Scarcella DL, Ashley DM,
Smith PJ, Algar EM (2002) Expression and mutation analysis of
the Wilms’ tumor 1 gene in human neural tumors. Int J Cancer
97:713–715

33. Driman D, Thorner PS, Greenberg ML, Chilton-MacNeill S,
Squire J (1994) MYCN gene ampliWcation in rhabdomyosar-
coma. Cancer 73:2231–2237

34. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Can-
cer immunoediting: from immunosurveillance to tumor escape.
Nat Immunol 3:991–998

35. Engelhard VH, Bullock TN, Colella TA, Sheasley SL, Mullins
DW (2002) Antigens derived from melanocyte diVerentiation
proteins: self-tolerance, autoimmunity, and use for cancer immu-
notherapy. Immunol Rev 188:136–146

36. Euvrard S, Kanitakis J, Claudy A (2003) Skin cancers after organ
transplantation. N Engl J Med 348:1681–1691

37. Finn OJ (2003) Cancer vaccines: between the idea and the reality.
Nat Rev Immunol 3:630–641

38. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) IdentiWca-
tion of an immunodominant peptide of HER-2/neu protoonco-
gene recognized by ovarian tumor-speciWc cytotoxic T lymphocyte
lines. J Exp Med 181:2109–2117

39. Foley EJ (1953) Antigenic properties of methylcholanthrene-in-
duced tumors in mice of the strain of origin. Cancer Res 13:835–
837

40. Frost JD, Hank JA, Reaman GH, Frierdich S, Seeger RC, Gan J,
Anderson PM, Ettinger LJ, Cairo MS, Blazar BR, Krailo MD,
Matthay KK, Reisfeld RA, Sondel PM (1997) A phase I/IB trial
of murine monoclonal anti-GD2 antibody 14.G2a plus interleu-
kin-2 in children with refractory neuroblastoma: a report of the
Children’s Cancer Group. Cancer 80:317–333

41. Gambini C, Sementa AR, Boni L, Marino CE, Croce M, Negri F,
Pistoia V, Ferrini S, Corrias MV (2003) Expression of HER2/neu
is uncommon in human neuroblastic tumors and is unrelated to
tumor progression. Cancer Immunol Immunother 52:116–120

42. Gandhi MK, Tellam JT, Khanna R (2004) Epstein-Barr virus-
associated Hodgkin’s lymphoma. Br J Haematol 125:267–281

43. Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik
GA, Levine JE, Chang AE, Braun TM, Mule JJ (2001) Vaccina-
tion of pediatric solid tumor patients with tumor lysate-pulsed
dendritic cells can expand speciWc T cells and mediate tumor
regression. Cancer Res 61:8513–8519

44. Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J (1997)
Prognostic signiWcance of HER2 and HER4 coexpression in
childhood medulloblastoma. Cancer Res 57:3272–3280

45. Haapasalo H, Hyytinen E, Sallinen P, Helin H, Kallioniemi OP,
Isola J (1996) c-erbB-2 in astrocytomas: infrequent overexpres-
sion by immunohistochemistry and absence of gene ampliWcation
by Xuorescence in situ hybridization. Br J Cancer 73:620–623

46. Hachitanda Y, Toyoshima S, Akazawa K, Tsuneyoshi M (1998)
N-myc gene ampliWcation in rhabdomyosarcoma detected by
Xuorescence in situ hybridization: its correlation with histologic
features. Mod Pathol 11:1222–1227

47. Hanson HL, Donermeyer DL, Ikeda H, White JM, Shankaran V,
Old LJ, Shiku H, Schreiber RD, Allen PM (2000) Eradication of
established tumors by CD8+ T cell adoptive immunotherapy.
Immunity 13:265–276

48. Himoudi N, Yan M, Papanastasiou A, Anderson J (2008) MYCN
as a target for cancer immunotherapy. Cancer Immunol Immun-
other 57:693–700

49. Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh
KT (2004) Cell surface expression of epidermal growth factor
receptor and Her-2 with nuclear expression of Her-4 in primary
osteosarcoma. Cancer Res 64:2047–2053

50. Hui AB, Lo KW, Yin XL, Poon WS, Ng HK (2001) Detection of
multiple gene ampliWcations in glioblastoma multiforme using
array-based comparative genomic hybridization. Lab Invest
81:717–723

51. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D,
Levitsky H (1998) The central role of CD4(+) T cells in the anti-
tumor immune response. J Exp Med 188:2357–2368

52. Ishida H, Matsumura T, Salgaller ML, Ohmizono Y, Kadono Y,
Sawada T (1996) MAGE-1 and MAGE-3 or -6 expression in neu-
roblastoma-related pediatric solid tumors. Int J Cancer 69:375–
380

53. Ito R, Asami S, Motohashi S, Ootsuka S, Yamaguchi Y, Chin M,
Shichino H, Yoshida Y, Nemoto N, Mugishima H, Suzuki T
(2005) SigniWcance of survivin mRNA expression in prognosis
of neuroblastoma. Biol Pharm Bull 28:565–568

54. Jacobs JF, Brasseur F, Hulsbergen-van de Kaa CA, van de Rakt
MW, Figdor CG, Adema GJ, Hoogerbrugge PM, Coulie PG, de
Vries IJ (2007) Cancer-germline gene expression in pediatric
solid tumors using quantitative real-time PCR. Int J Cancer
120:67–74

55. Jacobs JF, Hoogerbrugge PM, de Rakt MW, Aarntzen EH,
Figdor CG, Adema GJ, de Vries IJ (2007) Phenotypic and func-
tional characterization of mature dendritic cells from pediatric
cancer patients. Pediatr Blood Cancer 49:924–927

56. Jacobs JF, Aarntzen EH, Sibelt LA, Blokx WA, Boullart AC, Ger-
ritsen MJ, Hoogerbrugge PM, Figdor CG, Adema GJ, Punt CJ, de
Vries IJ (2008) Vaccine-speciWc local T cell reactivity in immuno-
therapy-associated vitiligo in melanoma patients. Cancer Immunol
Immunother 58(1):145–151. doi:10.1007/s00262-008-0506-5

57. Jacobs JF, Grauer OM, Brasseur F, Hoogerbrugge PM, Wessel-
ing P, Gidding CE, van de Rakt MW, Figdor CG, Coulie PG,
de Vries IJ, Adema GJ (2008) Selective cancer-germline gene
expression in pediatric brain tumors. J Neurooncol 88(3):273–
280

58. Jaros E, Perry RH, Adam L, Kelly PJ, Crawford PJ, Kalbag RM,
Mendelow AD, Sengupta RP, Pearson AD (1992) Prognostic
implications of p53 protein, epidermal growth factor receptor,
and Ki-67 labelling in brain tumours. Br J Cancer 66:373–385

59. Joshi BH, Leland P, Puri RK (2003) IdentiWcation and character-
ization of interleukin-13 receptor in human medulloblastoma and
targeting these receptors with interleukin-13-pseudomonas exo-
toxin fusion protein. Croat Med J 44:455–462

60. Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H,
Sugiyama K, Arita K, Kurisu K (2003) Expression of survivin in
123

http://dx.doi.org/10.1007/s00262-008-0506-5


Cancer Immunol Immunother (2009) 58:831–841 839
astrocytic tumors: correlation with malignant grade and prognosis.
Cancer 97:1077–1083

61. Kalos M (2003) Tumor antigen-speciWc T cells and cancer immu-
notherapy: current issues and future prospects. Vaccine 21:781–
786

62. Kalwak K, Ussowicz M, Gorczynska E, Turkiewicz D, Toporski
J, Dobaczewski G, Latos-Grazynska E, Ryczan R, Noworolska-
Sauren D, Chybicka A (2003) Immunologic eVects of intermedi-
ate-dose IL-2 i.v. after autologous hematopoietic cell transplan-
tation in pediatric solid tumors. J Interferon Cytokine Res
23:173–181

63. Karanikas V, Lurquin C, Colau D, van Baren N, De Smet C,
Lethe B, Connerotte T, Corbiere V, Demoitie MA, Lienard D,
Dreno B, Velu T, Boon T, Coulie PG (2003) Monoclonal anti-
MAGE-3 CTL responses in melanoma patients displaying tumor
regression after vaccination with a recombinant canarypox virus.
J Immunol 171:4898–4904

64. Katoh M, Wilmotte R, Belkouch MC, de Tribolet N, Pizzolato G,
Dietrich PY (2003) Survivin in brain tumors: an attractive target
for immunotherapy. J Neurooncol 64:71–76

65. Kawakami M, Kawakami K, Takahashi S, Abe M, Puri RK
(2004) Analysis of interleukin-13 receptor alpha2 expression in
human pediatric brain tumors. Cancer 101:1036–1042

66. Kershaw MH, Trapani JA, Smyth MJ (1995) Cytotoxic lympho-
cytes redirecting the cell-mediated immune response for the ther-
apy of cancer. Ther Immunol 2:173–181

67. Khan J, Bittner ML, Saal LH, Teichmann U, Azorsa DO, Gooden
GC, Pavan WJ, Trent JM, Meltzer PS (1999) cDNA microarrays
detect activation of a myogenic transcription program by the
PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA
96:13264–13269

68. Koehl U, Sorensen J, Esser R, Zimmermann S, Gruttner HP,
Tonn T, Seidl C, Seifried E, Klingebiel T, Schwabe D (2004) IL-
2 activated NK cell immunotherapy of three children after haplo-
identical stem cell transplantation. Blood Cells Mol Dis 33:261–
266

69. Korshunov A, Golanov A, Timirgaz V (2002) Immunohisto-
chemical markers for prognosis of ependymal neoplasms. J Neu-
rooncol 58:255–270

70. Kuroki M, Shibaguchi H, Imakiire T, Uno K, Shirota K, Higuchi
T, Shitama T, Yamada H, Hirose Y, Nagata A (2003) Immuno-
therapy and gene therapy of cancer using antibodies or their
genes against tumor-associated antigens. Anticancer Res
23:4377–4381

71. Lamont JM, McManamy CS, Pearson AD, CliVord SC, Ellison
DW (2004) Combined histopathological and molecular cytoge-
netic stratiWcation of medulloblastoma patients. Clin Cancer Res
10:5482–5493

72. Lampson LA (2003) Brain tumor immunotherapy: an immunol-
ogist’s perspective. J Neurooncol 64:3–11

73. Lang FF, Miller DC, Pisharody S, Koslow M, Newcomb EW
(1994) High frequency of p53 protein accumulation without p53
gene mutation in human juvenile pilocytic, low grade and ana-
plastic astrocytomas. Oncogene 9:949–954

74. Larin SS, Georgiev GP, Kiselev SL (2004) Gene transfer ap-
proaches in cancer immunotherapy. Gene Ther 11(Suppl 1):S18–
S25

75. Leung W, Hudson MM, Strickland DK, Phipps S, Srivastava DK,
Ribeiro RC, Rubnitz JE, Sandlund JT, Kun LE, Bowman LC,
Razzouk BI, Mathew P, Shearer P, Evans WE, Pui CH (2000)
Late eVects of treatment in survivors of childhood acute myeloid
leukemia. J Clin Oncol 18:3273–3279

76. Linet MS, Ries LA, Smith MA, Tarone RE, Devesa SS (1999)
Cancer surveillance series: recent trends in childhood cancer
incidence and mortality in the United States. J Natl Cancer Inst
91:1051–1058

77. Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS (2004)
HER-2, gp100, and MAGE-1 are expressed in human glioblastoma
and recognized by cytotoxic T cells. Cancer Res 64:4980–4986

78. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK
cells in immunotherapy of human cancer. Nat Rev Immunol
7:329–339

79. Lode HN, Pertl U, Xiang R, Gaedicke G, Reisfeld RA (2000)
Tyrosine hydroxylase-based DNA-vaccination is eVective
against murine neuroblastoma. Med Pediatr Oncol 35:641–646

80. Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of
DNA vaccine studies in humans. Expert Rev Vaccines 7:175–
191

81. Mackall C, Berzofsky J, Helman LJ (2000) Targeting tumor spe-
ciWc translocations in sarcomas in pediatric patients for immuno-
therapy. Clin Orthop Relat Res 373:25–31

82. Mackall CL, Rhee EH, Read EJ, Khuu HM, Leitman SF, Bern-
stein D, Tesso M, Long LM, Grindler D, Merino M, Kopp W,
Tsokos M, Berzofsky JA, Helman LJ (2008) A pilot study of
consolidative immunotherapy in patients with high-risk pediatric
sarcomas. Clin Cancer Res 14:4850–4858

83. Mark HF, Brown S, Sun CL, Samy M, AWfy A (1998) Fluores-
cent in situ hybridization detection of HER-2/neu gene ampliWca-
tion in rhabdomyosarcoma. Pathobiology 66:59–63

84. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA,
Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ,
Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ,
Okazaki IJ, McGlave PB (2005) Successful adoptive transfer and
in vivo expansion of human haploidentical NK cells in patients
with cancer. Blood 105:3051–3057

85. Miralbell R, Tolnay M, Bieri S, Probst A, Sappino AP, Berchtold
W, Pepper MS, Pizzolato G (1999) Pediatric medulloblastoma:
prognostic value of p53, bcl-2, Mib-1, and microvessel density.
J Neurooncol 45:103–110

86. Modak S, Cheung NK (2005) Antibody-based targeted radiation
to pediatric tumors. J Nucl Med 46(Suppl 1):157S–163S

87. Modak S, Cheung NK (2007) Disialoganglioside directed immu-
notherapy of neuroblastoma. Cancer Invest 25:67–77

88. Murray JL, Cunningham JE, Brewer H, Mujoo K, Zukiwski AA,
PodoloV DA, Kasi LP, Bhadkamkar V, Fritsche HA, Benjamin
RS (1994) Phase I trial of murine monoclonal antibody 14G2a
administered by prolonged intravenous infusion in patients with
neuroectodermal tumors. J Clin Oncol 12:184–193

89. Nakachi K, Hayashi T, Imai K, Kusunoki Y (2004) Perspectives
on cancer immuno-epidemiology. Cancer Sci 95:921–929

90. Novellino L, Castelli C, Parmiani G (2005) A listing of human tu-
mor antigens recognized by T cells: March 2004 update. Cancer
Immunol Immunother 54:187–207

91. Oda Y, Wehrmann B, Radig K, Walter H, Rose I, Neumann W,
Roessner A (1995) Expression of growth factors and their recep-
tors in human osteosarcomas. Immunohistochemical detection of
epidermal growth factor, platelet-derived growth factor and their
receptors: its correlation with proliferating activities and p53
expression. Gen Diagn Pathol 141:97–103

92. Okada H, Low KL, Kohanbash G, McDonald HA, Hamilton RL,
Pollack IF (2008) Expression of glioma-associated antigens in
pediatric brain stem and non-brain stem gliomas. J Neurooncol
88(3):245–250

93. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJ (1998)
SpeciWc T helper cell requirement for optimal induction of cyto-
toxic T lymphocytes against major histocompatibility complex
class II negative tumors. J Exp Med 187:693–702

94. Parney IF, Chang LJ (2003) Cancer immunogene therapy: a
review. J Biomed Sci 10:37–43

95. Pavlenko M, Leder C, Pisa P (2005) Plasmid DNA vaccines
against cancer: cytotoxic T-lymphocyte induction against tumor
antigens. Expert Rev Vaccines 4:315–327
123



840 Cancer Immunol Immunother (2009) 58:831–841
96. Penn I (1988) Tumors of the immunocompromised patient. Annu
Rev Med 39:63–73

97. Pertl U, Wodrich H, Ruehlmann JM, Gillies SD, Lode HN, Reis-
feld RA (2003) Immunotherapy with a posttranscriptionally
modiWed DNA vaccine induces complete protection against met-
astatic neuroblastoma. Blood 101:649–654

98. Porter DL, Antin JH (1999) The graft-versus-leukemia eVects of
allogeneic cell therapy. Annu Rev Med 50:369–386

99. RansohoV RM, Kivisakk P, Kidd G (2003) Three or more routes
for leukocyte migration into the central nervous system. Nat Rev
Immunol 3:569–581

100. Rickert CH, Strater R, Kaatsch P, Wassmann H, Jurgens H,
Dockhorn-Dworniczak B, Paulus W (2001) Pediatric high-grade
astrocytomas show chromosomal imbalances distinct from adult
cases. Am J Pathol 158:1525–1532

101. Ridgway D (2003) The Wrst 1000 dendritic cell vaccinees. Cancer
Invest 21:873–886

102. Rimoldi D, Romero P, Carrel S (1993) The human melanoma
antigen-encoding gene, MAGE-1, is expressed by other tumour
cells of neuroectodermal origin such as glioblastomas and neu-
roblastomas. Int J Cancer 54:527–528

103. Rivoltini L, Arienti F, Orazi A, Cefalo G, Gasparini M, Gamba-
corti-Passerini C, Fossati-Bellani F, Parmiani G (1992) Pheno-
typic and functional analysis of lymphocytes inWltrating
paediatric tumours, with a characterization of the tumour pheno-
type. Cancer Immunol Immunother 34:241–251

104. Rodolfo M, Luksch R, Stockert E, Chen YT, Collini P, Ranzani
T, Lombardo C, Dalerba P, Rivoltini L, Arienti F, Fossati-Bellani
F, Old LJ, Parmiani G, Castelli C (2003) Antigen-speciWc immu-
nity in neuroblastoma patients: antibody and T-cell recognition
of NY-ESO-1 tumor antigen. Cancer Res 63:6948–6955

105. Rowlinson-Busza G, Epenetos AA (1992) Targeted delivery of
biologic and other antineoplastic agents. Curr Opin Oncol
4:1142–1148

106. Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A
(2005) Exploitation of alloreactive NK cells in adoptive immuno-
therapy of cancer. Curr Opin Immunol 17:211–217

107. Russell HV, Strother D, Mei Z, Rill D, Popek E, Biagi E, Yvon
E, Brenner M, Rousseau R (2007) Phase I trial of vaccination
with autologous neuroblastoma tumor cells genetically modiWed
to secrete IL-2 and lymphotactin. J Immunother 30:227–233

108. Sahin U, Koslowski M, Tureci O, Eberle T, Zwick C, Romeike
B, Moringlane JR, Schwechheimer K, Feiden W, Pfreundschuh
M (2000) Expression of cancer testis genes in human brain
tumors. Clin Cancer Res 6:3916–3922

109. Sasaki T, Lopes MB, Hankins GR, Helm GA (2002) Expression
of survivin, an inhibitor of apoptosis protein, in tumors of the
nervous system. Acta Neuropathol (Berl) 104:105–109

110. Scarcella DL, Chow CW, Gonzales MF, Economou C, Brasseur
F, Ashley DM (1999) Expression of MAGE and GAGE in high-
grade brain tumors: a potential target for speciWc immunotherapy
and diagnostic markers. Clin Cancer Res 5:335–341

111. Schwechheimer K, LauXe RM, Schmahl W, Knodlseder M,
Fischer H, HoXer H (1994) Expression of neu/c-erbB-2 in human
brain tumors. Hum Pathol 25:772–780

112. Seibel NL, Dinndorf PA, Bauer M, Sondel PM, Hammond GD,
Reaman GH (1994) Phase I study of tumor necrosis factor-alpha and
actinomycin D in pediatric patients with cancer: a Children’s Cancer
Group study. J Immunother Emphasis Tumor Immunol 16:125–131

113. Seino K, Motohashi S, Fujisawa T, Nakayama T, Taniguchi M
(2006) Natural killer T cell-mediated antitumor immune respons-
es and their clinical applications. Cancer Sci 97:807–812

114. Serraino D, Piselli P, Angeletti C, Scuderi M, Ippolito G, Capo-
bianchi MR (2005) Infection with Epstein-Barr virus and cancer:
an epidemiological review. J Biol Regul Homeost Agents 19:63–
70

115. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ
(2005) Cancer/testis antigens, gametogenesis and cancer. Nat
Rev Cancer 5:615–625

116. Sinkovics JG, Horvath JC (2000) Vaccination against human
cancers (review). Int J Oncol 16:81–96

117. Soling A, Schurr P, Berthold F (1999) Expression and clinical
relevance of NY-ESO-1, MAGE-1 and MAGE-3 in neuroblas-
toma. Anticancer Res 19:2205–2209

118. Sudo T, Kuramoto T, Komiya S, Inoue A, Itoh K (1997) Expres-
sion of MAGE genes in osteosarcoma. J Orthop Res 15:128–132

119. Swann JB, Smyth MJ (2007) Immune surveillance of tumors.
J Clin Invest 117:1137–1146

120. Szybka M, Bartkowiak J, Zakrzewski K, Polis L, Liberski P,
Kordek R (2003) Microsatellite instability and expression of
DNA mismatch repair genes in malignant astrocytic tumors from
adult and pediatric patients. Clin Neuropathol 22:180–186

121. Takahashi Y, Oda Y, Kawaguchi K, Tamiya S, Yamamoto H,
Suita S, Tsuneyoshi M (2004) Altered expression and molecular
abnormalities of cell-cycle-regulatory proteins in rhabdomyosar-
coma. Mod Pathol 17:660–669

122. Trieb K, Lehner R, Stulnig T, Sulzbacher I, Shroyer KR (2003)
Survivin expression in human osteosarcoma is a marker for sur-
vival. Eur J Surg Oncol 29:379–382

123. Truitt RL, Piaskowski V, Kirchner P, McOlash L, Camitta BM,
Casper JT (1992) Immunological evaluation of pediatric cancer
patients receiving recombinant interleukin-2 in a phase I trial.
J Immunother 11:274–285

124. Tsai JY, Aviv H, Benevenia J, Chang VT, Patterson F, Aisner S,
Hameed M (2004) HER-2/neu and p53 in osteosarcoma: an
immunohistochemical and Xuorescence in situ hybridization
analysis. Cancer Invest 22:16–24

125. Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa
E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, Wada
T, Yamashita T, Sato N (2006) Prognostic signiWcance of HLA
class I expression in osteosarcoma deWned by anti-pan HLA class
I monoclonal antibody, EMR8–5. Cancer Sci 97:1374–1380

126. Tweddle DA, Malcolm AJ, Cole M, Pearson AD, Lunec J (2001)
p53 cellular localization and function in neuroblastoma: evidence
for defective G(1) arrest despite WAF1 induction in MYCN-
ampliWed cells. Am J Pathol 158:2067–2077

127. Uchi H, Stan R, Turk MJ, Engelhorn ME, Rizzuto GA, Gold-
berg SM, Wolchok JD, Houghton AN (2006) Unraveling the
complex relationship between cancer immunity and autoimmu-
nity: lessons from melanoma and vitiligo. Adv Immunol
90:215–241

128. Uttenreuther-Fischer MM, Huang CS, Reisfeld RA, Yu AL
(1995) Pharmacokinetics of anti-ganglioside GD2 mAb 14G2a in
a phase I trial in pediatric cancer patients. Cancer Immunol
Immunother 41:29–36

129. van den Broeke LT, Pendleton CD, Mackall C, Helman LJ, Ber-
zofsky JA (2006) IdentiWcation and epitope enhancement of a
PAX-FKHR fusion protein breakpoint epitope in alveolar rhab-
domyosarcoma cells created by a tumorigenic chromosomal
translocation inducing CTL capable of lysing human tumors.
Cancer Res 66:1818–1823

130. van Noesel MM, Versteeg R (2004) Pediatric neuroblastomas:
genetic and epigenetic ‘danse macabre’. Gene 325:1–15

131. Velders MP, Markiewicz MA, Eiben GL, Kast WM (2003)
CD4+ T cell matters in tumor immunity. Int Rev Immunol
22:113–140

132. Vital A, Loiseau H, Kantor G, Daucourt V, Chene G, Cohadon F,
Rougier A, Rivel J, Vital C (1998) p53 protein expression in
grade II astrocytomas: immunohistochemical study of 100 cases
with long-term follow-up. Pathol Res Pract 194:831–836

133. Vlk V, Eckschlager T, Kavan P, Kabickova E, Koutecky J,
Sobota V, Bubenik J, Pospisilova D (2000) Clinical ineVectiveness
123



Cancer Immunol Immunother (2009) 58:831–841 841
of IL-2 and/or IFN alpha administration after autologous PBSC
transplantation in pediatric oncological patients. Pediatr Hematol
Oncol 17:31–44

134. Ward S, Casey D, Labarthe MC, Whelan M, Dalgleish A, Pandha
H, Todryk S (2002) Immunotherapeutic potential of whole
tumour cells. Cancer Immunol Immunother 51:351–357

135. Wolden SL, Lamborn KR, Cleary SF, Tate DJ, Donaldson SS
(1998) Second cancers following pediatric Hodgkin’s disease.
J Clin Oncol 16:536–544

136. Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant
JP, Lemonnier FA, Leblond V, Langlade-Demoyen P (1998)
Cytotoxic T cell response against the chimeric p210 BCR-ABL
protein in patients with chronic myelogenous leukemia. J Clin
Invest 101:2290–2296

137. Yotnda P, Garcia F, Peuchmaur M, Grandchamp B, Duval M,
Lemonnier F, Vilmer E, Langlade-Demoyen P (1998) Cytotoxic
T cell response against the chimeric ETV6-AML1 protein in
childhood acute lymphoblastic leukemia. J Clin Invest 102:455–
462

138. Yun C, Senju S, Fujita H, Tsuji Y, Irie A, Matsushita S, Nishim-
ura Y (1999) Augmentation of immune response by altered pep-
tide ligands of the antigenic peptide in a human CD4+ T-cell
clone reacting to TEL/AML1 fusion protein. Tissue Antigens
54:153–161

139. Zhou H, Randall RL, Brothman AR, Maxwell T, CoYn CM,
Goldsby RE (2003) Her-2/neu expression in osteosarcoma in-
creases risk of lung metastasis and can be associated with gene
ampliWcation. J Pediatr Hematol Oncol 25:27–32
123


	Targets for active immunotherapy against pediatric solid tumors
	Abstract
	Introduction
	The immune system can reject tumors
	Immunotherapy strategies in pediatric cancer patients
	Antibodies
	Adoptive cellular immunotherapy
	In vivo induction of tumor-speciWc lymphocytes

	Tumor-associated antigens
	Antigens resulting from mutations or translocations
	Antigens encoded by cancer-germline genes
	DiVerentiation antigens
	Antigens encoded by genes that are overexpressed in tumors

	T cell deWned antigens in pediatric solid tumors
	Which antigens to choose for pediatric clinical trials?
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


