
DOI 10.1140/epja/i2014-14020-3

Regular Article – Theoretical Physics

Eur. Phys. J. A (2014) 50: 20 THE EUROPEAN
PHYSICAL JOURNAL A

Symmetry energy in nuclear density functional theory�

W. Nazarewicz1,2,3,a, P.-G. Reinhard4, W. Satu�la3, and D. Vretenar5

1 Department of Physics and Astronomy, University of Tennessee Knoxville, Tennessee 37996, USA
2 Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
3 Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland
4 Institut für Theoretische Physik, Staudtstr. 7 D-90158 Universität Erlangen/Nürnberg, Erlangen, Germany
5 Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia

Received: 22 July 2013 / Revised: 22 August 2013
Published online: 25 February 2014
c© The Author(s) 2013. This article is published with open access at Springerlink.com
Communicated by A. Ramos

Abstract. The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this
paper we discuss various aspects of symmetry energy in the framework of nuclear density functional theory,
considering both non-relativistic and relativistic self-consistent mean-field realizations side by side. Key
observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry
energy and correlations between observables and symmetry energy parameters, using statistical covariance
analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental
efforts.

1 Introduction

Density Functional Theory (DFT) is a universal approach
used to describe properties of complex, strongly correlated
many-body systems. Originally developed in the context
of many-electron systems in condensed matter physics and
quantum chemistry [1,2] (also known under the name of
Kohn-Sham DFT), it is also a tool of choice in microscopic
studies of complex heavy nuclei. The basic implementation
of this framework is in terms of self-consistent mean-field
(SCMF) models [3–5].

Extending the DFT to atomic nuclei, the nuclear DFT,
is not straightforward as nuclei are self-bound, small, su-
perfluid aggregations of two kinds of fermions, governed
by strong surface effects. Their smallness leads to appre-
ciable quantal fluctuations (finite-size effects) which are
difficult to incorporate into the energy density functional
(EDF). The lack of external binding potential implies that
the nuclear DFT must be necessarily formulated in terms
of intrinsic normal and anomalous (pairing) densities [6].
A density matrix expansion of the effective interaction
suggests that, in addition to the standard local nucleon
density, superior EDFs should also include more involved
nucleon aggregates such as the kinetic-energy density and
spin-orbit density [3–5]

The commonly used single-reference SCMF methods
include the local (Skyrme), non-local (Gogny) and covari-
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ant (relativistic) approaches [5,7,8]. All these approaches
are thought to be different realizations of an underlying
effective field theory [9] with the ultraviolet physics hidden
in free parameters adjusted to observations. For that rea-
son, predictions for low-energy (infrared) physics should
be fairly independent of the particular variant used in cal-
culations [10–13]. The underlying EDFs are constructed
in a phenomenological way, with coupling constants opti-
mized to selected nuclear data and expected properties of
homogeneous nuclear matter.

In practice, nuclear EDFs differ in their functional
form and are subject to different optimization strategies
causing that their predictions vary even within a single
family of EDFs. In particular, large uncertainties remain
in the isovector channel, which is poorly constrained by
experiment. A key quantity characterizing the interaction
in the isovector channel is the nuclear symmetry energy
(NSE) describing the static response of the nucleus to the
neutron-proton asymmetry.

As discussed in this Topical Issue, the NSE influences a
broad spectrum of phenomena, ranging from subtle isospin
mixing effects in N ∼ Z nuclei to particle stability of
neutron-rich nuclei, to nuclear collective modes, and to
radii and masses of neutron stars. Various nuclear ob-
servables are sensitive probes of NSE, and numerous phe-
nomenological indicators can be constructed to probe its
various aspects.

It is the aim of this contribution to analyze the re-
lations between NSE and measurable observables in fi-
nite nuclei. The most promising observables for isovector
properties that have stimulated vigorous experimental and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81755988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Page 2 of 13 Eur. Phys. J. A (2014) 50: 20

theoretical activity include neutron radii, neutron skins,
dipole polarizability, and neutron star radii. The ongoing
efforts are focused on better constraining the uncertain-
ties concerning the equation of state (EOS) of the sym-
metric and asymmetric nucleonic matter (NM) and, in
particular, the symmetry energy and its density depen-
dence. Parameters that characterize the NSE are not en-
tirely independent. They are affected by key nuclear ob-
servables in different ways. Thus it is the sine qua non of
a further progress in this area to understand the corre-
lation pattern between NSE parameters and finite-nuclei
observables, and to provide uncertainty quantification on
theoretical predictions using the powerful methods of sta-
tistical analysis [14].

A second aim is to understand the dependences from
a formal perspective and to explore the impact of con-
figuration mixing. Within the independent particle pic-
ture the isovector response can be described in terms of
a charge-dependent symmetry potential that shifts the
neutron well with respect to the proton average poten-
tial. The effect can be estimated quantitatively within
the Fermi-gas model (FGM) augmented by a schematic
isospin-isospin interaction [15],

VTT =
1
2
κT̂ · T̂ . (1)

In the Hartree approximation this model gives rise to a
quadratic dependence of the NSE on the neutron excess
I = (N − Z)/A,

Esym/A = asymI2 = (asym,kin + asym,int)I2, (2)

as T = |Tz| = |N − Z|/2 in the ground states of almost
all nuclei. The FGM, in spite of its simplicity, has played
an important role in our understanding of the NSE. In
particular, it separates the NSE strength into kinetic and
interaction (potential) contributions, and predicts a near-
equality asym,kin ≈ asym,int of these contributions. It also
provides an estimate asym ≈ 25MeV for the NSE coeffi-
cient (see ref. [16] for a recent discussion).

Furthermore, we note that the SCMF approach can
lead to spontaneous breaking of symmetries. This appar-
ent drawback can be turned into an advantage, as the sym-
metry breaking mechanism allows to incorporate many
inter-nucleon correlations within a single product state
or, alternatively, within a single-reference DFT sacrific-
ing good quantum numbers; broken symmetries have to
be restored a posteriori. We will address this topic using
the example of isospin mixing which naturally has an im-
pact on isovector properties.

This survey is organized as follows. Section 2 outlines
the SCMF approaches and details various theoretical in-
gredients of the models employed in this work. Observ-
ables pertaining to bulk NM and finite nuclei that are
essential for NSE are discussed in sect. 3. Constraints on
NSE and correlations between observables and NSE pa-
rameters, using the statistical covariance technique, are
presented in sect. 4. Section 5 summarizes the current
status of NSE parameters. The planned extensions of the
current DFT work are laid out in sect. 6. Finally, sect. 7
contains the conclusions of this survey.

2 Nuclear DFT

The nuclear EDF constitutes a crucial ingredient for a set
of DFT-based theoretical tools that enable an accurate
description of ground-state properties, collective excita-
tions, and large-amplitude dynamics over the entire chart
of nuclides, from relatively light systems to superheavy
nuclei, and from the valley of β-stability to the nucleon
drip-lines. In general EDFs are not directly related to any
specific microscopic inter-nucleon interaction, but rather
represent universal functionals of nucleon densities and
currents. With a small set of global parameters adjusted
to empirical properties of nucleonic matter and to selected
data on finite nuclei [17,18], models based on EDFs enable
a consistent description of a variety of nuclear structure
phenomena.

The unknown exact and universal nuclear EDF is ap-
proximated by simple, mostly analytical, functionals built
from powers and gradients of nucleonic densities and cur-
rents, representing distributions of matter, spins, momen-
tum and kinetic energy. When pairing correlations are in-
cluded, they are represented by pair (anomalous) densi-
ties. In the field of nuclear structure this method is analo-
gous to Kohn-Sham DFT. SCMF models effectively map
the nuclear many-body problem onto a one-body problem
using auxilliary Kohn-Sham single-particle orbitals. By in-
cluding many-body correlations in EDF, the Kohn-Sham
method in principle goes beyond the Hartree-Fock (HF)
or Hartree-Fock-Bogolyubov (HFB) approximations and,
in addition, it has the advantage of using local potentials.
A broad range of nuclear properties have been very suc-
cessfully described using SCMF models based on Skyrme
EDFs, relativistic EDFs, and the Gogny interaction [5,7,
8,19–22]. (Note that the Gogny model is not strictly lo-
cal as the other EDFs.) In the remainder of this section
we briefly outline the Skyrme-Hartree-Fock (SHF) method
and the relativistic mean-field (RMF) approach. As both
methods are widely used and extensively described in the
literature, we keep the presentation short and concentrate
on a side-by-side comparison of the models.

The basis of any mean-field approach is a set of single-
nucleon canonical (Kohn-Sham) orbitals ψα(r), with oc-
cupations amplitudes vα. The ψα denote Dirac four-
spinor wave functions in the RMF framework, and two-
component-spinor wave functions in the SHF which is a
classical mean-field model. The canonical occupation am-
plitudes vα are determined by the pairing interaction. The
starting point of a particular model is an EDF expressed in
terms of ψα, vα and the local densities derived therefrom.
The energy functional for the SHF method reads

E =
∫

d3r (Ekin + Epot) + ECoul + Epair + Ecm, (3)

Ekin =
�

2

2mp
τp +

�
2

2mn
τn

Ecm = − 1
2mA

〈
(
P̂cm

)2〉.

The kinetic energy Ekin is expressed in terms of
single-nucleon wave functions. The Skyrme functional is
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Table 1. Upper: The basic isoscalar (T = 0) and isovector (T = 1) local densities of SHF (left) and RMF (right). Lower: The
potential-energy densities in the three considered SCMF models. Model parameters (third row) defining the coupling constants
are indicated by lowercase latin letters. For further explanation see text.

Densities

SHF RMF

T = 0 T = 1 T = 0 T = 1

ρ0(r) =
P

α v2
α ψ†

αψα ρ1(r) =
P

α v2
α ψ†

ατ̂3ψα ρ0(r) =
P

α v2
α ψ†

αψα ρ1(r) =
P

α v2
α ψ†

ατ̂3ψα

τ0(r) =
P

α v2
α ∇ψ†

α∇ψα τ1(r) =
P

α v2
α ∇ψ†

ατ̂3∇ψα ρS(r) =
P

α v2
α ψ†

αγ̂0ψα

J0(r) = −i
P

α v2
α ψ†

α∇ × σ̂ψα J1(r) = −i
P

α v2
α ψ†

ατ̂3∇×σ̂ψα

Potential-energy density

SHF RMF-PC RMF-ME

T = 0 T = 1 T = 0 T = 1 T = 0 T = 1

ρρ Cρ
0ρ2

0 Cρ
1ρ2

1 Gωρ2
0 Gρρ2

1 Gωρ0
1

−Δ+m2
ω

ρ0 Gρρ1
1

−Δ+m2
ρ
ρ1

mass Cτ
0 ρ0τ0 Cτ

1 ρ1τ1 Gσρ2
S GσρS

1
−Δ+m2

σ
ρS

� · s C∇J
0 ρ0∇·J0 C∇J

1 ρ1∇·J1 “ “

gradient CΔρ
0 (∇ρ0)

2 CΔρ
1 (∇ρ1)

2 fS(∇ρS)2

dens. dep. Cρ
0 = cρ

0 + dρ
0ρ

a
0 Cρ

1 = cρ
1 + dρ

1ρ
a
0 Gi = ai + (bi + cix)e−dix Gi = ai

1+bi(x+di)
2

1+ci(x+di)2
Gρ = gρe−aρ(x−1)

Cτ
T = cτ

T , CΔρ
T = cΔρ

T , C∇J
T = c∇J

T i ∈ {σ, ω, ρ}, x = ρ0
ρsat

i ∈ {σ, ω}, x = ρ0
ρsat

contained in the interaction part with the potential-energy
density Epot. The Coulomb energy ECoul consists of the
direct Coulomb term, and the Coulomb exchange that is
usually taken into account at the level of the Slater ap-
proximation. In most applications the center-of-mass cor-
rection Ecm is applied a posteriori because its variation
would considerably complicate the mean-field equations.
The pairing functional Epair will be detailed later. The
RMF approach is usually formulated in terms of a La-
grangian,

L =
∫

d3r (Lkin − Epot) − ECoul − Epair − Ecm, (4)

Lkin =
∑
α

v2
αψ†

αγ̂0(iγ̂ · ∂ − m)ψα, (5)

where γ̂ is the Dirac matrix. Again, the kinetic part is ex-
pressed explicitly in terms of Dirac spinor wave functions,
whereas interaction terms are included in the potential
energy density Epot. Further contributions from Coulomb,
pairing and center-of-mass motion are treated similarly as
in the SHF approach.

The basic building blocks of an EDF are local densities
and currents built from single-nucleon wave functions [5,
23]. These are summarized in the upper part of table 1. All
densities appear in two flavors [24,25]: isoscalar (T = 0),
or total density (sum of proton and neutron densities),
and isovector (T = 1) density (difference between neutron
and proton densities). Both can be conveniently expressed
using the isospin operator τ̂3. The basic ingredients of an
EDF are the local densities ρ0 and ρ1. In RMF these can

be associated with the zero-component of the four-vector
current, where ρ0 is often called the vector density and ρ1

the isovector-vector density. RMF uses one more ingredi-
ent, the isoscalar-scalar density denoted here as ρS. SHF
instead employs the kinetic-energy densities τ0/1 and the
spin-orbit densities J0/1. One can show that τ0 and J0

emerge in the non-relativistic limit of ρS [26]. The princi-
pal difference between SHF and RMF is that the quanti-
ties τ0 and J0 are independent in SHF, whereas they are
tightly related through ρS in RMF. Moreover, the RMF
does not invoke an isovector counterpart of ρS thus being
more restricted in the isovector channel.

The lower part of table 1 displays the main components
of the potential-energy density. The underlying is to take
all bi-linear isoscalar combinations of the local densities
and to associate a coupling constant with each term [25].
The SHF confines the combinations to have at most sec-
ond order of derivatives (the term J2 is also dropped).
In the RMF approach one keeps only terms that form
a Lorentz scalar. Moreover, two bi-linear realizations of
RMF will be considered. First there is the straightforward
point-coupling (RMF-PC) realization that corresponds to
contact interactions between nucleons and, second, the
meson-exchange folding (RMF-ME). The folding is mo-
tivated by the traditional route to RMF as a model of
nucleons coupled to classical meson fields. Of course, at
energies characteristic for nuclear binding meson exchange
represents just a convenient representation of the effective
nuclear interaction. In practice RMF-PC and RMF-ME
present equivalent realizations of the relativistic SCMF,
differing in the range of effective interactions (zero range
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vs. finite range) and the choice of density dependence for
the couplings. In practical applications one restricts the
density dependence of coupling (vertex) functions to keep
the number of free parameters to a minimum. In SHF,
only the leading terms ∝ ρ2

0 and ρ2
1 are given a (simple)

density dependence as shown in table 1. In RMF-PC and
RMF-ME, each term has some density dependence, but
not all of these parameters are actually used. In RMF-PC,
in particular, the parameters c1 and a1 (isovector chan-
nel) and cv (isoscalar vector channel) are set to zero [27].
In RMF-ME, the parameters are correlated by additional
boundary conditions on Gi [28,29]. In total, there are 11
adjustable parameters for SHF, 10 for RMF-PC, and 8
for RMF-ME. From a formal perspective, SHF and RMF-
PC are rather similar, differing mainly in the relativistic
kinematics, while RMF-ME includes a significantly differ-
ent density dependence of the couplings, in addition to
the finite range. These three models thus allow to display
separately effects of kinematics, density dependence, and
range of the effective nuclear interaction.

As far as particle-particle interaction is concerned, in
the SHF we use the pairing functional derived from a
density-dependent zero-range force,

Epair =
1
4

∑
q∈{p,n}

v0,q

∫
d3rρ̃2

q

[
1 − ρ(r)

ρpair

]
, (6a)

ρ̃q(r) =
∑
α∈q

uαvα

∣∣ψα(r)
∣∣2, (6b)

where q runs over protons and neutrons. It involves the
pair-density ρ̃q and is usually augmented by some density
dependence. We consider here v0,p, v0,n, and ρpair as free
parameters of the pairing functional in SHF. Note that we
do not recouple to isoscalar and isovector terms because
pairing is considered independently for protons and neu-
trons. Actually, the zero-range pairing force works only to-
gether with a limited phase space for pairing. We use here
a soft cut-off in the space of single-nucleon energies [30]
according to ref. [31].

In RMF calculations we use the recently developed sep-
arable pairing force [32,33]. It is separable in momentum
space, and is completely determined by two parameters
that are adjusted to reproduce in symmetric nuclear mat-
ter the pairing gap of the Gogny force. We have verified
that both pairing prescriptions yield comparable results
for the pairing gaps.

3 Observables

In this section, we discuss observables pertaining to nu-
clear matter (NM) and finite nuclei that are essential for
discussion of NSE. Those observables can be roughly di-
vided [14] into good isovector indicators that correlate
very well with NSE (such as weak-charge form factor, neu-
tron skins, dipole polarizability, slope of the symmetry en-
ergy, and neutron pressure) and poor isovector indicators
(such as nuclear and neutron matter binding energy, giant
resonance energies, isoscalar and isovector effective mass,
incompressibility, and saturation density).

Table 2. Definitions of NMP used in this work. All derivatives
are to be taken at the equilibrium point corresponding to the
saturation density ρeq.

Incompressibility: K∞ = 9 ρ2
0

d2

dρ2
0

E
A
|eq

Symmetry energy: asym = 1
2
ρ2
0

d2

dρ2
1

E
A
|eq

Slope of asym: L = 3ρ0
dasym
dρ0

|eq

Effective mass – SHF: �
2

2m∗ = �
2

2m
+ ∂

∂τ0

E
A
|eq

Effective mass – RMF: m∗ = m + GσρS

TRK enhancement: κTRK = m
m∗ − 1 + 1

2
ρ0

d
dρ1

m
m∗

n

3.1 Nuclear matter properties

Bulk properties of symmetric nuclear matter, called nu-
clear matter properties (NMP), are often used to char-
acterize the properties of a model, or functional respec-
tively. Starting point for the definition of NMP is the
binding energy per nucleon in the symmetric nuclear mat-
ter E/A = E/A(ρ0, ρ1, τ0, τ1). Variation with respect to
Kohn-Sham wave functions establishes a relation τi =
τi(ρ0, ρ1) between kinetic densities τi and densities ρi.
This yields the commonly used binding energy at equi-
librium, E/A[ρ0, ρ1, τ0(ρ0, ρ1), τ1(ρ0, ρ1)], as a function of
the densities ρi alone. Table 2 lists the NMP discussed in
this work. We consider τi as independent variables for the
purpose of a formally compact definition of the effective
mass in SHF. This is indicated by the partial derivatives
with respect to τi for m∗/m in SHF and κTRK. Static
properties are deduced from the binding energy at equi-
librium, which depends on ρi only. This is indicated by
using the total derivatives for K∞, asym, and L. The
slope of the symmetry energy L parametrizes the den-
sity dependence of asym. This quantity is essential for the
characterization of the EOS of neutron matter and the
mass-radius relation in neutron stars [34–39]. The notion
of effective mass is ambiguous in RMF. In this survey,
we have decided to use what is called the Dirac mass.
(Alternatively, one can talk about the effective mass at
the Fermi surface, which is typically 10% larger than the
Dirac mass.) The Thomas-Reiche-Kuhn (TRK) enhance-
ment factor κTRK [40] is merely used to characterize the
isovector effective mass. (The alternative value deduced
from the mass at the Fermi momentum is typically 20%
smaller.) The quantity m∗

n is the neutron effective mass. It
is defined in the same way as the isoscalar effective mass
m∗ but using the derivative with respect to the neutron
kinetic density τn.

Next to NMP come the corresponding bulk surface
parameter, the (isoscalar) surface energy asurf and the
(isovector) surface symmetry energy assym. These sur-
face parameters can be determined from the leptoder-
mous expansion of the liquid drop model (LDM) energy
per nucleon, ELDM = ELDM/A, in terms of inverse radius
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(∝ A−1/3) and neutron excess I [41],

ELDM(A, I) = avol + asurfA
−1/3 + acurvA

−2/3

+asymI2 + assymA−1/3I2 + a(2)
symI4. (7)

The LDM energy ELDM(A, I) is obtained from the DFT
calculation by subtracting the fluctuating shell correc-
tion energy. The general strategy behind this correction
and leptodermous expansion is detailed in refs. [41,42]. In
essence, we combine NM calculations (A = ∞) with (shell-
corrected) DFT calculations for a huge set of spherical
nuclei and extract the surface parameters by a fit to the
expansion (7). Alternatively and simpler, one can compute
the surface energy and surface symmetry energy through
a semi-classical approximation (extended Thomas-Fermi)
for the semi-infinite nuclear matter [43]. In this paper,
we shall apply both strategies, the semi-classical approach
whenever RMF is involved.

An important parameter characterizing the pure neu-
tron matter is the neutron pressure

P (ρn) = ρ2
n

d
dρn

(
E

A

)
n

, (8)

a quantity that is proportional to the slope of the bind-
ing energy of neutron matter at a given neutron density
(derivative of neutron EOS). As discussed below, P is ex-
cellent isovector indicator.

3.2 Observables from finite nuclei

The total energy of a nucleus E(Z,N) is the most basic
observable described by SCMF. It is also the most impor-
tant ingredient for calibrating the functional, see sect. 4.1.
We often consider binding energy differences. Of great im-
portance for stability analysis are separation energies and
Qα values. Another energy observable, potentially useful
in the context of NSE, is the indicator

δVpn = −1
4
[E(N,Z) − E(N − 2, Z)

−E(N,Z − 2) + E(N − 2, Z − 2)], (9)

involving the double difference of binding energies [44].
Since δVpn approximates the mixed partial derivative of
binding energy with respect to N and Z, for nuclei with
an appreciable neutron excess, the average value of δVpn

probes the symmetry energy term of LDM [45]: δV LDM
pn ≈

2(asym +assymA−1/3)/A. That is, the shell-averaged trend
of δVpn is determined by the symmetry and surface sym-
metry energy coefficients.

It has been shown in [46] that effective SCMF pro-
vide a pertinent description of the form factors in the
momentum regime q < 2qF where qF is the Fermi mo-
mentum. The key features of the nuclear density are re-
lated to this low-q range. The basic parameters character-
izing nuclear density distributions are: r.m.s. charge radius
rC, diffraction radius RC, and surface thickness σC [47].
The diffraction radius RC, also called the box-equivalent

radius, parametrizes the gross diffraction pattern which
resemble those of a hard sphere of radius RC [47]. The
actual charge form factor FC(q) falls off faster than the
box-equivalent form factor Fbox. This is due to the finite
surface thickness σ which, in turn, can be determined by
comparing the height of the first maximum of Fbox with
FC from the realistic charge distribution. The charge halo
parameter hC is composed from the three basic charge
form parameters and serves as a nuclear halo parameter
found to be a relevant measure of the outer surface dif-
fuseness [48].

The charge distribution is basically a measure of the
proton distribution. It is only recently that the parity-
violating electron scattering experiment PREX has pro-
vided some information on the weak-charge form factor
FW (q) of 208Pb [49,50]. These unique data gives access to
neutron properties, such as the neutron r.m.s. radius rn.
Closely related and particularly sensitive to the asymme-
try energy is the neutron skin rskin = rn − rp, which is
the difference of neutron and proton r.m.s. radii. (As dis-
cussed in ref. [48], it is better to define the neutron skin
through neutron and proton diffraction radii and surface
thickness. However, for well-bound nuclei, which do not
exhibit halo features, the above definition of rskin is prac-
tically equivalent.) Neutron radii and skins are excellent
isovector indicators [14,36,51–57] that help to check and
improve isovector properties of the nuclear EDF [14].

Nuclear excitations are characterized by the strength
distributions SJT (E) where J is the angular momentum
of the excitation, T its isospin, and E the excitation en-
ergy. For example, the cross section for photo-absorption
is proportional to S11(E). The strengths functions can be
obtained from the excitation spectrum,

SJT (E) =
∑

n

EnBn(EJT )δΔ(E − En), (10)

where En is the excitation energy of state n, Bn(EJT )
the corresponding transition matrix element of multi-
polarity J and isospin T , and δΔ as finite width fold-
ing function —if SJT (E) is calculated theoretically us-
ing, e.g., the random phase approximation (RPA). In our
RPA estimates, we use an energy-dependent width Δ =
max(Δmin, (En−Ethr)/Eslope) which simulates the broad-
ening mechanisms beyond RPA. The parameters for 208Pb
are Δmin = 0.2MeV, Ethr = 10MeV, and Eslope = 5MeV.
The resulting spectral distributions for heavy nuclei, as
208Pb, show one clear giant resonance peak at EGR(JT )
for (J, T ) = (0, 0), (1, 1), (2, 0). We will consider these res-
onance energies as characteristic observables of dynamical
response in heavy nuclei. The strength functions SJT (E)
in light nuclei are much more fragmented and cannot be
reduced to one single characteristic number.

There are other key observables that can be extracted
from the strength distributions. In particular, for the
dipole case S11(E), a key observable is the electric dipole
polarizability,

αD =
∑

n

E−1
n Bn(E11). (11)
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In the following, we will consider αD for 208Pb. It has
been demonstrated [14,57] that αD strongly correlates
with NSE; hence, it can serve as excellent isovector in-
dicator that can be precisely extracted from measured
E1 strength [58]. On the other hand, the low-energy
E1 strength, sometimes referred to as the pygmy dipole
strength, exhibits weak collectivity. The correlation be-
tween the accumulated low-energy strength and the sym-
metry energy is weak, and depends on the energy cutoff
assumed [14,59,60].

Giant resonances are small amplitude excitations and
belong to the regime of linear response. The low-energy
branch of isoscalar quadrupole excitations is often associ-
ated with large amplitude collective motion along nuclear
shapes with substantial quadrupole deformation. Of par-
ticular importance is nuclear fission, which determines ex-
istence of heavy and superheavy nuclei. As a simple and
robust measure of fission, we shall consider the axial fission
barrier height in 266Hs. Unlike actinides, most superheavy
nuclei have one single fission barrier [61–63], which simpli-
fies the analysis for our purpose. It has to be kept in mind
that the inner barrier is often lowered by triaxial shapes,
but this is not important for the study of large-amplitude
nuclear deformability.

4 Symmetry energy: constraints and
correlations

4.1 Brief review of χ2 technique and correlation
analysis

As discussed in sect. 2, the nuclear EDF is characterized
by about a dozen of coupling constants p = (p1, . . . , pF )
that are determined by confronting DFT predictions with
experiment. The standard procedure is to adjust the pa-
rameters p to a large set of nuclear observables in carefully
selected nuclei [5,17,18,64,65]. This is usually done by the
standard least-squares optimization technique. The start-
ing point is the χ2 objective function

χ2(p) =
∑
O

(
O(th)(p) −O(exp)

ΔO

)2

, (12)

where “th” stands for the calculated values, “exp” for ex-
perimental data, and ΔO for adopted errors. The opti-
mum parametrization p0 is the one which minimizes χ2

with the minimum value χ2
0 = χ2(p0). Around the min-

imum p0, there is a range of “reasonable” parametriza-
tions p that can be considered as delivering a good fit,
i.e., χ2(p) ≤ χ2

0 +1. As this range is usually rather small,
we can expand χ2 as

χ2(p)−χ2
0 ≈

F∑
i,j=1

(pi−pi,0)Mij(pj−pj,0), (13)

Mij = 1
2∂pi

∂pj
χ2|p0 . (14)

The reasonable parametrizations thus fill the confidence
ellipsoid given by

(p − p0)M̂(p − p0) ≤ 1, (15)

see sect. 9.8 of [66]. Given a set of parameters p, any ob-
servable A = 〈Â〉 can be uniquely computed. In this way,
A = A(p). The value A thus varies within the confidence
ellipsoid, and this results in some uncertainty ΔA. Let us
assume for simplicity that the observable varies weakly
with p such that one can linearize in the relevant range
A(p) = A0 + (p − p0) · ∂pA. Let us, furthermore, asso-
ciate a weight ∝ exp (−χ2(p)) with each parameter set.
A weighted average over the parameter space yields the
covariance between two observables Â and B̂, which rep-
resents their combined uncertainty,

ΔAΔB =
∑
ij

∂pi
A(M̂−1)ij∂pj

B. (16)

For A = B, eq. (16) gives the variance Δ2A that defines a
statistical uncertainty of an observable. Variance and co-
variance are useful quantities that allow to estimate the
impact of an observable on the model and its parametriza-
tion. We shall explore the covariance analysis in three dif-
ferent ways,

1) We perform a constrained fit during which the observ-
able of interest is kept fixed at a desired value. In
the present paper, we consider the symmetry energy
asym as constraining observable. Comparing uncertain-
ties from a constrained fit with those from an uncon-
strained fit provides a first indicator on the impact of
the constrained observable on other observables.

2) The next step is a trend analysis, in which one per-
forms a series of constrained fits with systematically
varied values of the constraining observable. One then
studies other observables as a function of the con-
strained quantity. This provides valuable information
on possible inter-dependences.

3) Finally, we compute correlation (16) between asym and
other observables. Here, a useful dimensionless mea-
sure is given by the Pearson product-moment correla-
tion coefficient [66],

cAB =
|ΔAΔB|√
ΔA2 ΔB2

. (17)

A value cAB = 1 means fully correlated and cAB = 0
– uncorrelated.

In the following, we will apply these three ways of studying
correlations with asym to different groups of observables.
To this end, we have produced a series of parametrizations
with systematically varied asym for the SV Skyrme family
and for the RMF-ME and RMF-PC models.

The optimization and covariance analysis carried out
in this survey for all three EDFs (SHF-SV, RMF-PC, and
RMF-ME) is based on the same standard set of data on
spherical nuclei (masses, diffraction radii, surface thick-
ness, charge radii, separation energies, isotope shifts, and
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odd-even mass differences) that has originally been pro-
posed in ref. [17] and recently employed in refs. [67,38].
We wish to emphasize that this is the first time that one
consistent phenomenological input has been used to con-
strain SHF and RMF EDFs. A slightly modified variant of
the fitting protocol has been used for RMF-ME. This EDF
did not lead to stable results in the fits which were uncon-
strained by NMP. Consequently, we included the nuclear
matter information on (E/A)eq into the dataset. This is
still much less than in the previously published optimiza-
tion protocols of RMF-ME, in which all NMP were con-
strained [28,29,68].

4.2 Correlations with nuclear matter properties

The NMP corresponding to unconstrained optimization of
SHF-SV, RMF-PC, and RMF-ME EDFs —using the same
standard dataset— are shown in table 3. They are com-
pared with NMP of SHF-RD [67] (employing a modified
density dependence and the standard dataset) and SHF-
TOV [38] (using neutron star data in addition the stan-
dard dataset in the optimization process). As expected,
isoscalar effective mass is significantly lowered in RMF as
compared to SHF, and the opposite holds for κTRK. The
slope parameter L is predicted to be very different in all
five models. In particular, RMF-ME has very low value of
L, and —at the same time— the uncertainty on asym in
this model is very small.

Figure 1 shows the trends for selected properties of
symmetric nuclear matter with asym. The purpose of this
analysis is to relate systematic variations with asym to sta-
tistical uncertainties. The isoscalar properties K∞, m∗/m
as well as the isovector dynamical response κTRK are fairly
insensitive to asym. Their variation with asym are much
smaller than the typical statistical uncertainties. This in-
dependency is also indicated by the fact that the un-
certainty obtained in the unconstrained fit is not visibly
larger than those from the constrained optimizations. The
trend is markedly different for the density dependence of
the symmetry energy L: variations with asym well exceed
the statistical error bars and the uncertainties from uncon-
strained fits are larger than those from constrained calcu-
lations. It is to be noted that the dedicated variations of
asym stay within the uncertainty of asym in the uncon-
strained optimization. The uncertainty of L in the free
fit thus covers nicely the uncertainty of the constrained
calculations plus the variation of L with asym. Anyway,
the results shows that L cannot be used as independent
NMP although the formal structure of the EDF would al-
low that. There seems to be a strong link established by
the data which yet has to be worked out.

4.3 Correlations with properties of finite nuclei

Figure 2 illustrates the trends with asym and extrapola-
tion uncertainties for three observables in 208Pb: weak-
charge form factor at q = 0.475 fm−1 (q-value of PREX),
neutron skin, and dipole polarizability. These observables

 150

 200

 250

 300

 28  30  32  34  36

K
∞

  (
M

eV
)

asym (MeV)

RMF ME
RMF PC
SHF SV

 0.6

 0.8

 1.0

m
*/

m

-50

 0

 50

 100

 150

L
  (

M
eV

)

-0.4

 0

 0.4

 0.8

κ T
R

K
   

Fig. 1. Behavior of selected nuclear matter properties with
symmetry energy asym for the SV Skyrme family and for the
ME and PC RMF model families. The statistical uncertainties
are indicated by error bars. The result of the unconstrained
fits are shown by large open symbols with corresponding error
bars.

are all known to be sensitive to isovector properties of
EDF [14,57]. This is confirmed by the trends in the present
results. The comparison of uncertainties shows a large
growth when going from constrained to unconstrained op-
timizations. This corroborates the close relation between
the symmetry energy and the three isovectors indicators
shown in fig. 2. It is, furthermore, interesting to note that
SHF and RMF-PC stay safely within the bands given by
experimental data and RMF-ME is not far away. A better
discrimination between models requires more precise data,
a task on which presently many experimental groups are
heavily engaged.
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Table 3. Nuclear matter parameters of SHF-SV, RMF-PC, and RMF-ME EDFs used in this paper (with error bars) obtained
by means of unconstrained optimization. Also shown are the values of NMP of SHF-RD [67] and SHF-TOV [38].

Model ρeq E/A K∞ m∗/m asym L κTRK

(fm−3) (MeV) (MeV) (MeV) (MeV)

SHF-SV 0.161(1) −15.91(4) 222(9) 0.95(7) 31(2) 45(26) 0.08(29)

RMF-PC 0.159(1) −16.14(3) 185(18) 0.57(1) 35(2) 82(17) 0.75(2)

RMF-ME 0.159(3) −16.2(2) 250(19) 0.56(1) 32.4(1) 6(7) 0.79(2)

SHF-RD 0.161 −15.93 231 0.90 32(2) 60(32) 0.04(32)

SHF-TOV 0.161 −15.93 222 0.94 32(1) 76(15) 0.21(26)
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To explore the usefulness of δVpn as an isovector indi-
cator, we choose the heavy deformed nucleus 168Er, as its
even-even neighbors have similar structure and the calcu-
lated values of δVpn for even-even Er isotopes show little
variations around N = 100. The results displayed in fig. 3
show a gradual decrease of this quantity with asym, but
the magnitude of the variation is very small and cannot ac-
count for the deviation from experiment (around 50 keV).
It is apparent that this quantity is too strongly influenced
by shell effects (given by the deviation from the LDM es-
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Fig. 3. Behavior of δVpn in 168Er with symmetry energy asym

for SHF-SV (solid line) as compared to experiment (dashed
line) and the LDM value (filled square). The result of the un-
constrained fit is marked by a large open square with corre-
sponding error bars.
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Fig. 4. Behavior of giant resonance energies in 208Pb with
symmetry energy asym for the SV Skyrme family [17]. In order
not to make the graph too busy the uncertainties from the
unconstrained fit are not shown; they have the same size as
those from the constrained fits.

timate; also around 50 keV) to probe NSE, see refs. [45,
69] and sect. 4.4 below.

Figure 4 shows the trends of the three major gi-
ant resonances in 208Pb: isoscalar monopole resonance
(GMR), isovector dipole resonance (GDR), and isoscalar
quadrupole resonance (GQR). For technical reasons, we
only show results obtained with the SV Skyrme family.
The isoscalar resonances show no dependence on asym at
all; this is understandable for the symmetry energy be-
longs to the isovector sector. Somewhat surprisingly, the
GDR exhibits very little dependence on asym as well, with
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the magnitude of variations well below the statistical un-
certainties. As demonstrated earlier [17,57], it is the sum-
rule enhancement factor κTRK that has the dominant im-
pact on the GDR peak frequency rather than asym. The
covariance analysis of fig. 4 confirms that the energies of
GMR, GDR, and GQR do not obviously relate to asym.

Figure 5 shows behavior of surface energy asurf and the
inner fission barrier Bf in 266Hs with asym. The surface
energy was computed by means of the extended Thomas-
Fermi method. (The surface energy from RMF-ME is not
shown: we do not have at our disposal a code for semi-
infinite matter which could handle this particular RMF
functional.) The trends of asurf predicted by SHF and
RMF are similar. An offset of about 2MeV is most likely
due to very different effective masses in both models. Much
larger differences are seen for the fission barriers. The basic
difference between SHF and RMF can again be explained
predominantly in terms of effective masses. Barriers are
produced by shell effects and shell effects are larger for
lower effective masses. There is also a difference between
the two RMF models. This could be due to a different
handling of gradient terms (only RMF-PC contains such)
and a much different parametrization of density depen-
dence. All three models show not only different values as
such, but also different trends.

The statistical errors differ substantially between the
models. RMF-ME shows a small uncertainty in Bf . This
may be due to the missing gradient term in this model
which would also restrict the uncertainty in the surface
energy. We note, however, that the gradient term in RMF-
PC is to a certain extent equivalent the mass term of the
sigma meson in RMF-ME, which is considered a free pa-
rameter. The plot of the Bf demonstrates nicely the rel-
ative role of statistical and systematic errors, with the
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Fig. 6. The correlation (17) between symmetry energy and
selected observables (Y ) for three models: SHF-SV, RMF-PC
and RMF-ME. Results correspond to unconstrained optimiza-
tion employing the same strategy in all three cases. For RMF-
ME no reliable numbers could be obtained for asurf ; this is
indicated by an open circle.

statistical errors being much smaller than inter-model dif-
ferences. As discussed in refs. [70,42], fission barriers are
strongly affected by asurf and assym of EDF. In particular,
the recently developed EDF UNEDF1, suitable for stud-
ies of strongly elongated nuclei, has relatively low values
of asurf and assym (see fig. 7 below) that reflect the con-
straints on the fission isomer data. The reduced surface
energy coefficients result in a reduced effective surface co-
efficient a

(eff)
surf = asurf + assymI2, which has profound con-

sequences for the description of fission barriers, especially
in the neutron-rich nuclei that are expected to play a role
at the final stages of the r-process through the recycling
mechanism [71].

4.4 Correlations summary

The summary of our correlation analysis for asym is given
in fig. 6. The first four entries concern the same nuclear
matter properties as in fig. 1. It is only for L, the slope of
symmetry energy, that a strong correlation with asym is
seen. This complies nicely with the findings of the trend
analysis in fig. 1. The next entry concerns the neutron
pressure (8) at ρn = 0.08 neutrons/fm3. It is also strongly
correlated with asym, which is no surprise because it is
an excellent isovector indicator [14,36,53,54,72,73]. The
diagram shows, furthermore, the (isoscalar) surface en-
ergy asurf computed in semi-classical approximation. This
quantity is well correlated with asym for SHF and practi-
cally uncorrelated for RMF.
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The next three entries are observables in 208Pb: weak-
charge form factor, neutron skin, and dipole polarizability.
All three are known to be strong isovector indicators [14,
57,36]. This is confirmed here for all three models.

The remaining four entries deal with exotic nuclei.
These are: binding energy and α-decay energy in yet-to-
be-measured superheavy nucleus Z = 120, N = 182, bind-
ing energy in an extremely neutron rich 148Sn, and the
fission barrier in 266Hs (for which trends had been shown
already in fig. 5). The data on Z = 120, N = 182 con-
sistently do not correlate with asym. The binding energy
of 148Sn shows some correlation with asym, about equally
strong in the three models. This is expected as a large neu-
tron excess surely explores the static isovector sector. Fi-
nally, the correlation with fission barrier in 266Hs exhibits
an appreciable model dependence with some correlation
in SHF and practically none in RMF.

We also studied correlations between δVpn in 168Er and
other observables for finite nuclei and NM. We did not
find a single observable that would correlate well with this
binding-energy indicator. In particular, the correlation co-
efficient (17) with asym is 0.41, with αD in 208Pb is 0.6,
and with rskin in 208Pb is 0.54. This results demonstrates
that δVpn in one single nucleus is too strongly influenced
by shell effects to be used as an isovector indicator.

5 Symmetry energy parameters of EDFs

The actual values of symmetry energy parameters depend
on i) the form of EDF and ii) the optimization strat-
egy used. The first point is nicely illustrated in table 3,
which compares NMP for different functional forms (SHF-
SV, SHF-RD, RMF-PC, and RMF-ME) using the same
dataset and the same optimization technique. As far as
the second point, it is instructive to compare SHF-SV
and SHF-TOV NMP; namely, the inclusion of additional
data on neutron stars in SHF-TOV has significantly im-
pacted L and κTRK. Many other examples can be found
in refs. [19,74] that demonstrate divergent predictions of
Skyrme EDFs for neutron and nuclear matter.

The range of asym is fairly narrowly constrained by
various data and ab initio theory [34]; it is 28MeV <
asym < 34MeV. The recent Finite-Range Droplet Model
(FRDM) result [75] is asym = 32.5 ± 0.5MeV. All EDFs
listed in table 3 are consistent with these expectations.

The values of L are less precisely determined [34–39,
76–79]; there is more dependence on specific observables
or methodology used. Recent surveys [34,39] suggest that
a reasonable range of L is 40MeV < L < 80MeV, and
FRDM gives L = 70± 15MeV [75]. Except for RMF-ME,
all models shown in table 3 are consistent with these es-
timates. The low value of L in RMF-ME is troublesome;
here we note that while SHF-SV and RMF-PC EDFs fall
within the error bars of the current experimental data in
fig. 2, RMF-ME (as defined by the present optimization
protocol) does not. In this context, it is worth mention-
ing that in the case of RMF-ME the objective function is
very steep in the direction of asym. This is seen in table 3,
which shows the uncertainties of asym for the three models
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employed. Consequently, the RMF-ME results are mostly
in a sub-optimal range of the model in a broad range of
asym. For instance, at asym = 30MeV, the average devia-
tion for binding energies with RMF-ME is about twice as
large as for the optimal value asym = 32.4MeV.

As discussed in ref. [41], the leading surface and sym-
metry terms appear relatively similar within each fam-
ily of EDFs, with a clear difference for asym between
SHF and RMF. By averaging over Skyrme-EDF results
of refs. [41,80], one obtains: asym ≈ 30.9 ± 1.7MeV,
assym ≈ −48 ± 10MeV. Older relativistic models provide
systematically larger values [41]: asym ≈ 40.4 ± 2.7MeV
and assym ≈ −103 ± 18MeV. (Codes for a leptodermous
expansion of the recent RMF-PC and RMF-ME models
have yet to be developed.)

The coefficient assym is poorly constrained in the cur-
rent EDF parameterizations and there are large differ-
ences between models, see fig. 7. In addition, the val-
ues of asym and assym have been shown to be systemati-
cally (anti)correlated [51,70,81,82]. Figure 7, displays the
pairs (asym, assym) for various Skyrme EDFs and LDM
parametrizations. While a correlation between asym and
assym is apparent, a very large spread of values is seen that
demonstrates that the data on g.s. nuclear properties are
not able to constrain assym. It is interesting to note that
the LDM values and phenomenological estimates cluster
around asym = 30MeV and assym = −45MeV. The val-
ues for UNEDF1 functional, additionally constrained by
the data on very deformed fission isomers (thus probing
the surface-isospin sector of EDF) are asym = 29MeV and
assym = −29MeV.

6 Isospin physics and symmetry energy

The emergence of NSE is rooted in the isobaric symme-
try and its breaking as a function of neutron excess and
mass. Single-reference DFT is essentially the only frame-
work allowing for understanding global behavior of isospin
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effects throughout the entire nuclear landscape. While the
nuclear interaction part of the nuclear EDF is constructed
to be an isoscalar [24,25], the Coulomb interaction breaks
isospin manifestly. There are, therefore, two different
sources of isospin symmetry breaking in the nuclear DFT:
spontaneous isospin breaking associated with the self-
consistent response to the neutron excess, and the explicit
breaking due to the electric charge of the protons [83].

Effects related to isospin breaking and restoration are
difficult to treat theoretically within the nuclear DFT. Be-
low, we discuss two ways of dealing with this problem:
isocranking and isospin projection.

6.1 1D and 3D isocranking

The isocranking model [84,80] attributes the kinetic co-
efficient asym,kin contribution to the mean level spacing
at the Fermi energy ε(A) rather than to the total kinetic
energy itself. The SHF calculations also revealed that the
isovector mean potential of the Skyrme EDF can be quite
well characterized by an effective VTT interaction (1) char-
acterized by a strength parameter κ(A). The actual isovec-
tor part of the Skyrme mean-field potential is composed
of several terms [24,25]. As can be seen from table 1, in
the uniform NM limit, two terms contribute in SHF, Cρ

1ρ2
1

and Cτ
1 ρ1τ1, and the NSE strength reads

asym =
1
8

m

m∗ εFG +

[(
3π2

2

)2/3

Cτ
1 ρ

5/3
0 + Cρ

1ρ0

]
, (18)

where εFG is the average level splitting in FGM. There-
fore, within this scenario, asym is non-trivially modified
by momentum-dependent effects introducing, in the lead-
ing order, the dependence of asym,kin and asym,int on the
isoscalar and isovector effective mass, respectively.

Within the nuclear shell model, NSE appears through
a contribution to the binding energy proportional to
T (T + 1) [85]. However, the local enhancement of
binding around N = Z (the Wigner energy) suggest
an enhancement of the linear term to T (T + λ) with
λ ≈ 1.26 [86–88]. Since the Wigner energy is neither
fully understood nor included properly within the SCMF
models [89], the microscopic origin of λ is still a matter of
debate. Within the isocranking model, the Fock exchange
(isovector) potential gives rise to λ ≈ 0.5, at variance
with enhancement seen in experimental data. The Wigner
energy can be explained by shell-model calculations [89]
in terms of configuration mixing. The Wigner term is
usually associated with the isoscalar neutron-proton (np)
pairing [90,25], but its understanding is poor as realistic
calculations involving simultaneous np mixing in both the
particle-hole (p-h) and particle-particle (p-p) channels
have not been carried out. It is only very recently that
3D isocranking calculations including np mixing in the
p-h channel have been reported [91]. This is the first step
towards developing the nuclear superfluid DFT including
np mixing in both p-h and p-p channels. An improved
treatment of isospin within the 3D isocranking will open
new opportunities for quantitative studies of isobaric
analogue states and, in turn, the NSE.
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SHF-SkV calculations involving configuration mixing [94] (left)
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on 24 I = 1+ states projected from 6 HF determinants repre-
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6.2 Isospin projected DFT

The isospin and isospin-plus-angular-momentum pro-
jected DFT models have been developed recently to de-
scribe isospin mixing effects. These new tools open new
avenues to probe NSE. To gain insight on this line of mod-
els, it is instructive to to consider the spontaneous isospin
symmetry breaking effect in the so-called anti-aligned p-
h configurations in N = Z nuclei, which are mixtures of
T = 0 and T = 1 states [92]. Restoration of the isospin
symmetry results in the energy splitting, ΔET , between
the actual T = 0 and T = 1 configurations. Since these
states are projected from a single mean-field determinant,
the splitting is believed to be insensitive to kinematics,
and the method can be used to probe dynamical effects
giving rise to the interaction term asym,int. The results of
SHF calculations [92] performed in finite nuclei confirm
that asym,int is indeed correlated with the isoscalar effec-
tive mass in agreement with the NM relation (18).

The isospin and isospin plus angular momentum pro-
jected DFT were designed and applied to study the isospin
impurities [83] and isospin symmetry breaking corrections
to the superallowed 0+ → 0+ β-decay rates [93]. Unfor-
tunately, the calculations show that these two observables
are not directly correlated with the symmetry energy. Am-
biguities associated with these calculations stimulated fur-
ther development of the formalism in the direction of the
Resonating-group method. The scheme proceeds in three
steps. i) First, a set of low-lying (multi)p-(multi)h SHF
states {Φi} is calculated. These states form a basis for
a subsequent projection. ii) Next, the projection tech-
niques are applied to calculate a family {Ψ (α)

I } of good
angular momentum states with properly treated K-mixing
and isospin mixing. iii) Finally, a configuration mixing of
{Ψ (α)

I } states is performed using techniques suitable for
non-orthogonal ensambles.
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Although at present the calculations can be realized
only for the SkV EDF, the preliminary results [94] are en-
couraging, as shown in fig. 8. Since the projected approach
treats rigorously the angular momentum conservation and
the long-range polarization due to the Coulomb force, it
opens up a possibility of detailed studies of the isovector
terms of the nuclear EDF that are sources of the NSE.

7 Conclusions

This paper surveys various aspects of NSE within the nu-
clear DFT represented by non-relativistic and relativistic
self-consistent mean-field frameworks. After defining the
models and statistical tools, we reviewed key observables
pertaining to bulk nucleonic matter and finite nuclei. Us-
ing the statistical covariance technique, constraints on the
symmetry energy were studied, together with correlations
between observables and symmetry energy parameters.

Through the systematic correlation analysis, we scruti-
nized various observables from finite nuclei that are acces-
sible by current and future experiments. We confirm that
by far the most sensitive isovector indicators are observ-
ables related to the neutron skin (neutron radius, diffrac-
tion radius, weak charge form factor) and the dipole polar-
izability [14,57]. In this context, PREX-II measurement
of the neutron skin in 208Pb [95] (a follow-up measure-
ment to PREX [49] designed to improve the experimen-
tal precision), CREX measurement of the neutron skin in
48Ca [96], and on-going measurements of αD in neutron-
rich nuclei [97] are indispensable.

The masses of heavy neutron-rich nuclei also seem to
correlate well with NSE parameters. Other observables,
such as Qα-values, δVpn, barrier heights, and low-energy
dipole strength [14,59,60] are too strongly impacted by
shell effects to be useful as global isovector indicators.

A major challenge is to develop the universal nuclear
EDF with improved isovector properties. Various improve-
ments are anticipated in the near future. Those include
constraining the EDF at sub-saturation densities using
ab initio models [98,99] and using the density matrix ex-
pansion to develop an EDF based on microscopic nuclear
interactions [100]. This work will be carried out under
the Nuclear Low Energy Computational Initiative (NU-
CLEI) [101]. Other exciting avenues are related to multi-
reference isospin projected DFT, which will enable us to
make reliable predictions for isobaric analogues, isospin
mixing, and mirror energy differences.
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