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Abstract Pichia pastoris is an established protein expression
host mainly applied for the production of biopharmaceuticals
and industrial enzymes. This methylotrophic yeast is a distin-
guished production system for its growth to very high cell
densities, for the available strong and tightly regulated pro-
moters, and for the options to produce gram amounts of
recombinant protein per litre of culture both intracellularly
and in secretory fashion. However, not every protein of inter-
est is produced in or secreted by P. pastoris to such high titres.
Frequently, protein yields are clearly lower, particularly if
complex proteins are expressed that are hetero-oligomers,
membrane-attached or prone to proteolytic degradation. The
last few years have been particularly fruitful because of nu-
merous activities in improving the expression of such com-
plex proteins with a focus on either protein engineering or on
engineering the protein expression host P. pastoris. This re-
view refers to established tools in protein expression in
P. pastoris and highlights novel developments in the areas of
expression vector design, host strain engineering and screen-
ing for high-level expression strains. Breakthroughs in mem-
brane protein expression are discussed alongside numerous
commercial applications of P. pastoris derived proteins.
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Introduction

The methylotrophic yeast Pichia pastoris, currently
reclassified as Komagataella pastoris, has become a substan-
tial workhorse for biotechnology, especially for heterologous
protein production (Kurtzman 2009). It was introduced more
than 40 years ago by Phillips Petroleum for commercial
production of single cell protein (SCP) as animal feed additive
based on a high cell density fermentation process utilizing
methanol as carbon source. However, the oil crisis in 1973
increased the price for methanol drastically and made SCP
production uneconomical. In the 1980s, P. pastoriswas devel-
oped as a heterologous protein expression system using the
strong and tightly regulated AOX1 promoter (Cregg et al.
1985). In combination with the already developed fermenta-
tion process for SCP production, the AOX1 promoter provided
exceptionally high levels of heterologous proteins. One of the
first large-scale industrial production processes established in
the 1990s was the production of the plant-derived enzyme
hydroxynitrile lyase at >20 g of recombinant protein per litre
of culture volume (Hasslacher et al. 1997). This enzyme is
used as biocatalyst for the production of enantiopure m-
phenoxybenzaldehyde cyanohydrin — a building block of
synthetic pyrethroids — on the multi-ton scale.

Through a far-sighted decision this expression system,
initially patented by Phillips Petroleum, was made available
to the scientific community for research purposes. A major
breakthrough was the publication of detailed genome se-
quences of the original SCP production strain CBS7435
(Küberl et al. 2011), the first host strain developed for heter-
ologous protein expression GS115 (De Schutter et al. 2009),
as well as of the related P. pastoris DSMZ 70382 strain
(Mattanovich et al. 2009b). Equally important breakthroughs
for the commercial application of the P. pastoris cell factory
were the Food and Drug Administration (FDA) GRAS (gen-
erally recognized as safe) status for a protein used in animal
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feed, phospholipase C (Ciofalo et al. 2006), and the FDA
approval of a recombinant biopharmaceutical product,
Kalbitor®, a kallikrein inhibitor (Thompson 2010).

The classical P. pastoris expression system has been exten-
sively reviewed over the years (Cereghino and Cregg 2000;
Daly and Hearn 2005; Gasser et al. 2013; Jin et al. 2006;
Macauley-Patrick et al. 2005). In this review, we focus on
recent developments for heterologous protein production and
describe examples for the commercial use of this expression
system. In the first chapter, we refer to the established basic
vector systems and elaborate on developments thereof with an
emphasis on newly developed promoter systems. Herein, also
some aspects of secretion will be summarized. The second
part is devoted to the most recent developments regarding host
strain development. As a specific novelty, a new platform
based on the CBS7435 strain is described, for which patent
protection has ceased and no specific material rights are
pending. In the third chapter, we describe specific strategies
for obtaining high-level expression strains and summarize
important applications of P. pastoris for production of
biopharmaceuticals, membrane proteins and industrial pro-
teins. The last section provides an outlook on future perspec-
tives covering recent progress in molecular and cell biology of
P. pastoris and possibilities for implementing new strategies in
expression strain development.

Basic systems for cloning and expression in P. pastoris

When devising strategies for cloning and expression of heter-
ologous proteins in P. pastoris some points need to be consid-
ered from the start, that is, the choice of promoter–terminator
combinations, suitable selection markers and application of
vector systems for either intracellular or secreted expression
including selection of proper secretion signals (Fig. 1). The
choice of the proper expression vector and complementary
host strain are a most important prerequisite for successful
recombinant protein expression.

Promoters

The use of tightly regulated promoters such as the alcohol
oxidase (AOX1) promoter holds advantages for overexpres-
sion of proteins. By uncoupling the growth from the produc-
tion phase, biomass is accumulated prior to protein expres-
sion. Therefore, cells are not stressed by the accumulation of
recombinant protein during growth phase, and even the pro-
duction of proteins that are toxic to P. pastoris is possible.
Furthermore, it may be desirable to co-express helper proteins
like chaperones at defined time points, for example, before the
actual target protein is formed. On the other hand, use of
constitutive promoters may ease process handling.
Constitutive promoters are usually also applied to express

selection markers. Metabolic pathway engineering strategies
might further take advantage of fine-tuned constitutive pro-
moters to ensure a controlled flux ofmetabolites. An extensive
summary of promoters used for heterologous expression in
P. pastoris has recently been published by Vogl and Glieder
(2013). An overview of broadly used and extensively studied
as well as recently examined promoters is given in Table 1.

Inducible promoters

The tightly regulated AOX1 promoter (PAOX1), which was first
employed for heterologous gene expression by Tschopp et al.
(1987a), is still the most commonly used promoter (Lünsdorf
et al. 2011; Sigoillot et al. 2012; Yu et al. 2013). PAOX1 is
strongly repressed when P. pastoris is grown on glucose,
glycerol or ethanol (Inan and Meagher 2001). Upon depletion
of these carbon sources, the promoter is de-repressed, but is
fully induced only upon addition of methanol. Several studies
have identified multiple regulatory elements in the PAOX1
sequence (Hartner et al. 2008; Kranthi et al. 2006, 2009; Ohi
et al. 1994; Parua et al. 2012; Staley et al. 2012; Xuan et al.
2009). Positively and negatively acting elements have been
described (Kumar and Rangarajan 2012; Lin-Cereghino et al.
2006; Polupanov et al. 2012), but the molecular details of
PAOX1 regulation are still not completely elucidated.

Methanol is a highly flammable and hazardous substance
and, therefore, undesirable for large-scale fermentations.
Alternative inducible promoters or PAOX1 variants, which can
be induced without methanol but still reach high expression
levels, are desired. A recently published patent application
describes such a method, wherein expression is controlled
by methanol-inducible promoters, such as AOX1, methanol
oxidase (MOX) or formate dehydrogenase (FMDH), without
the addition of methanol (Takagi et al. 2008). This was
achieved by constitutively co-expressing the positively acting
transcription factor Prm1p from either of the GAP, TEF or
PGK promoters. The relative activity of a phytase reporter
protein was 3-fold increased without addition of methanol as
compared to a control strain with PRM1 under its native
promoter. However, phytase expression levels were not com-
pared for standard methanol induction and constitutive Prm1p
expression conditions. Hartner et al. have constructed a syn-
thetic AOX1 promoter library by deleting or duplicating tran-
scription factor binding sites for fine-tuned expression in
P. pastoris (Hartner et al. 2008). Using EGFP as reporter,
some promoter variants were found to confer even higher
expression levels than the native PAOX1 spanning a range
between 6 % and 160 % of the native promoter activity.
These PAOX1 variants have also proven to behave similarly
when industrially relevant enzymes such as horseradish per-
oxidase and hydroxynitrile lyases were expressed.

Numerous further controllable promoters are currently be-
ing investigated for their ability to promote high-level
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expression (Table 1). For example, a recently published patent
application describes the use of three novel inducible pro-
moters from P. pastoris, ADH1 (alcohol dehydrogenase),
GUT1 (glycerol kinase) and ENO1 (enolase), showing

interesting regulatory features (Cregg and Tolstorukov
2012). However, due to a lack of absolute expression values
the performance of these novel promoters cannot be compared
to the widely used AOX1 and GAP promoters.

Fig. 1 General considerations for heterologous gene expression in
P. pastoris. Expression plasmids harbouring the gene(s) of interest
(GOI) are linearized prior to transformation. Selectable markers (e.g.,
AmpR) and origin of replication (Ori) are required for plasmid propaga-
tion in E. coli. The expression level of the protein of interest may depend
on (i) the chromosomal integration locus, which is targeted by the 5′ and

3′ homologous regions (5′HR and 3′HR), and (ii) on the gene copy
number. A representative promoter (P) and transcription terminator (TT)
pair are shown. Proper signal sequences will guide recombinant protein
for intracellular or secretory expression, and will govern membrane
integration or membrane anchoring

Table 1 The most prominently used and very recently established promoters for heterologous expression in P. pastoris

Inducible Corresponding gene Regulation Reference

AOX1 Alcohol oxidase 1 Inducible with MeOH (Tschopp et al. 1987a)

DAS Dihydroxyacetone synthase Inducible with MeOH (Ellis et al. 1985; Tschopp et al. 1987a)

FLD1 Formaldehyde dehydrogenase 1 Inducible with MeOH or methylamine (Shen et al. 1998)

ICL1 Isocitrate lyase Repressed by glucose, induction in absence
of glucose/by addition of ethanol

(Menendez et al. 2003)

PHO89 Putative Na+/phosphate symporter Induction upon phosphate starvation (Ahn et al. 2009)

THI11 Thiamine biosynthesis gene Repressed by thiamin (Stadlmayr et al. 2010)

ADH1 Alcohol dehydrogenase Repressed on glucose and methanol, induced
on glycerol and ethanol

(Cregg and Tolstorukov 2012)

ENO1 Enolase Repressed on glucose, methanol and ethanol,
induced on glycerol

(Cregg and Tolstorukov 2012)

GUT1 Glycerol kinase Repressed on methanol, induced on glucose,
glycerol and ethanol

(Cregg and Tolstorukov 2012)

Constitutive Corresponding gene Regulation Reference

GAP Glyceraldehyde-3-P dehydrogenase Constitutive expression on glucose, to a lesser
extent on glycerol and methanol

(Waterham et al. 1997)

TEF1 Translation elongation factor 1 Constitutive expression on glycerol and glucose (Ahn et al. 2007)

PGK1 3-Phosphoglycerate kinase Constitutive expression on glucose, to a lesser
extent on glycerol and methanol

(de Almeida et al. 2005)

GCW14 Potential glycosyl phosphatidyl
inositol (GPI)-anchored protein

Constitutive expression on glycerol, glucose
and methanol

(Liang et al. 2013b)

G1 High affinity glucose transporter Repressed on glycerol, induced upon glucose
limitation

(Prielhofer et al. 2013)

G6 Putative aldehyde dehydrogenase Repressed on glycerol, induced upon glucose
limitation

(Prielhofer et al. 2013)
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Constitutive promoters

Constitutive expression eases process handling, omits the use
of potentially hazardous inducers and provides continuous
transcription of the gene of interest. For this purpose, the
glyceraldehyde-3-phosphate promoter (PGAP) is commonly
used, which — on glucose — reaches almost the same ex-
pression levels as methanol-induced PAOX1 (Waterham et al.
1997). Expression levels from PGAP drop to about one half on
glycerol and to one third when cells are grown on methanol
(Cereghino and Cregg 2000). Alternative constitutive pro-
moters and promoter variants have been described recently
(Table 1). The constitutive PGCW14 promoter, for example,
was described to be a stronger promoter than the GAP and
TEF1 promoters, which was assessed by secretory expression
of EGFP (Liang et al. 2013b). It was found that EGFP expres-
sion from PGCW14 yielded in a 10-fold increase compared to
PGAP driven expression when cells were cultivated on glycerol
or methanol, and a 5-fold increase on glucose.

A recent DNAmicroarray study identified novel promoters
that are repressed on glycerol, but are being induced upon shift
to glucose-limited media (Prielhofer et al. 2013). Supposedly,
the most interesting promoters discovered by this approach
control expression of a high-affinity glucose transporter,
HGT1, and of a putative aldehyde dehydrogenase. The former
promoter was reported to drive EGFP expression to even
higher levels than could be reached with PGAP. In glycerol
fed-batch fermenter cultures, human serum album was
expressed from the novel promoter to a 230 % increase in
specific product yield as compared to PGAP driven expression.

In some cases, it is desired that expression levels can be
fine-tuned in order to (1) co-express accessory proteins facil-
itating recombinant protein expression and secretion or (2)
provide protein post-translational modifications as well as to
(3) engineer whole metabolic pathways consisting of a cas-
cade of different enzymatic steps. For such applications, a
library of GAP promoter variants with relative strengths rang-
ing from 0.6 % to 16.9-fold of the wild type promoter activity
was developed and tested using three different reporter pro-
teins, yEGFP, β-galactosidase and methionine acetyltransfer-
ase (Qin et al. 2011).

Vectors

The standard setup of vectors is a bi-functional system en-
abling replication in E. coli and maintenance in P. pastoris
using as selection markers either auxotrophy markers (e.g.,
HIS4, MET2, ADE1, ARG4, URA3, URA5, GUT1) or genes
conferring resistance to drugs such as Zeocin™, geneticin
(G418) and blasticidin S. Although there are some reports of
using episomal plasmids for heterologous protein expression
or for the screening of mutant libraries in P. pastoris (Lee et al.
2005; Uchima and Arioka 2012), stable integration into the

host genome is the most preferred method. Unlike in
Saccharomyces cerevisiae, where homologous recombination
(HR) predominates, non-homologous end-joining (NHEJ) is a
frequent process in P. pastoris. The ratio of NHEJ and HR can
be shifted towards HR by elongating the length of the homol-
ogous regions flanking the actual expression cassettes and by
suppressing NHEJ efficiency (Näätsaari et al. 2012).

The standard vector systems for intracellular and secretory
expression provided by Life Technologies (Carlsbad, CA,
USA) include constitutive (PGAP) and inducible promoters
triggered by methanol or methylamine (PAOX1, PFLD). The
recently introduced PichiaPink™ expression kit for intracel-
lular or secreted expression enables easy selection of
multicopy integration clones by differences in colour forma-
tion based on ade2 knockout strains and truncated ADE2
promoters of varying strengths in front of the ADE2 marker
gene (Du et al. 2012; Nett 2010).

Additionally, BioGrammatics (Carlsbad, CA, USA) holds
licences for selling standard P. pastoris expression vectors and
strains and also provides GlycoSwitch® vectors for human-
ized glycosylation of target proteins (Table 2). Several vectors
for disruption of OCH1 and expression of different glycosi-
dases or glycosyltransferases are available to achieve
mammalian-type N-glycan structures in P. pastoris. These
vectors harbour, for example, the human GlcNAc transferase
I, the mannosidase II from rat, or the human galactosyl trans-
ferase I. A detailed protocol for humanizing the glycosylation
pattern using the GlycoSwitch® vectors is provided (Jacobs
et al. 2009).

James Cregg’s laboratory at the Keck Graduate Institute,
Claremont, CA, USA, has developed a set of plasmids for
protein secretion and intracellular expression in P. pastoris
containing the strongAOX1 promoter. These vectors are based
on different auxotrophymarkers, such asARG4, ADE1,URA3
andHIS4, for selection necessitating the use of the appropriate
host strains (see section “Host strain development”). The
vectors contain restriction sites for linearization within the
marker genes to target the expression cassettes to the desired
locus as well as for multicopy integration (Lin-Cereghino
et al. 2001). Moreover, a set of integration vectors for se-
quential disruption of ARG1, ARG2, ARG3, HIS1, HIS2,
HIS5 and HIS6 in P. pastoris was applied to provide the host
strains for engineering the protein glycosylation pathway
(Nett et al. 2005).

The Institute of Molecular Biotechnology, Graz University
of Technology, Austria, provides vectors and strains to the
P. pastoris community through the so-called ‘Pichia Pool’.
The pPp plasmids described by Näätsaari et al. (2012) com-
prise vectors containing the GAP or AOX1 promoters and, for
secretory expression, the S. cerevisiae α-mating factor
(α-MF) secretion signal. The antibiotic selection marker cas-
settes were placed under the control of ADH1 or ILV5 pro-
moters in the pPpB1 and pPpT4 vectors, respectively. It is
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described that the pPpT4-based vectors usually lead to lower
gene copies in the cell as compared to the pPpB1-based vectors.

Further vectors based on either the GAP or the AOX1
promoter and a series of strains have recently been added to
this pool, both for intracellular and secretory protein expres-
sion (M. Ahmad, unpublished results). For intracellular ex-
pression, cloning of the target genes is accomplished by using
EcoRI and NotI, whereby the Kozak consensus sequence has
to be restored for efficient translation initiation (Fig. 2a). A
special characteristic of these vectors is that the EcoRI site has
been introduced by a single point mutation directly into the
AOX1 promoter sequence without changing the promoter
activity. Thereby, the gene of interest may be fused to the
promoter without having additional nucleotides between the
promoter and the start codon. Another advantage is the use of
the short ARG4 promoter for the expression of the selection
markers. The weaker ARG4 promoter used for selection mark-
er cassettes enables selection at lower concentrations of
Zeocin™ (i.e., 25 instead of 100 μg/ml) without obtaining
false-positive clones. For secretory expression governed by
the S. cerevisiaeα-MF signal sequence, XhoI and/orNotI sites
are used for cloning the genes of interest (Fig. 2b).

Aspects of secretory expression

One of the main advantages of using P. pastoris as a protein
production host is its ability to secrete high titres of properly
folded, post-translationally processed and active recombinant
proteins into the culture media. As a rule of thumb, proteins
secreted in their native hosts will also be secreted in
P. pastoris. However, there are also some reports of successful

secretion of typically intracellular proteins such as GFP or
human catalase (Eiden-Plach et al. 2004; Shi et al. 2007). The
most commonly employed secretion signals in P. pastoris are
derived from S. cerevisiae α-MF, S. cerevisiae invertase
(SUC2) and the P. pastoris endogenous acid phosphatase
(PHO1) (Daly and Hearn 2005). As listed in Table 2, com-
mercial kits also provide vectors with different secretion sig-
nals, which allows for screening of the best-suited signal
sequence.

The α-MF signal sequence is composed of a pre- and pro-
region and has proven to be most effective in directing protein
through the secretory pathway in P. pastoris. The pre-region is
responsible for directing the nascent protein post-
translationally into the endoplasmic reticulum (ER) and is
cleaved off subsequently by signal peptidase (Waters et al.
1988). The pro-region is thought to play a role in transferring
the protein from ER to Golgi compartment and is finally
cleaved at the dibasic KR site by the endo-protease Kex2p
(Julius et al. 1984). The two EA repeats are subsequently
trimmed by the STE13 gene product (Brake et al. 1984).
One of the common problems encountered while using the
α-MF secretion signal is non-homogeneity of the N-termini of
the recombinant proteins due to incomplete STE13 process-
ing. Constructs without the EA repeats may enhance homo-
geneity at the N termini of recombinant proteins. However,
the removal of these sequences may affect protein yield.
While no reports on enhanced co-expression of STE13 are
available, co-overexpression of HAC1, a transcription factor
in the unfolded protein response (UPR) pathway, with the
membrane protein adenosine A2 receptor had a positive effect
on proper processing of the α-MF signal sequence (Guerfal

Table 2 Commercial vector systems

Supplier Promoter Signal sequences Selection in yeast Selection in
bacteria

Comments

Life Technologies™ AOX1, FLD1,
GAP

S. cerevisiae α-MF;
P. pastoris PHO1

Blasticidin, G418,
Zeocin™, HIS4

Zeocin™, Ampicillin,
Blasticidin

c-myc epitope, V5 epitope,
C-terminal 6× His-tag
available for
detection/purification

Life Technologies
–PichiaPink™

AOX1 α-MF; set of eight different
signal sequences
– not ready to usea

ADE2 Ampicillin Low- and high-copy vectors
available, TRP2 sequence
for targeting

BioGrammatics AOX1 α-MF Zeocin™, G418,
Nourseothricin

Ampicillin Intracellular or secreted
expression

BioGrammatics
– GlycoSwitch®

GAP – Zeocin™, G418,
Hygromycin, HIS4,
Nourseothricin

Zeocin™, Ampicillin,
Kanamycin,
Nurseothricin

Human GlcNAc transferase I, rat
Mannosidase II, human Gal
transferase I

DNA2.0 AOX1 Ten different signal
sequences
– ready to useb

Zeocin™, G418 Zeocin™, Ampicillin Intracellular or secreted

a The different secretion signals have to be cloned into the vector by a three-way ligation step
b The α-MF secretion signal is provided once with Kex2p (KR) and Ste13p cleavage sites (EAEA), once lacking EA repeats, and once as truncated
version (pre-region only)
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et al. 2010). Recently, Yang et al. (2013) reported enhanced
secretory protein production by optimizing the amino acid
residues at the Kex2 P1′ site.

Multiple strategies have been followed to enhance the
secretory potential of the α-MF signal sequence including
codon optimization (Kjeldsen et al. 1998), directed evolution
(Rakestraw et al. 2009), insertion of spacers and deletion
mutagenesis (Lin-Cereghino et al. 2013). Directed evolution
of the α-MF signal sequence in S. cerevisiae resulted in up to
16-fold enhanced full-length IgG1 secretion as compared to
the wild type. Furthermore, when this improved leader se-
quence was combined with strain engineering strategies com-
prising PDI overexpression and elimination of proteins in-
volved in vacuolar targeting, up to 180-fold enhanced secre-
tion of the reporter protein was observed (Rakestraw et al.
2009). Deletion mutagenesis based on a predicted structure
model of α-MF signal peptide resulted in 50 % increased
secretion of horseradish peroxidase and C. antarctica lipase
B (CALB) in P. pastoris (Lin-Cereghino et al. 2013). It ap-
pears that decreasing the hydrophobicity of the leader se-
quence by deleting hydrophobic residues or substituting them
withmore polar or charged residues increased the flexibility of
the α-MF signal sequence structure, which enhanced the
overall secretory capacity of the pro-region. Alternative signal
sequences used to direct protein secretion and their features
and applications are summarized in Table 3.

Beyond the choice of the secretion signals there are several
other factors that govern efficient protein secretion. The newly
synthesized proteins are translocated co- or post-
translationally into the ER lumen through the Sec61p
translocon. Then, proteins may undergo one or several post-
translational modifications, folding into the native state,
disulphide-bond formation, glycosylation and membrane-
anchoring. When the recombinant protein fails to fold into
its native state or protein expression exceeds the folding
capacity of the ER (Sha et al. 2013), unfolded proteins may
start to aggregate, triggering the UPR pathway. UPR is re-
sponsible for induction of genes that are involved in protein
folding. In parallel to UPR pathway, ER-associated degrada-
tion (ERAD) by the proteasome may relieve blocks in protein
secretion (recently reviewed by Idiris et al. 2010 and
Damasceno et al. 2012). Inappropriate mRNA structure and
gene copy numbers, limits in transcription, translation and
protein translocation into the ER, incomplete protein folding
and inefficient protein targeting to the exterior of the cell are
major bottlenecks encountered in secretory expression of het-
erologous proteins. Commonly used strategies to overcome
such secretory bottlenecks comprise the overexpression of
folding helper proteins like BiP/Kar2p, DnaJ, PDI, PPIs and
Ero1p or, alternatively, overexpression of HAC1, a transcrip-
tional regulator of the UPR pathway genes. Unlike in
S. cerevisiae, Guerfal et al. (2010) reported that HAC1 is

Fig. 2 Novel ‘Pichia Pool’ plasmid sets for intracellular and secretory
expression. a General features of pXYZ vector for intracellular expres-
sion. Letters refer to the choice of promoters (X), selection markers (Y),
and restriction enzymes (Z) for linearization. Available elements are
shown in boxes. The vector backbone harbours an ampicillin resistance
marker and origin of replication for maintenance of the plasmid in E. coli.
The GOI is EcoRI–NotI cloned directly after the promoter of choice. The
Kozak consensus sequence for yeast (i.e., CGAAACG), should be re-
stored between the EcoRI cloning site and the start codon of the GOI in
order to achieve optimal translation. In addition, sequence variation

within this region will allow fine-tuning translation initiation efficiency.
Expression in P. pastoris is driven either by the methanol inducible AOX1
or the constitutive GAP promoter. Positive clones can be selected for by
antibiotic resistance (i.e., to Zeocin™ or geneticin sulphate) or by selec-
tion for His or Arg prototrophy. Selection marker expression is uniformly
driven by the ARG4 promoter–terminator pair. b Plasmid pAaZBgl from
‘Pichia Pool’ is shown as an example of a vector made for secretory
expression encoding S. cerevisiae α-MF signal sequence in front of the
GOI cloning site. The Kex2 processing site AAAAGA should be restored
between the XhoI cloning site and the fusion point of the GOI
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constitutively expressed and spliced in P. pastoris under nor-
mal growth conditions, which may explain the higher titers of
secreted proteins obtainable with this organism. A contradic-
tory observation was reported byWhyteside et al. (2011). Un-
spliced HAC1 mRNA was detected under normal growth
conditions and splicing of HAC1 mRNA was only detected
when cells were grown in presence of dithiothreitol (DTT) to
activate the UPR. It should be mentioned, though, that some-
times overexpression of folding helpers actually reduced protein
secretion or did not have any effect (van der Heide et al. 2002).

Host strain development

Elucidation of full genome sequences and gene annotation
were great steps toward rational strain engineering, identifying
new promoters and progressing in the (systems) biology of
P. pastoris (Küberl et al. 2011; Mattanovich et al. 2009a; De
Schutter et al. 2009). Two online databases (http://
bioinformatics.psb.ugent.be/orcae/overview/Picpa and http://
www.pichiagenome.org) provide convenient access to
genome sequences and annotations. Frequently used
commercially available strains are the his4 strain GS115, the
reconstituted prototrophic strain X-33, the aox1 knockout
strains KM71 and KM71H as well as protease-deficient
strains SMD1168 and SMD1168H and the ade2 auxotrophic
PichiaPink™ strain. Use of these strains for commercial ap-
plications, however, is restricted by patent protection and/or
materials ownership policy. Strains derived from P. pastoris
CBS7435, in contrast, are not covered by patent protection
and, therefore represent an alternative for production pur-
poses. Furthermore, the CBS7435 MutS strain provided by

the Graz Pichia Pool has the advantage of being marker-free
as it was constructed using the Flp/FRT recombinase system
for marker removal (Näätsaari et al. 2012). Using the same
strategy, ade1 and his4 knockout strains were created along
with the CBS7435 ku70 strain (CBS 12694), which is im-
paired in the NHEJ mechanism, thereby enhancing the effi-
ciency of HR. A selection of most relevant strains is compiled
in Table 4.

Auxotrophic strains

Several auxotrophic strains (e.g., ade1, arg4, his4, ura3,
met2), and combinations thereof are available together with
vectors harbouring the respective genes as selectable markers
(Lin-Cereghino et al. 2001; Thor et al. 2005, Graz Pichia
Pool). Auxotrophic strains have been useful for in vivo label-
ling of proteins, for example in the global fluorination of
Candida antarctica lipase B (CALB) in a P. pastoris X-33
aro1 strain deficient in tryptophan, tyrosine, and phenylala-
nine biosynthesis (Budisa et al. 2010). Fluorinated analogues
of these amino acids were supplemented and incorporated into
the heterologous protein, thereby, for example, prolonging
CALB shelf-life but lowering its lipase activity. The proteo-
lytic pattern of CALB was retained, though. Another example
is the use of a lys2 arg4 double knockout strain for stable
isotope labelling by amino acids in cell culture (SILAC)
(Austin et al. 2011).

Protease-deficient strains

Undesired proteolysis of heterologous proteins expressed in
P. pastoris does not only lower the product yield or biological

Table 3 Signal sequences used to secrete the protein into the extracellular space

Secretion signal Source Target protein(s) Length Reference

α-MF S.c. α-mating factor Most commonly used secretion
signal in P. pastoris

85 aa, with or
without EA repeats

(Brake et al. 1984)

PHO1 P.p. acid phosphatase Mouse 5-HT5A, porcine
pepsinogen,

15 aa (Payne et al. 1995; Weiss et al. 1995;
Yoshimasu et al. 2002)

SUC2 S.c. Invertase Human interferon, α-amylase,
α-1-antitrypsin

19 aa (Moir and Dumais 1987; Paifer
et al. 1994; Tschopp et al. 1987b)

PHA-E Phytohemagglutinin GNA, GFP and native protein 21 aa (Raemaekers et al. 1999)

KILM1 Kl toxin CM cellulase 44 aa (Skipper et al. 1985)

pGKL pGKL killer protein Mouse α-amylase 20 aa (Kato et al. 2001)

CLYand CLY-L8 C-lysozyme and syn.
leucin-rich peptide

Human lysozyme 18 and 16 aa (Oka et al. 1999)

K28 pre-pro-toxin K28 virus toxin Green fluorescent protein 36 aa (Eiden-Plach et al. 2004)

Scw, Dse and Exg P.p. Endogenous signal
peptides

CALB and EGFP 19, 20 and 23 aa (Liang et al. 2013a)

Pp Pir1 P.p. Pir1p EGFP and Human α1-antitrypsin 61 aa (Khasa et al. 2011)

HBFI and HBFII Hydrophobins of
Trichoderma reesei

EGFP 16 and 15 aa (Kottmeier et al. 2011)
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Table 4 P. pastoris host strains

Strain Genotype Phenotype Source

Wild-type strains

CBS7435 (NRRLY-11430) WT WT Centraalbureau voor Schimmelcultures,
the Netherlands

CBS704 (DSMZ 70382) WT WT Centraalbureau voor Schimmelcultures,
the Netherlands

X-33 WT WT Life Technologies™

Auxotrophic strains

GS115 his4 His− Life Technologies™

PichiaPink™ 1 ade2 Ade− Life Technologies™

KM71 his4, aox1::ARG4, arg4 His−, MutS Life Technologies™

KM71H aox1::ARG4, arg4 MutS Life Technologies™

BG09 arg4::nourseoR Δlys2::hygR Lys−, Arg−, NourseothricinR,
HygromycinR

BioGrammatics

GS190 arg4 Arg− (Cregg et al. 1998)

GS200 arg4 his4 His−, Arg− (Waterham et al. 1996)

JC220 ade1 Ade− (Cregg et al. 1998)

JC254 ura3 Ura− (Cregg et al. 1998)

JC227 ade1 arg4 Ade− Arg− (Lin-Cereghino et al. 2001)

JC300-JC308 Combinations of ade1 arg4 his4 ura3 Combinations of Ade−,
Arg−, His−, Ura−

(Lin-Cereghino et al. 2001)

YJN165 ura5 Ura− (Nett and Gerngross 2003)

CBS7435 his4a his4 His− (Näätsaari et al. 2012)

CBS7435 MutS his4a aox1, his4 MutS, His− (Näätsaari et al. 2012)

CBS7435 MutS arg4a aox1, arg4 MutS, Arg− (Näätsaari et al. 2012)

CBS7435 met2a met2 Met− (Pp7030)b

CBS7435 met2 arg4a met2 arg4 Met− Arg− (Pp7031)b

CBS7435 met2 his4a met2 his4 Met− His− (Pp7032)b

CBS7435 lys2a lys2 Lys− (Pp7033)b

CBS7435 lys2 arg4a lys2 arg4 Lys− Arg− (Pp7034)b

CBS7435 lys2 his4a lys2 his4 Lys− His− (Pp7035)b

CBS7435 pro3a pro3 Pro− (Pp7036)b

CBS7435 tyr1a tyr1 Tyr− (Pp7037)b

Protease-deficient strains

SMD1163 his4 pep4 prb1 His− (Gleeson et al. 1998)

SMD1165 his4 prb1 His− (Gleeson et al. 1998)

SMD1168 his4 pep4::URA3 ura3 His− Life Technologies™

SMD1168H pep4 Life Technologies™

SMD1168 kex1::SUC2 pep4::URA3 kex1::SUC2 his4 ura3 His− (Boehm et al. 1999)

PichiaPink 2-4 Combinations of prb1/pep4 Ade− Life Technologies™

BG21 sub2 BioGrammatics

CBS7435 prc1a prc1 (Pp6676)b

CBS7435 sub2a sub2 (Pp6668)b

CBS7435 sub2a his4 pep4 His− (Pp6911)b

CBS7435 prb1a prb1 (Pp6912)b

CBS7435 his4 pep4 prb1 his4 pep4 prb1 His− (Pp7013)b

Glyco-engineered strains

SuperMan5 his4 och1::pGAPTrα1,2-mannosidase His−, BlasticidinR BioGrammatics

och1::pGAPTrα1,2-mannosidase BlasticidinR BioGrammatics

pep4 och1::pGAPTrα1,2-mannosidase BlasticidinR BioGrammatics
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activity, but also complicates downstream processing of the
intact product as the degradation products will have similar
physicochemical and affinity properties. Proteolysis may oc-
cur either during vesicular transport of recombinant protein by
secretory pathway-resident proteases (Werten and de Wolf
2005; Ni et al. 2008) or in the extracellular space by proteases
being secreted, cell wall-associated (Kang et al. 2000) or
released into the culture medium as a result of cell disruption
during high cell density cultivation (Sinha et al. 2005).
Different strategies have been employed to address the prote-
olysis problem, namely, modifying fermentation parameters
(pH, temperature and specific growth rate), changing the
media composition (rich medium, addition of casamino acids
or peptone as competing substrates), lowering the salt concen-
tration and addition of soytone (Zhao et al. 2008), applying
protein engineering strategies (Gustavsson et al. 2001) and
engineering of the expression host to obtain protease-deficient
strains (reviewed by Idiris et al. 2010 and Macauley-Patrick
et al. 2005). However, in some cases, optimization of the
fermentation media and protein engineering strategies failed
to alleviate the proteolysis problem and tuning the expression
host itself was the only viable option (Li et al. 2010). The use
of protease-deficient strains such as SMD1163 (Δhis4Δpep4
Δprb1), SMD1165 (Δhis4 Δprb1) and SMD1168 (Δhis4
Δpep4) has been well documented for the expression of
protease-sensitive proteins (Gleeson et al. 1998). PEP4 en-
codes a major vacuolar aspartyl protease which is able to
activate itself as well as further proteases such as carboxypep-
tidase Y (PRC1) and proteinase B (PRB1). The use of
protease-deficient strains other than the above mentioned
(e.g., yps1, kex1, kex2) was reported with variable success
(Ni et al. 2008;Werten and deWolf 2005; Wu et al. 2013; Yao
et al. 2009). A general conclusion from these studies is that in
many cases several proteases are involved in degradation
events and, therefore, it is not an easy task to optimize protein
expression by knocking out just a single one. However, the

pep4 and prb1 knockout strains are still the most effective
ones in preventing recombinant protein degradation, and,
hence, also the most widely applied. Although it has been
reported that protease-deficient strains show typically slower
growth rates, lower transformation efficiencies and reduced
viability (Lin-Cereghino and Lin-Cereghino 2007), experi-
ments in our laboratory showed robust growth behaviour of
28 protease-deficient strains that were recently created (M.
Ahmad, unpublished results).

Glyco-engineered strains

When yeasts such as P. pastoris are chosen for production of
therapeutic proteins, N- and O-linked glycosylation are of
tremendous relevance. Although the assembly of the core
glycans, that is, (Man)8-(GlcNAc)2, in the ER is highly con-
served in mammals and yeasts, mammals provide a much
higher diversity in the ultimate glycan structure assembled in
the Golgi cisternae. Yeasts, in contrast, produce high mannose
glycan structures, which may lead to decreased serum half-life
and may trigger allergic reactions in the human body (Ballou
1990). While in P. pastoris the hyper-mannosylation is not as
prominent as in S. cerevisiae, it is still a problem that needs to
be tackled, and is therefore a target for intensive strain engi-
neering. A very detailed summary of the glycosylation ma-
chinery and the targets for glyco-engineering in different yeast
species, including P. pastoris, has been given recently (De
Pourcq et al. 2010). To sum up briefly, engineering strategies
included the introduction of a Trichoderma reesei α-1,2-
mannosidase (Callewaert et al. 2001), the knockout of the
h i gh l y con s e r v ed yea s t Go lg i p r o t e i n α - 1 , 6 -
mannosyltransferase encoded by OCH1, which is responsible
for hyperglycosylation (Choi et al. 2003; Vervecken et al.
2004), as well as co-overexpression of several glycosyltrans-
ferases and glycosidases carrying proper targeting signals
(Hamilton et al. 2003). Terminally sialylated glycoproteins

Table 4 (continued)

Strain Genotype Phenotype Source

Other strains

GS241 fld1 Growth defect on methanol as
sole C-source or methylamine
as sole N-source

(Shen et al. 1998)

MS105 his4 fld1 See GS241; His− (Shen et al. 1998)

MC100-3 his4 arg4 aox1::ScARG4 aox2::PpHIS4 Mut− (Cregg et al. 1989)

CBS7435 ku70 a ku70 WT (Näätsaari et al. 2012)

CBS7435 ku70 his4 a ku70, his4 His− (Näätsaari et al. 2012)

CBS7435 ku70 gut1 ku70, gut1 Growth defect on glycerol; ZeocinR (Näätsaari et al. 2012)

CBS7435 ku70 ade1 ku70, ade1 Ade−, ZeocinR (Näätsaari et al. 2012)

a These P. pastoris CBS7435 derived strains are marker-free knockouts
b Strains from ‘Pichia Pool’ of TU Graz (M. Ahmad, unpublished results)
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produced for the first in P. pastoriswere obtained by introduc-
ing a complex sialic acid pathway (Hamilton et al. 2006). Key
to success was the correct localization of the heterologous
glycosyltransferases and glycosidases in the ER and Golgi
networks. Combinatorial genetic libraries and high throughput
screening methods were successfully applied to find the best
targeting signal/enzyme combinations for N-linked
glycoengineering (Nett et al. 2011). Furthermore, a useful
guide to glyco-engineering in P. pastoris by using the
GlycoSwitch® technology was described by Jacobs et al.
(2009). These strategies, altogether, enable the production of
valuable biopharmaceuticals with a more homogeneous,
‘humanized’ N-glycosylation pattern.

However, as yeasts also carry out O-glycosylation that
differs structurally from the mammalian type (Strahl-
Bolsinger et al. 1999), O-glycosylation has also been an inter-
esting target for engineering. In P. pastoris, O-linked glycosyl-
ation is initiated with a mannose monosaccharide, which is
further elongated by α-1,2-mannose residues and finally
capped with β- or phospho-mannose residues. Until lately,
the engineering strategies were limited to the use of an inhibitor
of the major ER located protein-O-mannosyltransferases
(PMTs) as the deletion of these genes did not yield robust
and viable strains. The characterization of the P. pastoris
PMT gene family was an important step forward in O-
glycosylation engineering (Nett et al. 2013). In this study, the
knockout of PMTs as well as the use of PMT inhibitors led to a
reduced number of O-mannosylation events and, furthermore,
to reduced chain lengths of the O-glycans. A follow-up study
described the production of a TNFR2:Fc1 fusion protein car-
rying sialylated O-linked glycans in P. pastoris (Hamilton et al.
2013). Therein, an α-1,2-mannosidase as well as a protein-O-
linked-mannose β-1,2-N-acetylglucosaminyl-transferase 1
(PomGnT1) were co-expressed in a P. pastoris strain, that
was already engineered in its N-glycosylation pathway.
Hence, the mannose residues were first trimmed to single O-
linked mannose residues, which were then capped with N-
acetylglucosamine. This structure was extended with sialic
acid residues to achieve human-like O-glycan residues similar
to the α-dystroglycan-type. However, there is still room for
improvement, for example by engineering P. pastoris towards
human mucin-type O-glycosylation.

Expression strategies and industrial applications

Screening for high level expression

Subsequent to the choice of suitable expression vectors and
proper host strains, and transformation of the expression

cassettes, it is important to select for transformants which
show high expression levels of the desired protein. Single
copy transformants can be easily generated by targeting the
linear expression cassettes to the AOX1 locus resulting in gene
replacement events. Ectopic integrations may simultaneously
occur, however. Transformants resulting from gene replace-
ment at the AOX1 locus have methanol utilization slow phe-
notype (MutS) and can be easily identified by replica-plating
on minimal methanol plates. The most commonly applied
strategy to screen for high-yielding P. pastoris transformants
focusses on screening for clones having multicopy integra-
tions of the expression cassette. A recent detailed review
describes the methods applied to obtain strains containing
multiple expression cassettes and provides a summary of
published data showing correlations between copy number
and expression levels of intracellular as well as secreted pro-
teins. It also highlights the problem of genetic instability of the
integration cassettes that might be encountered when cultivat-
ing multicopy strains. Due to the highly recombinogenic
nature of P. pastoris, expression cassettes might be excised
through loop-out recombination. This effect seems to be more
pronounced the more copies are integrated (Aw and Polizzi
2013).

Regarding the correlation between copy number and ex-
pression level, a number of recent studies have shown a direct
correlation especially for intracellular expression (Marx et al.
2009; Vassileva et al. 2001). The direct correlation of expres-
sion level and gene copy number is, however, not necessarily
valid when the protein is directed to the secretory pathway.
The most commonly employed method of generating
multicopy expression strains in P. pastoris is based on plating
the transformation mixture directly on selection plates con-
taining increasing concentrations of antibiotics (e.g., 100 to
2,000 μg/ml of Zeocin™). The majority of transformants will
have a single copy of the expression vector integrated into the
genome, and numerous clones will have to be screened to find
high-copy transformants (Lin-Cereghino and Lin-Cereghino
2007). Therefore, several high-throughput methods have been
established to screen a large number of clones based on small-
scale cultivation in deep well plates (Mellitzer et al. 2012;
Weinhandl et al. 2012; Weis et al. 2004). The selected clones,
however, might not perform as well in fermenter cultivations
due to different cultivation conditions. A further pronounced
problem of resistance marker based screening is a high prev-
alence of false-positive colonies. This so-called high transfor-
mation background is supposedly caused by cell stress and
cell rupture. Depending on the mechanism of antibiotic resis-
tance conferred by the resistance marker, un-transformed cells
may survive in the vicinity of ruptured transformants. This
problem was addressed by constructing expression vectors
based on marker gene expression driven by the weak ARG4
promoter (Pichia Pool, Fig. 2). This ensures basal levels of
expression, thereby allowing handlers to select single copy to

1 Ectodomain of tumor necrosis factor 2 with crystallizable fragment of
IgG1 (Fc)
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multicopy strains by plating the transformants directly on low
concentrations of Zeocin™ (i.e., 25 μg/ml for single copy and
up to 400 μg/ml for multi-copy transformants). Thus,
transformants having 1 to 20 (±5) copies can be selected. To
reduce the chances of having single copy transformants, re-
generation time should be kept short and transformants should
be plated directly on increased concentrations of antibiotic. By
employing this method, only few transformants survive on
high concentrations of antibiotic, but will most likely contain
multiple copies, which can be determined by quantitative
(qPCR) or Southern blot analysis (M. Ahmad, unpublished
results). Performance can then be tested directly under pro-
duction conditions in bioreactor cultivations instead of small-
scale cultivations in deep well plates or shake flasks.

Membrane protein expression

P. pastoris has been shown to produce 15+ g of soluble
recombinant protein per litre of culture intracellularly
(Hasslacher et al. 1997) or in secretory mode (Werten et al.
1999). Key to such high titres is the ability of P. pastoris to
grow to very high cell densities reaching up to 150 g cell dry
weight per litre of fermentation broth in fed-batch bioreactor
cultivations (Jahic et al. 2006). At very high cell densities,
even proteins that are present in limited entities per single cell
can be produced with reasonable volumetric yields in
P. pastoris. Typical examples of non-abundant proteins with
high scientific and commercial relevance are integral mem-
brane proteins. Being the targets of >50 % of drugs applied on
humans (Arinaminpathy et al. 2009), only very few mem-
brane proteins have been characterized on the molecular level
regarding structure–function relationships. The simple reason
is that it is difficult to obtain sufficient purified membrane
protein for structural and biochemical studies, unless affinity-
tagged membrane proteins are obtained at reasonable yield.
Actually, P. pastoris has been applied routinely to produce
affinity-tagged membrane proteins for protein purification and
subsequent biochemical studies (Cohen et al. 2005; Haviv
et al. 2007; Lifshitz et al. 2007). Furthermore, P. pastoris has
been the expression host of choice for elucidating the crystal
structures of membrane proteins from diverse origins, even
from higher eukaryotes (Brohawn et al. 2012; Hino et al.
2012; Ho et al. 2009).

Evolutionary proximity of a heterologous expression host
and the origin of an expressed membrane protein are benefi-
cial for successful recombinant expression (Grisshammer and
Tateu 2009). In addition to the intramolecular forces and
bonds, ions, cofactors and interacting proteins that stabilize
soluble proteins, membrane proteins are usually interacting
with and are partially also stabilized by the lipids of the
surrounding bilayers (Adamian et al. 2011). As P. pastoris
and other yeast expression hosts do significantly differ in their
membrane compositions from bacterial, plant or animal cells

(Wriessnegger et al. 2007, 2009; Zinser and Daum 1995),
heterologous membrane proteins may face stability issues
upon expression in distantly related hosts. Thus, multiple
approaches have been undertaken to improve P. pastoris host
strains and expression conditions for membrane protein pro-
duction. Applying similar tools as for the optimisation of
soluble protein expression— that is, manipulation of expres-
sion conditions, addition of chemical chaperones, co-
expression of chaperones or of proteins activating UPR, use
of protease deficient strains, etc. — has been showing some,
however often target-specific success in membrane protein
expression. A novel approach is the engineering of
P. pastoris cellular membranes for improved accommodation
of heterologous membrane proteins. In the first reported ex-
ample, a cholesterol-producing P. pastoris strain was shown to
stably express an enhanced level of ligand-binding human
Na,K-ATPase moieties on the cell surface (Hirz et al. 2013).

Products on — or on the way to — the market

The P. pastoris expression system has gained importance for
industrial application as highlighted by the number of patents
published on heterologous expression in and cell engineering
of P. pastoris (Bollok et al. 2009). Products obtained by
heterologous expression in P. pastoris have already found their
way to the market, as FDA approved biopharmaceuticals or
industrial enzymes have shown. The www.pichia.com web
page provides a list of proteins produced in P. pastoris with the
commercial expression system licensed by Research
Corporation Technologies (RCT) and their applications:
Phytase (Phytex, Sheridan, IN, USA) is applied as animal
feed additive to cleave plant derived phytate, thereby provid-
ing a source of phosphate. Trypsin (Roche Applied Science,
Germany) is used, for example, as protease in proteomics
research to obtain peptide patterns for MS analysis. Further
examples listed are nitrate reductase (The Nitrate Elimination
Co., Lake Linden, MI, USA), used for water testing and
treatment, phospholipase C (Verenium, San Diego, CA,
USA/DSM, The Netherlands), used for degumming of vege-
table oils, and Collagen (Fibrogen, San Francisco, CA, USA),
used in medical research and as dermal filler. Thermo
Scientific (Waltham, MA, USA) sells recombinant
Tritirachium album Proteinase K produced in P. pastoris.
Concerning biopharmaceuticals, a famous example is
Kalbitor® (ecallantide), produced in P. pastoris by Dyax
(Cambridge, MA, USA). Kalbitor® is a plasma kallikrein
inhibitor indicated against hereditary angioedema. This prod-
uct was the first biopharmaceutical to be approved by the FDA
for market release in 2009 (Walsh 2010). As can be found on
the web page of RCT (www.rctech.com), Pichia-
manufactured Jetrea®, a drug used for treatment of
symptomatic vitreomacular adhesion, was recently approved
by the FDA and the European Commission. Other Pichia-
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derived products provided by the Indian company Biocon are
recombinant human insulin and analogues thereof (Insulin,
Glargine). Products under development, such as Elastase
inhibitor against Cystic fibrosis or Nanobody® ALX
antibody fragments developed by Ablynx (Belgium), are also
listed by Gerngross (2004) and on www.pichia.com. In 2008,
Novozymes (Denmark), which found a highly active antimi-
crobial agent, the plectasin peptide derivative NZ2114 (Andes
et al. 2009; Mygind et al. 2005), granted Sanofi-Aventis
(France) an exclusive licence for the production and
commercialisation of this compound in P. pastoris. This might
be the first antimicrobial peptide approved for the market in
the future.

Although not yet approved for medical use, many products
can be found on the market for research purposes. GenScript
(Piscataway, NJ, USA) provides recombinant cytokines and
growth factors, such as human HSA-IFN-Alpha 2b, human
Stem Cell Factor SCF, murine TNF-α and ovine IFN-τ, to
name just a few examples. Recombinant human angiostatin
can be found for instance in the reagents offered by Sigma-
Aldrich (St. Louis, MO, USA).

Future perspectives — outlook

Successful expression of many industrial enzymes as well as
pharmaceutically relevant proteins has rendered the
methylotrophic yeast P. pastoris one of the most suitable and
powerful protein production host systems. It is also an emerg-
ing host for the expression of membrane proteins (Hirz et al.
2013) and of small bioactive and antimicrobial peptides,
which could be a forthcoming alternative to chemical synthe-
sis (Zhang et al. 2014). Although many basic elements of this
expression system are now well developed and one can make
use of a broad variety of vectors and host strains, there is still
space for further optimization of protein expression and se-
cretion, which, in many cases, will be highly dependent on the
desired product. One general interest is to find effective alter-
natives for induction to replace methanol for industrial scale
fermentations (Delic et al. 2013; Prielhofer et al. 2013;
Stadlmayr et al. 2010).

Improving protein secretion performance is one of the first
and foremost goals for engineering P. pastoris. There is still
potential to increase yields, for example, by employing differ-
ent secretion signals (Vadhana et al. 2013) or mutating
S. cerevisiae α-MF (Lin-Cereghino et al. 2013). In contrast
to the well-studied secretory pathway of S. cerevisiae,
P. pastoris still is a black box regarding factors influencing
secretion efficiency. Current studies try to identify these fac-
tors by mutagenesis approaches and screening for enhanced
secretion of reporter proteins (Larsen et al. 2013; C. Winkler
and H. Pichler, unpublished results). The well-developed tools
for strain engineering, including marker-free integration and

deletion of desired genes, will provide a powerful set of
engineered designer host strains in the near future. These will
provide optimized cell factories by fine-tuned co-expression
of important homologous or heterologous protein functions
needed for efficient and accurate functional expression, secre-
tion and post-translational modification of proteins. Moreover,
knockout or knockdown of undesired functions such as pro-
teolytic decay will increase product quality and process per-
formance. Considering the scope of this review on heterolo-
gous protein expression, it was not feasible to address all
possible applications for P. pastoris as production organism,
such as metabolic engineering for production of small mole-
cules and metabolites, or for whole-cell biocatalysis.
However, developments in these fields may also be relevant
for constructing improved host strains dedicated for protein
production. There are several recent reviews and research
articles describing advances in these fields in detail (Abad
et al. 2010; Araya-Garay et al. 2012; Wriessnegger and
Pichler 2013).
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