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Abstract Advances in high-throughput technologies

along with the curation of small-scale experiments has

aided in the construction of reference maps of the inter-

actome. These maps are critical to our understanding of

genotype-phenotype relationships and disease. However,

our knowledge of disease associated genes and the map of

the human interactome still remains incomplete. In this

study we investigate whether protein–protein interaction

networks (PPINs) constructed from either experimental or

curated data have an impact upon disease network analysis.

An integrative network-driven framework is implemented

to integrate diverse heterogeneous data including: gene-

expression, PPIN, ontology-based similarity, degree con-

nectivity and betweenness centrality measures to uncover

potential Alzhemier disease (AD) candidate genes. Two

PPINs have been selected and constructed from (1)

experimental high-throughput data and (2) literature-cu-

rated sources. Only a marginal overlap of protein pairs

between the two PPINs (305 protein pairs) was observed. A

total of 17 significant AD gene candidate genes were

identified using the literature derived PPIN compared to 20

genes using the PPIN constructed from high-throughput

data. Both approaches correctly identified the AD suscep-

tible TRAF1, a critical regulator of cerebral ischaemia–

reperfusion injury and neuronal death. Biological process

enrichment analysis revealed genes candidates from the

literature based PPIN are modulated in AD pathogenesis

such as neuron differentiation and involved in KEGG

pathways such as neurotrophin signaling pathways. Tissue

specific analysis revealed 48 % of AD gene candidates

obtained from the literature curated PPIN were expressed

in tissues where AD is observed compared to 19 % of gene

candidates extracted using the high-throughput PPIN.

Keywords Alzheimer’s disease � Protein–protein

interaction networks � Data integration � Network analysis

1 Introduction

Both physical and genetic interaction networks have been

instrumental in providing valuable insights into complex

biological systems. These insights include understanding

how different processes communicate through to knowl-

edge of protein function [4]. The advent of high-throughput

technologies along with traditional small-scale experiments

has aided in the systematic identification of pairwise pro-

tein interactions [60] [37] and protein complexes [29] [16].

Public interaction databases including: BioGRID [6],

Human Protein Reference Database (HPRD) [28], IntAct

[27], Database of Interacting Proteins (DIP) [40] and Kyoto

Encyclopedia of Genes and Genomes (KEGG) [26] store

many interaction and pathway data across diverse organ-

isms [23]. All these data have been useful as a means to

understanding the underlying mechanisms of a cell.

In particular, the construction of protein interaction

networks has been beneficial in providing insight into

protein function [29]. Protein–protein interactions (PPIs)

play an important role in biological processes. Most pro-

teins perform their functions by interacting with other

proteins. Furthermore, they aid in the formation of protein

complexes and mediate post-translational protein modifi-

cations [54]. Systematic efforts have been made over the
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past few years to map the human protein interaction

interactome [collection of all human protein–protein

interactions (PPIs)]. These have been performed using

high-throughput techniques including: yeast two-hybrid

(Y2H) [39], mass spectrometry [13, 50] and co-affinity

purification [57]. In addition with curation of small-scale

experiments and computational approaches [51], these

studies have been advantageous in increasing the coverage

of human interactome maps. Furthermore, they have

reduced interactome map biases and have been beneficial

in providing an estimate of the interactome size [42].

However, these maps still remain incomplete and noisy,

which needs to be taken into consideration when applying

these PPIs in studies [2]. Literature-curated data sets,

although richer in interactions, are prone to investigative

biases [60] as they contain more interactions for the more

explored disease proteins [56].

With the emergence of the area ‘‘network medicine’’,

further development of protein interaction maps is essen-

tial. Network medicine as described by Barabasi et al. [2]

aims to explore disease complexity through the systematic

identification of disease pathways and modules also taking

into consideration molecular relationships between phe-

notypes. Through the analysis of network topology and

network dynamics, key discoveries including identification

of novel disease genes and pathways, biomarkers and drug

targets for disease are advanced [48]. Key work in the area

include the study by Xu et al. [56] who analyzed topo-

logical features of a PPI network. This study observed that

hereditary disease-genes from the Online Mendelian

Inheritance in Man (OMIM) database [21] have a larger

degree and tendency to interact with other disease-genes in

literature curated networks. These tendencies were not

observed in networks constructed from high-throughput

experiments. Other studies such as Chuang et al. [9] and

Taylor et al. [46] have indicated that the alterations in the

physical interaction network may be an indicator of breast

cancer prognosis. The paper by Goh et al. [17] illustrated

that the majority of disease genes are nonessential and are

located in the periphery of functional networks. Research

by [14] discovered that genes connected to diseases with

similar phenotypes are more likely to interact directly with

each other. Network analysis tool such as clustering or

graph partitioning have been advantageous in uncovering

functional and potential disease modules in the interactome

[35]. The study by Vanunu et al. [49] applied a diffusion-

based method named PRINCE to prioritize genes in pros-

tate cancer, AD and type 2 diabetes.

What underpins these key research studies and future

studies is the reliance on human interactome maps which

are critical to the understanding of genotype-phenotype

relationships [37]. In this study, we aim into investigate

whether experimental data or curated data used to

construct a human protein–protein interaction network

(PPIN) has an impact upon disease network analysis.

Using our previously proposed integrative network-driven

pipeline [5] we integrate diverse heterogeneous data

including: gene-expression, PPIN, ontology-based simi-

larity, degree connectivity and betweenness centrality

measures to uncover potential disease-candidate genes. To

investigate the effect of human PPIN selection, a com-

parison of disease-gene candidates is presented when

different human PPINs are integrated into the framework.

Two PPINs have been selected for this study: (1) the

recently published proteome-scale map of the Human

Interactome Network by Rolland et al. [37] which is

referred to as PPIN_HTP and (2) a literature curated map

obtained from extracting binary PPIs from public data-

bases referred to as PPIN_LIT [51]. To illustrate PPIN

impact on disease-gene selection, Alzheimer’s disease

(AD) has been selected as a Case Study. AD is a genet-

ically complex disease whereby patients present with

progressive dementia [10]. It is the most common form of

age cognitive impairment [47]. It is characterized by the

loss of neurons along with the presence of axonal dys-

trophy, mature senile plaques and neurofibrillary tangles

[34]. Gene expression profiling studies have been suc-

cessful in identifying AD affected pathways across dif-

ferent brain areas and tissues including: mitochondrial

function, intracellular signaling and neuroinflammation

[10]. To evaluate the impact of PPIN selection on the

disease-gene selection process we perform biological

process enrichment analysis and compare the candidate

gene list to a manually curated reference dataset of ver-

ified known and susceptible AD disease genes. Further-

more, we investigate the tissues in which AD candidate

disease-genes are expressed through incorporation of tis-

sue-specific expression data.

The remainder of the paper is organized as follows, in

Sect. 2 the integrative framework is described along with

details on datasets and PPINs used in the analysis. Sec-

tion 3 provides a summary of the results obtained and

conclusions along with future work is presented in Sect. 4.

2 Materials and methods

A comparison on the impact human PPINs has on the

identification of AD disease-candidate genes is performed

via integration of PPIN data with diverse heterogeneous

including gene expression and ontology similarity mea-

sures. This framework is illustrated in Fig. 1 and detailed

in [5]. A literature curated PPIN is obtained by extracting

binary interactions from public databases. A PPIN con-

structed from high-throughput Y2H experiments is

obtained from [37].
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2.1 Identification of disease genes

Human AD gene expression data was obtained from the

Gene Expression Omnibus (GEO) database. (http://www.

ncbi.nlm.nih.gov/geo/). The selected profile GSE4757 was

generated using the platform GPL570: Affymetrix Human

Genome U133 Plus 2.0 Array. The study by Dunckley et al.

[11] examined the transcriptome of entorhinal neurons

from six cortical areas with or without neurofibrillary

tangles (a histopathology feature of AD) using Laser cap-

ture microdissection. The dataset consists of gene expres-

sion profiles of NFT-bearing entorhinal cortex neurons

from 10 mid-stage AD patients (Disease) compared with 10

histopathologically normal neurons (Control) from the

same patients and brain region. These represent the dif-

ferent stages of AD according to the pattern of disease

spread. Using the MAS5.0 function in R the CEL files were

firstly normalized. Probes in expression profile were then

mapped to corresponding NCBI Gene IDs. The average

expression value was calculated in cases where the Gene

ID related to more than one probe resulting in 20,539

unique Gene IDs.

A total of 10,106 significant genes were obtained using

the significance analysis of microarrays (SAM) [48] tech-

nique, a regularized t test approach, using the false dis-

covery rate (FDR = 0.98). Differentially expressed (DE)

genes are genes whose expression levels are significantly

different between two groups of experiments. These may

indicate clinical markers for involvement in disease

pathology.

2.2 Human protein–protein interaction networks

2.2.1 Literature based PPIN

The PPIN_LIT was obtained from [51]. The dataset consist

of 11,045 binary human protein pairs extracted from seven

publically available databases including BioGRID [6], DIP

[40], Biomolecular Interaction Network Database (BIND)

[1], HPRD [28], InACT [27], Protein Data Bank (PDB)

[38] and Molecular INTeraction database (MINT) [7]. The

set has been filtered to remove large-scale systematic pairs

and pairs involving the products: UBC, SUMO1, SUMO2,

SUMO3, SUMO4, or NEDD8. To ensure a high level of

quality, binary pairs were further filtered on evidence,

whereby protein pairs that are only support by two or more

pieces of evidence are included.

2.2.2 High-throughput PPIN

Using the high-throughput method Y2H, the PPIN_HTP

was obtained from the systematic screening of 15,517

opening read frames (ORFs) from the platform hORFeome

v5.1 (Space II) resulting in 13,944 pairwise interactions. A

subset of interactions were validated using three assays: (1)

reconstituting membrane bound receptor complex in

mammalian cells using MAPPIT, (2) reconstituting fluo-

rescent protein in Chinese hamster ovary cells using pro-

tein-fragment complementation assay and (3) the well-

based protein nucleic acid programmable protein array

wNAPPA [37].

Fig. 1 Methodology overview

applied to generate disease

candidate genes
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2.3 Integration of PPIN and gene expression data

AD gene expression data was mapped to both the PPIN_-

LIT and PPIN_HTP via NCBI geneIDs using Cytoscape

version 3.2.1 [58]. Mapping AD expression data with the

PPIN_HTP resulted in an AD disease specific network

consisting of 5457 nodes and 10,852 protein pairs.

Applying the same approach to the PPIN_LIT resulted in

an AD disease network consisting of 4130 nodes and

12,070 protein pairs.

2.4 Identification of disease candidate genes (hubs)

From the AD disease networks, hub genes were defined

based on network topological features using Cytoscape

version 3.2.1 [58]. The disease networks are represented as

an undirected graphs, G = V, E, whereby V represents a set

of nodes (proteins) and E ¼ f u; vð Þju; v 2 Vg, the set of

edges connecting the nodes. Two topological analysis

measures were applied to the disease networks to obtain

hub genes namely (1) node degree (connectivity) and (2)

betweenness centrality.

2.4.1 Degree connectivity

Degree is a measure of the number of edges that con-

nects a node. Genes with a high degree of connectivity

within a network have large numbers of interacting

partners. In PPINs it has been observed that genes with

high degrees of connectivity are more likely to be

essential as genes. Furthermore, many interacting part-

ners in a network tend to be involved in important cel-

lular processes [2]. Based on this assumption, hub genes

for both the PPIN_LIT and PPIN_HTP were chosen by

selecting genes, which have high degree distributions as

previously applied by Taylor et al. [46]. To determine

the degree cut-off threshold for selecting hubs genes, we

applied the approach used by Rakshit et al. [36]. The

degree cut-off threshold for selecting hubs was defined

as AVGþ 2 � Stdð Þ, where AVG is the average degree

across all DE genes in the PPINs and Std, the standard

deviation.

2.4.2 Betweenness centrality

Betweenness is a topological feature of a network mea-

suring information flow through the network. In biological

networks, betweenness measures the paths through which

signals can pass through the interaction network Yu et al.

[61]. Identified betweenness as an important topological

property of a network where nodes with high betweenness

control most of the information flow. Betweenness

centrality is calculated in Cytoscape. The betweenness of a

node is the number of shortest paths that pass through it. It

considers node couples such as (v1, v2) and counts the

number of shortest paths linking v1 and v2 and passing

through a node n. The value is related to the total number

of shortest paths linking v1 and v2. The betweenness

centrality Cb nð Þ of a node n is computed as follows:

Cb nð Þ ¼
X

s6¼n 6¼t

hst nð Þ=hstð Þ ð1Þ

where S and t are nodes in the network different from n, hst
denotes the number of shortest paths from S to t, and hst nð Þ
is the number of shortest paths from S to t that n lies on.

Using the node betweenness distribution, genes located in

the top 50 % are firstly selected as hub genes. For hub

genes that have high betweenness but low connectivity (i.e.

degree is less than the degree cut-off threshold), additional

filtering is applied to include only genes that are directly

connected to at least 2 highly connected nodes. A similar

approach is applied in [36].

2.4.3 Calculation of network variation of hub genes

For each hub protein in the PPIN_LIT and PPIN_HTP the

average of Pearson correlation coefficients between the

hub and each of its respective partners was calculated for

both disease and control groups. This method has previ-

ously been applied by Taylor et al. [46] to measure net-

work variations among candidate genes and their

interacting genes. To determine if interactions are varied,

the difference of AD gene expression correlations of PPIs

in disease and control samples is calculated. Gene co-

expression values were mapped to the PPIN nodes via

NCBI gene IDs. The average hub difference (AvgPCC)

off correlation [Pearson’s correlation co-efficient (PCC)]

values between the disease and control groups was cal-

culated as follows:

AvgPCC ¼
Pn

i¼1 Di � Cið Þ
n

ð2Þ

where Di and Ci represent the correlations of a hub and its

interactors for the disease and control groups respectively

and n the number of i interactors for a given hub.

To identify genes that are significantly different between

the disease and control groups we randomly assigned the

expression data gene labels to either the disease or control

group 1000 times and recalculated the AvgPCC defined in

Eq. 2. The P values for each hub was calculated as the

frequency of the random AvgPCC being greater than the

original AvgPCC divided by 1000. A network of signifi-

cant hub genes was generated using significant cut-off

threshold of P C 0.05. P values are adjusted using Bon-

ferroni correction.
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2.4.4 Ontology based semantic similarity

Genes involved in phenotypically similar diseases are often

functionally related on the molecular level [41]. Based on

this observation, the semantic similarity between hub genes

and their interactors has been selected to analyze hub genes

based on the gene ontology (GO) [15]. The GO is a con-

trolled vocabulary describing the characteristics of gene

products. Semantic similarity measures evaluate informa-

tion two genes share. The functional similarity between

two proteins is estimated using encoded information in the

GO hierarchies. In this study Wang’s [53] measure of

similarity is applied to the Biological Process hierarchy.

This measure determines the semantic similarity of two GO

terms based on the locations of terms in the GO graph and

their semantic relations with their ancestor terms. Given a

GO term A, TA denotes the set of all its ancestor terms

including term A itself. SA tð Þ can be defined as the con-

tribution of a term t 2 TA to the semantics of A based on the

relative locations of t and A in the graph. Given GO terms

A and B respectively, the semantic similarity between

these two terms, SGO A;Bð Þ, is defined as:

SGO A;Bð Þ ¼
P

t2TA\TB SA tð Þ þ SB tð Þð Þ
P

t2TA SA tð Þ þ
P

t2TB SB tð Þ ð3Þ

As one gene may be annotated by many GO terms,

similarity between two genes Sim G1;G2ð Þ, is then calcu-

lated by taking the average semantic similarity scores for

all pairs of their associated terms. The similarity score can

range between (0,1), whereby a value closer to 1 indicates

close relatedness of the two genes in biological process.

Wang’s measure was implemented using the GOSemSim

package in R [59], taking the median semantic similarity

between a hub protein and it’s interactors.

2.5 Evaluation

To evaluate the generated list of significant hub genes,

three approaches are implemented. Firstly, functional

annotation enrichment is performed using DAVID [22] to

investigate the biological implications of the gene list.

Secondly, prioritized genes were compared to genes asso-

ciated with AD. A reference dataset containing known and

susceptible AD genes was constructed using the OMIM

‘morbid map’ table [21]. Known and recently discovered

AD susceptibility genes in detailed in the study by Lam-

beret et al. [31] were also included. This resulted in a list of

52 AD related genes. Thirdly, analysis was performed on

the integrated prioritized disease-gene candidate list using

tissue-specific gene expression to evaluate if gene candi-

dates were expressed in tissues where AD is observed

including the ‘‘whole brain’’ and prefrontal cortex.

Candidate genes were filtered using tissue-specific gene

expression data retrieved from BioGPS [55]. This dataset

contains the transcription levels of 84 human tissues and

cell lines and was processed using the method described by

Lopes et al. [32]. Furthermore, a list of 570 housekeeping

genes were also included, obtained from [12] as they are

believed to be expressed in all tissues.

3 Results and discussion

Using the proposed methodology in Sect. 2, we apply

topological, semantic similarity and functional enrichment

approaches to analyze the generated candidate AD genes

obtained from using the two different PPINs. These results

are summarized below.

3.1 Selecting differentially expressed genes

To identify significantly expressed, disease related

genes from the AD gene expression data, SAM analysis

was performed in R using the SAM 5.0 package from

[8]. A total of 10,107 significantly positive DE genes

were observed from 20,539 genes in the AD microarray

dataset using the T-statistic and two class unpaired

(disease and control) response mode. The DE genes

were used as input into the construction of the AD

specific PPINs. An overview of the top 10 DE genes is

presented in Table 1 along with the SAM score based

on the T-statistic value.

3.2 Integration of PPIN with gene expression data

Using the 10,107 significant AD genes identified from the

SAM analysis, two AD disease networks were constructed

from PPIN data described in Sect. 2. The significant genes

were mapped to the PPIN nodes via NCBI gene IDs. The

PPIN_LIT protein pairs have been derived from small-

scale studies described in literature from seven public

databases. These binary literature PPIs although high in

quality may reflect bias observed in small-scale studies.

Based solely on literature-curated binary interactions, the

interactome appears restricted to a narrow dense zone [37].

In contrast to the PPIN_LIT, protein pairs in the

PPIN_HTP were obtained from large-scale high-through-

put Y2H experimentation. Compared to the PPIN_LIT, the

study by Rolland et al. [37]. demonstrates a distributed

homogeneously of protein pairs across the interactome. An

overlap of 305 protein pairs was observed between the two

AD networks mapped using the PPIN_LIT (10,852 protein

pairs) and PPIN_HTP (12,070 protein pairs) illustrated in

Fig. 2.
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3.3 Analysis of network topology

Topological analysis was performed on the AD specific

PPIN_LIT and PPIN_HTP. An overview of the global

properties of these networks is presented in Table 2.

Studies of model organisms have observed that proteins

with high degree of connectivity tend to be encoded by

essential genes [24]. Furthermore, detection of these genes

leads to larger numbers of phenotypic outcomes compared

to genes with lower connectivity [60]. Wachi et al. [52]

observed disease gene encoding proteins in lung squamous

cell carcinoma tended to have a higher degree of

connectivity. However, not all disease genes in humans are

essential genes. Goh et al. [17] found that non-essential

disease genes tend to be tissue specific located at the

functional periphery of the interactome and do not neces-

sarily encode hubs (highly connected genes). Taking this

into consideration, we include another indicator of cen-

trality, betweenness. Both Yu et al. [61] and Joy et al. [25]

demonstrated how nodes with a low degree of centrality

but high betweenness are important in a network (i.e.

bottleneck effect).

Using these networks, degree connectivity and

betweenness centrality measures were applied to select hub

genes. Genes with a high degree of connectivity and genes

with low connectivity but high betweenness were selected

using the cut-off thresholds defined in Sect. 2. Using this

approach, Table 3 presents the number of hubs for both

PPIN_LIT and PPIN_HTP networks respectively.

Interestingly, genes such as CDC42P2, SIAH1, STX4

observed in the PPIN_LIT hub list, are enriched in GO

Biological Process terms [15] including: neuron differen-

tiation, neuron projection morphogenesis, and involved in

KEGG [45] pathways such as neurotrophin signaling

pathways and neurotransmitter transportation.

3.4 Gene ontology semantic similarity analysis

Semantic similarity was applied as a quantitative measure

of functionality similarity between gene products. The

semantic similarity between a gene hub and it’s interacting

partners was calculated using the Wang semantic similarity

approach [53] detailed in Eq. (4). The R package

GOSemSim was used to calculate the similarity between

pairs of genes. To obtain the similarity value for the hub

and all its interactors, the median similarity was taken

across all protein pairs. The semantic similarity values

obtained ranged between 0 and 1. The gene hubs were

Table 1 Overview of the top 10 differentially expressed genes obtained from the Alzheimer’s microarray dataset using SAM analysis

Gene ID Gene description Score

8347 Histone cluster 1, H2bi; histone cluster 1, H2bg; histone cluster 1, H2be; histone cluster 1, H2bf; histone cluster 1, H2bc 3.41

55604 Leucine rich repeat containing 16A 3.10

196872 Hypothetical LOC196872 2.78

25778 Dual serine/threonine and tyrosine protein kinase 2.71

283847 Coiled-coil domain containing 79 2.68

51384 Wingless-type MMTV integration site family, member 16 2.55

55471 Chromosome 2 open reading frame 56 2.52

30817 Egf-like module containing, mucin-like, hormone receptor-like 2 2.51

27067 Staufen, RNA binding protein, homolog 2 (Drosophila) 2.50

6319 Stearoyl-CoA desaturase (delta-9-desaturase) 2.47

Fig. 2 Venn diagram illustrating the overlap of protein pairs from the

AD specific PPIN_LIT and PPIN_HTP

Table 2 Overview of the global properties of the AD specific

PPIN_LIT and PPIN_HTP

PPIN_LIT PPIN_HTP

Nodes 5457 4130

Edges 10,852 12,070

Average degree 2.04 2.78

Maximum degree 44 88

Hub threshold cut-off 8.6 15.8

Betweenness centrality cut-off 0.017 0.007

Maximum betweenness centrality 1 1
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ranked according to their similarity scores whereby 1

represents the highest similarity and 0 the lowest. Figure 3

presents a comparison between the PPIN_LIT and

PPIN_HTP in terms of semantic similarity values obtained.

Interestingly, hub genes from the PPIN_LIT obtained

higher similarity values compared to hub genes in the

PPIN_HTP network. This may reflect the quality of the

data used to construct the PPIN_LIT, which has been

obtained from literature-curated studies. Furthermore,

interaction pairs in this network are supported by two or

more sources.

3.5 Co-expression analysis of hub genes

Using AD gene expression data integrated with the

PPIN_LIT and PPIN_HTP networks we measured the

network variation of hub genes and their interactors using

the AvgPCC equation defined in Sect. 2.4.3. For disease

and control groups, PCC values between the hubs and their

interactors were calculated. Significant hub genes were

selecting using the Bonferroni corrected cut-off threshold

of P\ 0.05. For the PPIN_LIT network, a total of 17

significant hubs were identified, using the PPIN_HTP

network, 20 were identified. No overlapping significant hub

genes were observed between the two networks. These

genes are summarized in Table 4 below.

3.6 Functional annotation enrichment

The DAVID resource [22] was applied to study the most

significant GO terms (biological processes, molecular

functions, cellular components) and KEGG pathways

associated with the hubs and significant hubs obtained

using the PPIN_LIT and PPIN_HTP networks outlined in

Table 5. Functional annotation was obtained from

extracting the most over-representative GO terms (Bio-

logical Process, Cellular Component and Molecular

Function) for the groups of genes under observation with

respect to the whole genome taken as the reference back-

ground set (P value\0.05).

Enrichment analysis of PPIN_LIT hub and significant

hub genes identified significant biological processes

including: (GO:0030182) neuron differentiation,

(GO:0048812) neuron projection morphogenesis and

(GO:0031175) neuron projection development. Significant

KEGG pathways including: (hsa04722) Neurotrophin sig-

naling pathway, (hsa04010) MAPK signaling pathway,

(hsa04630) Jak-STAT signaling pathway and (hsa05014)

Amyotrophic lateral sclerosis (ALS) signaling pathway

were observed. It was noted that fewer GO terms were

enriched across the ontologies and pathways using the hub

genes obtained from PPIN_HTP analysis. However, for

pathway analysis performed on both hub genes from the

PPIN_LIT and PPIN_HTP, the KEGG pathway (hsa05200)

pathways in cancer was found to be a highly significantly

pathway. This is interesting as recent research summarized

in [44] has shown that patients with neurodegenerative

disorders (such as AD) have a substantially lower overall

risk of developing cancer.

3.7 Reference dataset comparison

The lists of hub genes obtained from using the PPIN_LIT

and PPIN_HTP networks were compared to the reference

dataset consisting of 52 AD related genes. The hubs

PSEN1 and TRAF1 were correctly identified as an AD

susceptible genes from the list of hub genes identified using

PPIN_LIT. Mutations in PSEN1 are the most common

cause of early onset of AD. TRAF1, a critical regulator of

cerebral ischaemia–reperfusion injury and neuronal death

[33]. Interestingly, TRAF1 was also identified using the

PPIN_HTP hub proteins along with LZTS2 which has

shown associated with late onset AD [3].

3.8 Tissue analysis

Tissue specificity is an important component of network

analysis as genetic diseases often target specific tissue(s).

Table 3 Overview of

PPIN_LIT and PPIN_HTP

connectivity and bottlenecks in

identifying hub genes

Number of nodes PPIN_LIT PPIN_HTP Overlap PPIN_LIT and PPIN_HTP

High connectivity (degree) 99 68 3

High betweenness (bottlenecks) 113 116 8

Selected hub genes 99 68 3

Fig. 3 Comparison of the semantic similarity values obtained for

hubs from the PPIN_LIT and PPIN_HTP networks
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Therefore, perturbations of pathways or proteins may have

differential effects among diverse tissues [19]. Taking this

into consideration, we further analyzed the gene hubs

identified from the PPIN_LIT and PPIN_HTP to determine

if gene hubs were expressed in tissues in whereby by AD is

observed namely the whole brain and prefrontal cortex.

Using tissue specific expression data from along with

housekeeping genes we identified that 48 genes hub from

the PPIN_LIT and 13 gene hubs from PPIN_HTP were

located in the whole brain and/or the prefrontal cortex

tissues. Further analysis found that the 13 genes observed

in the tissue data from the PPIN_HTP the average GO

similarity value was 0.1 (greater than the total average of

0.087) and 3 of the hub genes were significant hub genes.

Similar analysis performed using the PPIN_LIT noted that

the 48 gene hubs observed in the tissue data had an average

GO similarity value of 0.41 (same as the total average) and

an overlap of 6 significant genes.

4 Conclusions

The development of high-throughput techniques along with

the emergence of network medicine is aiding our under-

standing of disease and the interrelatedness of disease-re-

lated genes and protein [2]. Network theory has been useful

in the study of complex neurodegenerative diseases such as

AD, Parksinson’s Disease [36] and Multiple Sclerosis [48].

In this study we have highlighted AD as a Case Study in

disease network analysis. AD is the most common neu-

rodegenerative disease. Presently, AD therapies are only

symptomatic, therefore, an important health priority is the

development of novel therapies to impede its progress [18].

The integration of PPINs along with disease datasets is an

important tool in unraveling the molecular basis of

diseases. This integration can provide identification of

genes and proteins associated with diseases, an under-

standing of disease-network properties, identification of

subnetworks, and network-based disease gene classification

[43]. However, the map of the binary human PPIN is still

incomplete. The study by Yu et al. [60] suggested that

high-throughput Y2H datasets contained more false posi-

tives compared to literature-curated datasets. Whereas,

Rolland et al. [37] observed that literature-curated PPINs

are highly biased and only cover a small portion of the

interactome.

In this study we presented an evaluation between PPINs

constructed using data obtained from experimental high

throughput experiments compared to curated data and their

affect on identifying candidate AD disease genes through

network analysis and integration. We firstly observed

limited overlap (305 protein pairs) between the AD specific

PPIN_LIT and PPIN_HTP. Furthermore, using the inte-

grative framework to identify significant AD gene candi-

dates no overlap between significant AD gene candidate

genes identified using the literature derived PPIN com-

pared to the PPIN constructed from high-throughput data

were observed. In terms of enrichment analysis, a strong

performance was observed for significant gene hubs iden-

tified using the PPIN_LIT. Compared to the PPIN_HTP, a

larger proportion of terms are enriched in both the GO and

KEGG pathways. In addition, gene candidates from the

literature based PPIN are modulated in AD pathogenesis

such as neuron differentiation and involved in KEGG

pathways such as neurotrophin signaling pathways. Inter-

estingly, the AD susceptible TRAF1 gene was identified by

both analysis using the PPIN_LIT and PPIN_HTP net-

works. Through tissue specific expression analysis we

observed that 48 % of AD gene candidates obtained from

the literature curated PPIN and 19 % of gene candidates

Table 4 List of significant hubs

obtained from gene co-

expression network analysis

Significant hub Genes

PPIN_LIT AR,BCL2,BRCA1,DAXX,EGFR,EP300,

HOXA1,IKBKB,SMAD1,SMAD3,PTPN6,RELA,

STAT3,TP53,PIAS2,CBX5,MED28

PPIN_HTP FHL3,REL,TRIM27,VPS52,TFCP2,

TRAF1,STX11,KRT38,CDC23,MID2,MTUS2,TFIP11,

CCDC146,CARD9,PLEKHF2,LZTS2,TXLNB,FAM9B,CCDC57,CEP57L1

Table 5 GO enrichment terms and KEGG pathways observed in enrichment analysis

Number of terms PPIN_LIT hub genes PPIN_HTP hub genes PPIN_LIT significant hub genes PPIN_HTP significant hub genes

GO biological process 627 13 258 3

GO molecular function 72 12 30 0

GO cellular component 75 5 20 4

KEGG pathways 48 2 21 0

Int. J. Mach. Learn. & Cyber.

123



extracted using the high-throughput PPIN were found to be

expressed in the whole brain and prefrontal cortex tissues.

In summary, we could reason that the PPIN_LIT outper-

forms the PPIN_HTP in terms of enrichment and tissue

analysis along with reference dataset comparison. How-

ever, it is important to take into consideration the limited

availability and coverage of tissue-specific data [20] along

with the possibility that significant genes identified by the

PPIN_HTP may still be meaningful but have not been

identified due to sociological or experimental biases [37].

As more high-throughput experiments are performed

such as Y2H, the coverage of the human interactome

continues to improve. This increased coverage, quality, and

diversity of human PPIN data will provide further oppor-

tunities for the molecular characterization and under-

standing of human disease [2]. In future work we aim to

integrate the high quality binary pairs obtained from lit-

erature curation with experimental binary interaction maps

increasing the coverage of the interactome.
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