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Abstract
Melatonin, originally discovered as a hormone of the pineal gland, is also produced in other organs
and represents, additionally, a normal food constituent found in yeast and plant material, which can
influence the level in the circulation. Compared to the pineal, the gastrointestinal tract contains
several hundred times more melatonin, which can be released into the blood in response to food
intake and stimuli by nutrients, especially tryptophan. Apart from its use as a commercial food
additive, supraphysiological doses have been applied in medical trials and pure preparations are well
tolerated by patients. Owing to its amphiphilicity, melatonin can enter any body fluid, cell or cell
compartment. Its properties as an antioxidant agent are based on several, highly diverse effects.
Apart from direct radical scavenging, it plays a role in upregulation of antioxidant and
downregulation of prooxidant enzymes, and damage by free radicals can be reduced by its
antiexcitatory actions, and presumably by contributions to appropriate internal circadian phasing,
and by its improvement of mitochondrial metabolism, in terms of avoiding electron leakage and
enhancing complex I and complex IV activities. Melatonin was shown to potentiate effects of other
antioxidants, such as ascorbate and Trolox. Under physiological conditions, direct radical
scavenging may only contribute to a minor extent to overall radical detoxification, although
melatonin can eliminate several of them in scavenger cascades and potentiates the efficacy of
antioxidant vitamins. Melatonin oxidation seems rather important for the production of other
biologically active metabolites such as N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-
acetyl-5-methoxykynuramine (AMK), which have been shown to also dispose of protective
properties. Thus, melatonin may be regarded as a prodrug, too. AMK interacts with reactive
oxygen and nitrogen species, conveys protection to mitochondria, inhibits and downregulates
cyclooxygenase 2.

Introduction
In several countries, melatonin is sold over the counter; in
others its free sale is prohibited. The usefulness of mela-
tonin as a food additive continues to be a matter of
debate. Meanwhile, countless people have used mela-

tonin for mitigating the symptoms of jet lag, an applica-
tion which has been tested and is recommended [1-4];
any person we have spoken to has reported positive expe-
riences. Melatonin has been and is being used in several
clinical trials with different therapeutic approaches. In
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some of these studies, in addition to improvements of
sleep, the repeatedly demonstrated antioxidant properties
[5-10] were the main reason for testing the pineal hor-
mone. This holds especially for the treatment of neurode-
generative disorders, such as Alzheimer's disease [11-13]
and amyotrophic lateral sclerosis [14].

In terms of application it seems necessary to thoroughly
analyze the mechanisms of antioxidant actions of mela-
tonin and to distinguish between effects observed at phar-
macological or physiological concentrations. These
considerations must not be restricted to the melatonin
released from the pineal gland into the circulation and to
the classic hepatic degradation route of 6-hydroxylation
followed by conjugation. On the contrary, we would like
to lay emphasis on the significance of tissue melatonin
and the alternate oxidative pathways of catabolism lead-
ing to different, biologically active products. The relation-
ship between melatonin and nutrition will be discussed,
with regard to the presence of the compound as a natural
food constituent sometimes affecting circulating levels, to
the post-prandial release of melatonin from the gastroin-
testinal tract, and to interactions with other antioxidants
present in food. Finally, a model of mitochondrial protec-
tion is reviewed.

Melatonin in food and in the gastrointestinal 
tract
Melatonin is a natural compound of almost ubiquitous
occurrence [15-17]. Its presence was demonstrated in all
major taxa of organisms, as far as tested, including bacte-
ria, unicellular eukaryotes, macroalgae, plants, fungi and
invertebrate animals. Several studies dealt with melatonin
in edible plants [8,18-25]. One can conclude that relevant
quantities of melatonin are present in most vegetables,
fruit, nuts and cereals. However, the precise melatonin
contents are sometimes affected by some uncertainties
which result from particular methodological problems
arising in material from photoautotrophic organisms.
First, melatonin can be easily destroyed by oxidants dur-
ing extraction [26], and, second, false positive and false
negative data are easily obtained due to the presence of
secondary plant metabolites, either mimicking melatonin
or interfering with it in the assays [16,17,21,22]. It is a
strict requirement to apply preservative conditions of
extraction, to control the yield by determinations of recov-
ery, and to obtain data by two methodologically different
procedures. Although this has not been done in any plant
tested, the widespread occurrence of melatonin in plants
is beyond doubt. To date, the presence of melatonin was
demonstrated in more than 20 dicot and monocot fami-
lies. Usually, the amounts of melatonin reported varied
considerably between species and between plant tissues,
from the detection threshold to several hundred pg/g
fresh weight. One should, however, be aware that these

concentrations frequently greatly exceed avian and mam-
malian blood levels, which rarely attain more than 200
pg/mL during the nocturnal maximum, and can remain
below 10 pg/mL during the day. Intestinal resorption of
dietary melatonin should not be a particular problem
because the amphiphilic molecule can easily cross any
membrane. Therefore, an efficient uptake of the
indoleamine from food should be expected to influence
the blood plasma concentration (see below). Melatonin
was observed to be elevated in alpine and mediterranean
plants exposed to strong UV irradiation [25], a finding
which may be seen in relation to melatonin's antioxidant
properties antagonizing damage by light-induced oxi-
dants. It is particularly worth mentioning the very high
levels reported for several seeds and medicinal plants
[8,15,24,27,28] (Table 1). The high amounts frequently
found in seeds may be interpreted in terms of antioxida-
tive protection within a dormant and more or less dry sys-
tem, in which enzymes are poorly effective and cannot be
upregulated, so that low molecular weight antioxidants
such as melatonin are of advantage [20]. Moreover, mela-
tonin's amphiphilicity may favor its accumulation espe-
cially in oily seeds.

In some of the medicinal plants, interactions or syner-
gisms of melatonin with secondary metabolites may be of
importance. In Scutellaria baicalensis, e.g., melatonin is
accompanied by acteoside, baicalein, baicalin, wogonin
and ganhuangenin, substances with antioxidant, antiin-
flammatory, sedating and immunomodulatory proper-
ties, interfering also with NO synthases and P450
monooxygenases, i.e., functions within the action spec-
trum of melatonin or affecting melatonin metabolism
[17]. Melatonin is also present in fungi and, with regard
to nutrition, this may be relevant especially for yeast. In
cultures freshly prepared from commercially available
cubes of baker's yeast, µmolar concentrations of mela-
tonin were measured, sometimes exceeding 40 µM
[29,30].

It is not yet known whether food is the only external
source of melatonin in mammals. The presence of mela-
tonin in bacteria including Escherichia coli [31] may sug-
gest a contribution by intestinal bacteria to the high
amounts of the indoleamine found in the gut [cf. discus-
sion in ref. [17]]. However, strictly anaerobic bacteria,
which predominate in the colon, have not yet been
investigated.

The gastrointestinal tract deserves particular attention, not
only with regard to melatonin uptake, but, even more, as
an extrapineal site of melatonin biosynthesis, where this
molecule is present in amounts exceeding those found in
the pineal gland by several-hundred-fold, and from where
it can be released into the circulation in a post-prandial
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response, especially under the influence of high tryp-
tophan levels [32-36]. Gastrointestinal melatonin is also
released to the lumen and participates in enterohepatic
cycling [37-39]. Therefore, nutrition is not only linked to
melatonin by uptake, but also by the influences of other
food constituents and digestive physiology on melatonin
release.

With regard to nutrition, a decisive question is whether
the amounts of melatonin present in the food can suffice
for changing its level in the blood plasma. This was first
indicated by findings of Hattori et al. [19], who observed
rises in plasma melatonin after feeding plant material rich
in this compound. However, this result allowed a differ-
ent interpretation, because other substances including its
precursor tryptophan might have elicited a post-prandial
release of gastrointestinal melatonin. This argument was
recently refuted, at least in chicken, because the removal
of melatonin from feed caused decreases in plasma levels
[40]. The result gave rise to a statement that melatonin
may not only be regarded as a hormone and a tissue fac-
tor, but also, in a sense, as an antioxidant vitamin.

The redox properties of melatonin may be unfavorable for
its preservation in the food. Being an easily oxidizable
compound capable of directly detoxifying several free rad-
icals and other oxidants, leads, in turn, to the conse-
quence of non-enzymatic destruction. The experience
with melatonin extraction from plant material lets us
assume that only a certain fraction of the compound
present in food will arrive in the gut and even less in the
circulation. Nevertheless, it may be possible that mela-
tonin metabolites, especially substituted kynuramines
formed by oxidative pyrrole-ring cleavage, which also pos-
sess protective properties and sufficient amphiphilicity
[41-43], and/or their derivatives are taken up from the
food and will turn out to be beneficial.

Reactions of melatonin with oxidants
With regard to the presence of melatonin in food, in
medicinal plants and to the use as a food additive, its anti-
oxidant and other protective properties deserve attention.
Since the discovery of melatonin oxidation by photocata-
lytic mechanisms involving free radicals [15,44,45], scav-
enging by this indoleamine has become a matter of
particular interest. Melatonin was also shown to be oxi-
dized by free radicals formed in the absence of light [46],
and its capability of scavenging hydroxyl radicals at high
rates [47-51] initiated numerous investigations on radical
detoxification and antioxidative protection. Melatonin
turned out to be considerably more efficient than the
majority of its naturally occurring structural analogs
[47,50-52], indicating that the substituents of the indole
moiety strongly influenced reactivity and selectivity. Rate
constants determined for the reaction with hydroxyl radi-

cals were in the range between 1.2 × 1010 and 7.5 × 1010

M-1 s-1, depending on the methods applied [53-57].
Regardless of differences in the precision of determina-
tion, melatonin has been shown, independently by differ-
ent groups, to be a remarkably good scavenger of this
radical species. This property can be crucial for antagoniz-
ing oxidative damage under pharmacological and other in
vitro conditions. To what extent this may contribute to
physiological protection remains, however, a matter of
debate.

Meanwhile, melatonin has been shown to react with
many other oxidants, such as carbonate radicals [58-60],
singlet oxygen [15,34,61-65], ozone [15,34], and several
biologically occurring aromatic radicals, such as protopor-
phyrinyl and substituted anthranilyl radicals
[15,59,61,62,66,67]. Reactions with other non-biological
radicals were also described [15,34], among which the
ABTS cation radical [ABTS = 2, 2'-azino-bis-(3-ethylbenz-
thiazoline-6-sulfonic acid)] merits special attention
because of its analytical value. This extremely long-lived
radical which is stable for many days provides a good
example for single-electron donation by melatonin
[52,68]. This conclusion was unambiguously confirmed
by cyclic voltammetry [69]. Single-electron donation is
important for several reasons. Free radicals can react with
scavengers in different ways, either by abstraction of an
electron, or a hydrogen atom, or by addition. In the case
of melatonin, radical addition has been observed or pre-
dicted theoretically only for interactions with hydroxyl
radicals [69-72] and nitric oxide [69,73-75]. Electron/
hydrogen abstraction, however, is a common key step for
interactions of melatonin with oxidizing free radicals of
both high and low reactivity and, therefore, reflects mela-
tonin's property as a broad spectrum antioxidant. Electron
abstraction was also concluded to be a primary step of
melatonin oxidation in a pseudoenzymatic reaction cata-
lyzed by oxoferrylhemoglobin [76]. Single-electron trans-
fer reactions are also believed to play a role in
detoxification of resonance-stabilized free radicals, such
as carbonate and aryl radicals, which are frequently under-
rated in their destructive potential because of their lower
reactivity, compared to the hydroxyl radical. However,
due to their longer life-time they can reach more distant
sites than the extremely short-lived hydroxyl radical,
which exists only for nanoseconds. The capability of
melatonin of scavenging carbonate and certain aryl radi-
cals may be of much higher significance and protective
value than previously thought. Finally, according to a
recently proposed model, single-electron exchange is
thought to be the basis for interactions of melatonin with
the mitochondrial respiratory chain [77,78] which is
assumed to require only very small, quasi-catalytic
amounts of melatonin and which would convey antioxi-
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dative cell protection by radical avoidance rather than
detoxification of radicals already formed (see below).

Reactive nitrogen species represent another category of
potentially destructive substances, which react with mela-
tonin. Scavenging of nitric oxide by melatonin in a nitro-
sation reaction is well documented [9,79-81]. Whether
this can be regarded as a detoxification reaction keeping
NO from forming the more dangerous peroxynitrite is
uncertain because nitrosomelatonin easily decomposes,
thereby releasing NO [82], an experience also made with
other NO adducts from respective scavengers including
NO spin traps [83]. Scavenging of peroxynitrite has also
been described [9,80,81,84], although it is sometimes dif-
ficult to distinguish betweeen direct reactions with perox-
ynitrite and with hydroxyl radicals formed by
decomposition of peroxynitrous acid. What seems more
important than direct scavenging of peroxynitrite is the
interaction with products from the peroxynitrite-CO2
adduct (ONOOCO2

-), namely, carbonate radicals (CO3•-

) and •NO2 [79,85]. In the presence of bicarbonate/CO2,
this pathway is favored and the primary interaction of
melatonin is that with CO3•- [85], a conclusion in agree-
ment with results from other studies on CO3•- scavenging

[58-60]. The mixture of CO3•- and •NO2 represents the
physiologically most efficient nitration mixture, because
of the high availability of CO2 in biological material. It is
worth noting that melatonin can, in fact, decrease 3-nitro-
tyrosine levels, as shown in guinea pig kidney [86].

Another highly interesting aspect of melatonin's antioxi-
dant actions, which may be particularly important from
the nutritional aspect, is its interactions with classic anti-
oxidants. In both chemical and cell-free systems, mela-
tonin was repeatedly shown to potentiate the effects of
ascorbate, Trolox (a tocopherol analog), reduced glutath-
ione, or NADH [50,68,69,87]. These findings, which can
be clearly distinguished from additive effects, surprisingly
indicate multiple interactions via redox-based
regeneration of antioxidants transiently consumed. This
may, in fact, be of practical importance, since melatonin
was also shown to prevent decreases in hepatic ascorbate
and α-tocopherol levels in vivo, under conditions of long-
lasting experimental oxidative stress induced by a high
cholesterol diet [88].

Table 1: Particularly high melatonin levels reported for several edible and medicinal plants (selected examples).

Species Tissue Melatonin [ng/g] References

(A) Edible plants
Lycopersicon esculentum (tomato) fruit 0.5 [18]
Raphanus sativus (red radish) root tuber 0.6 [19]
Brassica campestris (Japanese radish) stem, leaves 0.6 [19]
Brassica nigra (black mustard) seed 129 [24,28]
Brassica hirta (white mustard) seed 189 [24,28]
Prunus cerasus (tart cherry, Montmorency) fruit 15–18 [23,24]
Prunus amygdalus (almond) seed 39 [28]
Pimpinella anisum (anise) seed 7 [24,28]
Foeniculum vulgare (fennel) seed 28 [24,28]
Helianthus annuus (sunflower) seed 29 [24,28]
Oryza sativa (rice) seed 1 [19]
Zea mays (Indian corn) seed 1.3 [19]
Avena sativa (oat) seed 1.8 [19]
Festuca arundinacea (tall fescue) seed 5 [19]
Elettaria cardamomum (green cardamom) seed 15 [24,28]
Zingiber officinale (ginger) tuber 0.5 [19]
Musa paradisiaca (banana) fruit 0.5 [18]

(B) Officinal plants
Melissa officinalis (balm mint) young plant 16 [25]
Scutellaria baicalensis (huang-qin) plant > 2,000 – > 7,000 [24,25,27]
Pimpinella peregrina (-) dried root 38 [25]
Hypericum perforatum (St. Johns wort) leaf 1,750 [27]
Hypericum perforatum (St. Johns wort) flower > 2,400 – > 4,000 [25,27]
Lippia citriodora (lemon verbena) young plant 22 [25]
Tanacetum parthenium (feverfew) leaf (fresh/dried) > 1,300/> 7,000 [24,25,27]
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Metabolites of melatonin, a scavenger cascade, 
and melatonin as a prodrug
Reactions of melatonin with free radicals and other oxi-
dants are not only a matter of the toxic reactants elimi-
nated, but also of the products formed. It is highly
important to distinguish between metabolites formed
under physiological or near-physiological conditions
from those produced in chemical systems designed for
studying reactions with a single radical species in prepara-
tions as pure as possible. Disregard of this point has led to
several misinterpretations in the past. We have repeatedly
emphasized that studies using reaction systems which
preferentially generate hydroxyl radicals mainly lead to
hydroxylated adducts or their derivatives such as substi-
tuted indolinones, whereas biological material usually
contains orders of magnitude more superoxide anions
than hydroxyl radicals. Therefore, an entirely different
product spectrum is obtained as soon as hydroxyl radicals,
or other electron-abstracting radicals, act in the presence
of an excess of superoxide anions [60,89]. Radicals
derived from melatonin by interaction with a first, reac-
tion-initiating radical likely combine with superoxide ani-
ons so that the radical reaction chain is readily terminated
[15,49]. The product formed by oxidative pyrrole-ring
cleavage is a substituted kynuramine, N1-acetyl-N2-
formyl-5-methoxykynuramine (AFMK; Fig. 1). We have
investigated numerous reaction systems and in all those
containing sufficient quantities of superoxide anions,
AFMK was by far the most abundant product [44,46,58-
60,66,89]. Interestingly, a profound and sursprising dif-
ference exists between melatonin and other structurally
related indoleamines. While substituted kynuramines
represent only a limited or small fraction of oxidation
products from other indolic compounds, AFMK usually
greatly exceeds the total of other substances formed. This
indicates a significant contribution not only of the 5-
methoxy residue, but also of the N-acetylated side chain to
the oxidation chemistry of melatonin, a conclusion cor-
roborated by various scavenging assays and chemilumi-
nescence associated with pyrrole-ring cleavage [52].
Moreover, AFMK was the only melatonin metabolite
detected in culture media of various aquatic organisms,
unicells and small metazoans, whereas several additional
products were found in axenic media incubated for
extended periods of time [90]. AFMK formation seems to
be a favored pathway of melatonin degradation in these
species.

These findings do not represent a peculiarity of non-verte-
brates, but rather seem to reflect the non-hepatic mela-
tonin catabolism in vertebrates. Contrary to statements in
the earlier literature claiming that almost all melatonin is
metabolized in the liver to 6-hydroxymelatonin followed
by conjugation and excretion, recent estimations attribute
about 30 percent of overall melatonin degradation to pyr-

role-ring cleavage [91]. The rate of AFMK formation may
be considerably higher in certain tissues, since extrahe-
patic P450 monooxygenase activities are frequently too low
for a high turnover via 6-hydroxylation. The high
amounts of gastrointestinal melatonin (see above), as far
as they are not released unmetabolized, have to enter a
pathway different from monooxygenation. AFMK forma-
tion is highly likely.

The significance of pyrrole-ring cleavage in oxidative
metabolism of tissue melatonin is particularly illustrated
in the central nervous system, where a secondary product,
N1-acetyl-5-methoxykynuramine (AMK) derived from
AFMK by deformylation, was identified as a main metab-
olite [92]. When melatonin was injected into the cisterna
magna, about 35 percent was recovered as AMK. Under the
conditions used, AFMK and AMK were the only products
formed from melatonin in the brain and no 6-
hydroxymelatonin was detected. In this case, the high
turnover in the kynuric pathway of melatonin catabolism
is the more remarkable as it cannot be explained on the
basis of the enzymes capable of catalyzing the formation
of AFMK: (i) indoleamine 2, 3-dioxygenase which uses
tryptophan as the main substrate, exhibits sufficiently
high activities only after inflammatory stimulation of the
microglia [93-95]; (ii) myeloperoxidase, which can also
catalyze pyrrole-ring cleavage of melatonin [91,96,97], is
again associated with activated phagocytes. To assume
free radical reactions as the main cause of kynuric mela-
tonin degradation in the brain is, therefore, highly sugges-
tive. Non-enzymatic AFMK formation in other tissues will
be a matter for future research.

It is a remarkable fact that AFMK is formed by many dif-
ferent mechanisms [summarized in refs.
[15,41,59,66,89]]. Apart from the enzymes mentioned,
pseudoenzymatic catalysis by oxyferrylhemoglobin or by
hemin, interactions with free radicals, e.g., combinations
of •OH and O2•-, or CO3•- and O2•-, or organic cation
radicals and O2•-, oxidation by singlet oxygen, by ozone,
or by O2 under photoexcitation of melatonin all lead to
AFMK. Even another product formed from melatonin by
interactions with free radicals, cyclic 3-hydroxymelatonin
[70], can be further metabolized by free radicals to AFMK
[68]. All these findings indicate that AFMK is a central
metabolite of melatonin oxidation especially in non-
hepatic tissues.

As already mentioned, AFMK is easily deformylated to
AMK. To date two enzymes capable of catalyzing this reac-
tion have been identified, arylamine formamidase and
hemoperoxidase [49,89,98]. The two methoxylated
kynuramines, AFMK and AMK, are of particular interest
because of their own radical-scavenging and protective
properties. In any case, kynuramines, a separate class of
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biogenic amines, exhibit various biological activities [99],
which are, however, rarely investigated. With regard to
antioxidative protection, AFMK was shown to reduce 8-
hydroxy-2-deoxyguanosine formation [42] and lipid per-
oxidation, and to rescue hippocampal neurons from oxi-
dotoxic cell death [41]. Although AFMK interacts, not

surprisingly, with the highly reactive hydroxyl radicals, it
is otherwise relatively inert towards radicals of lower or
intermediate reactivity [43,89]. This is convincingly
explained by its preference for two-electron transfer reac-
tions as demonstrated by cyclic voltammetry [41].

The kynuric pathway of melatonin metabolismFigure 1
The kynuric pathway of melatonin metabolism.
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The deformylated product AMK, easily formed from
AFMK [92], appears to be a highly interesting substance,
for several reasons: first, it is a radical scavenger of consid-
erably higher reactivity than AFMK because it easily
undergoes single-electron transfer reactions [43,89,100]
and, second, it acts as a cyclooxygenase (COX) inhibitor
that is much more potent than acetylsalicylic acid [101]
and has relative specificity for COX-2 (B Poeggeler, pers.
commun.). Moreover, AMK was recently shown to down-
regulate COX-2 expression in macrophages [102]. AMK
might, therefore, contribute to the attenuation of oxida-
tive stress both directly and indirectly by interference with
inflammatory responses. A third, mitochondrial effect
will be discussed below. Unfortunately, the precise tissue
levels of AMK are still unknown, partially because of a lack
of specific assays, partially due to its high reactivity which
readily leads to other products. Since AMK can be recov-
ered from the urine after a melatonin load [92], sufficient
amounts may be present in the tissues, at least after
administration of pharmacological doses. Therefore,
melatonin seems to act not only directly, but, addition-
ally, as a prodrug of AMK.

It is a remarkable fact that the kynuric pathway of mela-
tonin metabolism includes a series of radical scavengers,
which may be regarded as a scavenger cascade [68], with a
possible sequence of melatonin → cyclic 3-hydroxymela-
tonin → AFMK → AMK, where melatonin can be
alternately converted to AFMK directly. From melatonin
to AFMK, up to 4 free radicals can be consumed [68];
recent determinations [Rosen J, Hardeland R, unpubl.
data] have shown that even higher numbers of free radi-
cals can be eliminated, and other, previously unknown
products are being characterized. The potent scavenger
AMK consumes further radicals in primary and secondary
reactions. Interestingly, AMK not only interacts with reac-
tive oxygen but also with reactive nitrogen species and sev-
eral products have been structurally characterized in
Göttingen [[103]; manuscript in preparation]. Neither the
end of the kynuric pathway of melatonin nor that of the
scavenger cascade is in sight.

Multiple levels of antioxidative protection by 
melatonin
Antioxidative protection by melatonin is not just a matter
of direct radical scavenging (Fig. 2), as becomes immedi-
ately evident from stoichiometry. Although tissue levels of
melatonin can be considerably higher than those in the
circulation, the quantities of free radicals generated in its
metabolism would still be too high for the available
amounts of the indoleamine. Our understanding is that
direct scavenging by physiological concentrations of
melatonin by a non-enzymatic contribution to the kynu-
ric pathway and the subsequent actions of the metabolites
formed becomes important. Signaling effects of mela-

tonin, however, are always possible at physiological
levels.

Melatonin upregulates several antioxidant enzymes. Most
frequently, this has been demonstrated for glutathione
peroxidase [7,77,88,104-118] and sometimes glutathione
reductase [7,108,112,119], presumably indirectly via
GSSG. In some tissues Cu, Zn- and/or Mn-superoxide dis-
mutases [7,108-112,117-123] and, rarely, catalase
[112,118,123,124] are upregulated. Stimulation of glu-
tathione peroxidase seems to be widely distributed among
tissues and is observed quite regularly in both mamma-
lian and avian brain; upregulations in other organs were
more variable. The action of melatonin on glutathione
metabolism seems to exceed the effects mentioned. Stim-
ulation of glucose-6-phosphate dehydrogenase [108] and
γ-glutamylcysteine synthase [10,112] indirectly supports
the action of glutathione peroxidase by providing reduc-
ing equivalents (NADPH) for the action of glutathione
reductase and by increasing the rate of glutathione synthe-
sis, respectively.

Contrary its effect on the enzymes of glutathione metabo-
lism, the effect of melatonin on superoxide dismutase
subforms and catalase strongly depends on organs and
species. Stimulation was observed in some tissues, but not
in others; in some cases, even decreases were reported.
This may not only be a matter of differences in responsive-
ness of cell types. The complexity in the regulation of the
respective enzymes has to be considered. Frequently, they
exhibit compensatory rises in response to oxidative stress.
When melatonin is counteracting experimentally induced
stress, the result may be a normalization of enzyme activ-
ity, i.e., lower values, compared to animals treated with
oxidotoxins, rather than inductions. Such normalizations
were, in fact, described [114,125]. However, in cases of
stronger oxidative stress, active centers of enzymes may be
destroyed by the free radicals generated and normaliza-
tion of enzyme activities by melatonin administration
appears as an increase [110,124,125].

An additional aspect of melatonin's actions on antioxi-
dant enzymes deserves future attention: In two neuronal
cell lines, physiological concentrations of melatonin not
only induced glutathione peroxidase and superoxide dis-
mutases at the mRNA level, but concomitantly increased
the life-time of these mRNAs [117].

Melatonin also contributes to the avoidance of radical for-
mation in several independent ways. It downregulates
prooxidant enzymes, in particular 5- and 12-lipoxygen-
ases [112,126-128] and NO synthases
[9,34,77,108,112,129-134]. The widely observed attenua-
tion of NO formation is particularly important in terms of
limiting rise in the strongly prooxidant metabolite perox-
Page 7 of 15
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ynitrite and of the free radicals derived from this com-
pound, namely, •NO2, carbonate (CO3•-) and hydroxyl
(•OH) radicals. Suppressions of both lipoxygenase and
NO synthase may additionally set limits to inflammatory
responses, although the immunomodulatory actions of
melatonin are certainly more complex and may involve
additional effects of melatonin and AMK, too.

Another widely unexplored but potentially important sig-
naling effect of melatonin in antioxidative protection con-
cerns quinone reductase 2 [77,135,136]. This enzyme,
which is implicated in the detoxification of potentially
prooxidant quinones, binds melatonin at upper physio-
logical concentrations, so that it had originally been pre-
sumed to represent a melatonin receptor. Although its

precise function under the influence of melatonin is not
yet fully understood, the relationship to the indoleamine
may become of future interest from the standpoint of
nutrition, since quinones are taken up with food, espe-
cially, vegetables.

Although less relevant from a nutritional point of view,
melatonin also contributes indirectly to radical avoid-
ance, e.g., by its antiexcitatory effects in the central nerv-
ous system, and as an endogenous regulator molecule
controlling rhythmic time structures. This last action may
be particularly important for well-timed alimentary mela-
tonin supplementation in the elderly, who exhibit a
strongly reduced amplitude in the circadian melatonin
rhythm. The significance of appropriate timing for main-

Overview of the pleiotropic actions of melatonin and some of its metabolites in antioxidative protectionFigure 2
Overview of the pleiotropic actions of melatonin and some of its metabolites in antioxidative protection.
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taining low levels of oxidative damage has been over-
looked for quite some time. However, temporal
perturbations as occurring in short-period or arrhythmic
circadian clock mutants lead to enhanced oxidative dam-
age, effects observed in organisms as different as Dro-
sophila and the Syrian Hamster [77,137,138].

In the last few years, mitochondrial effects of melatonin
have been discovered which may turn out to be even more
important than the protective actions described above.
Mitochondria are the main source of free radicals in the
majority of animal cells and are implicated in aging proc-
esses. The importance of mitochondrial diseases is
increasingly perceived. Mitochondria play a key role in
apoptosis. Notably, several of the mitochondrial effects of
melatonin were obtained at low pharmacological doses in
drinking water [116,139,140] or even at near-physiologi-
cal concentrations down to 1 nM [141].

Several studies of mitochondrial effects revealed attenua-
tion of mitochondrial lipid peroxidation, prevention of
oxidative protein and DNA modifications, preservation of
ultrastructure, resistance against toxins etc., findings
which were widely in line with previous concepts of pro-
tection [10,113,142-146]. Moreover, melatonin was
shown to affect redox-active compounds in mitochondria,
in particular, to decrease NO [143,147] and to restore nor-
mal levels of reduced glutathione [113,144] and coen-
zyme Q10 [148].

More importantly, beyond these rather conventional find-
ings, with few exceptions, melatonin was found to
increase mitochondrial respiration and ATP synthesis, in
conjunction with rises in complex I and IV activities
[112,141-143,146,147,149,150]. Complex I and IV activ-
ities were also found to be increased by melatonin in
hepatic mitochondria of senescence-accelerated mice
[116,140,151]. Moreover, melatonin was found to
enhance gene expression of complex IV components
[147].

The improvements of ATP formation and O2 consump-
tion are presumably not decisive for protection, but can
serve as good indicators for the reduction of electron leak-
age from the respiratory chain. Electron transfer to molec-
ular oxygen at the matrix side, largely at iron-sulfur cluster
N2 of complex I [152], is a major source of free radicals.
This process also diminishes electron flux rates and, there-
fore, the ATP-generating proton potential. Processes
affecting the mitochondrial membrane potential such as
calcium overload, either due to overexcitation, to protein
misfolding or to damage by free radicals, are antagonized
by melatonin. In cardiomyocytes, astrocytes and striatal
neurons, melatonin prevented calcium overload
[153,154], counteracted the collapse of the mitochondrial

membrane potential induced by H2O2 [153], doxorubicin
[155] or oxygen/glucose deprivation [154], and also
inhibited the opening of the mitochondrial permeability
transition pore (mtPTP), thereby rescuing cells from
apoptosis. In addition to the antioxidant actions, mela-
tonin directly diminished mtPTP currents, with an IC50 of
0.8 µM [154], a concentration which would require
mitochondrial accumulation of melatonin, something
which is possible again due to the amphiphilicity of
melatonin.

The effects of melatonin on the respiratory chain open
new perspectives for diminishing radical formation,
instead of seeking only antioxidant effects for the elimina-
tion of radicals already formed. We have proposed a
model of radical avoidance (Fig. 3) in which electron leak-
age is reduced by single-electron exchange reactions bet-
wen melatonin and components of the electron transport
chain [77,78]. In fact, mitochondrial H2O2 formation was
found to be reduced by melatonin [156]. The basic idea of
the model is that of a cycle of electron donation to the res-
piratory chain, eventually to cytochrome c [78], followed
by reduction of the formed melatonyl cation radical by
electron transfer from N2 of complex I. The cation radical
is assumed to act as alternate electron acceptor competing
with molecular oxygen, thereby decreasing the rate of O2•-

formation. In addition to the electrons being largely recy-
cled, most of the melatonin is also. Therefore, such a
mechanism would only require very low, quasi-catalytic
amounts of melatonin, in accordance with the effects
demonstrated with nanomolar concentrations. Because
the recycled electrons are not lost for the respiratory chain,
this would also lead to improvements in complex IV activ-
ity, oxygen consumption and ATP production. Alter-
nately, the melatonin metabolite AMK, which is also
highly reactive and can undergo single-electron transfer
reactions [43], may act in the same way. The prediction of
our model of mitochondrial protection by AMK was
confirmed by other investigators [147]: AMK was shown
to exert effects on electron flux through the respiratory
chain and ATP synthesis very similar to those observed
with melatonin.

A highly attractive aspect of mitochondrial protection
results from the small quantities required: experimentally
induced mitochondrial damage in rat fetuses was even
prevented by maternally administered melatonin [146].
The mechanism as outlined, requiring only low amounts
of melatonin or its metabolite AMK, would make these
compounds even more interesting from a nutritional
point of view. The amounts present in selected food, such
as some vegetables, but even more nuts and cereals, could
suffice for maintaining tissue levels of the indoleamine
capable of safeguarding mitochondrial function, particu-
larly in elderly persons whose nocturnal melatonin
Page 9 of 15
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maxima in pineal gland and circulation have substantially
declined with age. Transient moderate rises in blood
melatonin during the day resulting from direct uptake or
postprandrial release from the gastrointestinal tract
should not be regarded as a problem in terms of circadian
timing. The circadian system responds to melatonin
according to a phase response curve [157,158]: the so-
called silent zone, during which no substantial phase
shifts are induced, extends throughout the largest part of
the day.

Safety of melatonin
Can all these findings on antioxidant and radical-avoiding
actions of melatonin justify its intake as a food additive or
as a medication? The idea of substitution therapy may
seem especially attractive for the elderly who have more or
less lost the nocturnal peak of circulating melatonin. Nev-
ertheless, the use as a food additive is still a matter of con-
troversy. The argument for a naturally occurring
compound, which is a normal food constituent, cannot
suffice alone, since commerical preparations would
always lead to at least transient pharmacological concen-
trations in the blood, and the immunomodulatory
actions of melatonin may not be desired in every case.

A model of mitochondrial radical avoidance and support of electron flux by melatonin and its metabolite AMKFigure 3
A model of mitochondrial radical avoidance and support of electron flux by melatonin and its metabolite AMK. The potent 
electron donors melatonin and AMK are thought to feed electrons into the respiratory chain, thereby forming resonance-sta-
bilized cation radicals which may efficiently compete with molecular oxygen for electrons leaking from iron-sulfur cluster N2 
or from ubisemiquinone. The competition reduces superoxide anion formation and, thereby, the generation of secondary rad-
icals; at the same time, electrons re-fed to the electron transport chain contribute to the maintenance of the proton potential 
and, thus, to ATP synthesis. The model is partially hypothetical, but might explain observations of reductions in electron leak-
age and oxidant formation as well as an enhancement of ATP formation.
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Therefore, experience will have to answer the question of
its usefulness. Without any doubt, melatonin is remarka-
bly well tolerated. Of course, one can find in any large sta-
tistical sample of melatonin users some individuals who
complain about side effects, scientifically understandable
or not. In a currently running study on ALS, patients
receiving daily very high doses of melatonin (30 or even
60 mg per day), we did not see any harmful side effects
[14] and have not to date. In patients with rheumatoid
arthritis, some symptoms were suspected to be associated
with immunomodulatory actions of melatonin [159], so
that caution is due in this group of individuals. More
research will be required on melatonin in different dis-
eases and disorders, but there is no good reason to assume
that melatonin, at moderate or even at high doses, is dan-
gerous to a healthy person or to patients with types of oxi-
dative stress phenomena not caused by (auto-)-immune
responses. One might also suspect that melatonin could
exert unfavorable effects by increasing the blood pressure,
due to downregulation of NO synthase and NO scaveng-
ing by the indoleamine itself or by AMK. Melatonin was
tested in clinical trials on hypertension and was reported
to decrease blood pressure in one study [160], but to
interfere with nifedipine [161], whereas a combination of
lacidipine with melatonin was recommended in another
investigation [162]. Therefore, interaction with other
medication has to be considered.

Problems of dosage and side effects may also arise from
impurities in the melatonin preparations sold over the
counter. Contaminants have repeatedly been detected in
such material, including our own experience of that kind.
As long as the contaminant is only AFMK, this may be less
serious, but one should be aware that the pharmacology
of kynuramines is only partially known. Moreover, man-
ufacturers must consider that an easily oxidizable com-
pound like melatonin can undergo reactions under air
exposure. On large surfaces, such as silica gels, we see this
every day in the laboratory.

Another important aspect for the use of melatonin as a
food additive is timing. As soon as the substance is given
as a pill or as a preparation from a medicinal plant causing
relatively high pharmacological blood levels, the situation
is entirely different from the uptake with normal food or
from the postprandial gastrointestinal release. Since circu-
lating melatonin peaks at night, pharmaceutical prepara-
tions should be strictly given at the same time of day in
the evening. The usual recommendation „at bed time"
may be insufficient since this could mean in practice dif-
ferent hours of the day. Here, one has to consider the
chronobiological functions of melatonin. When given
during the day, a high dose of melatonin would cause
mild narcotic effects, drowsiness etc. and the practice is
not recommended for this reason. It would not shift the

circadian oscillator much, because of the silent zone of the
phase response curve for melatonin, in which phase shifts
are negligibly small. This is the same reason that a post-
prandial release of gastrointestinal melatonin does not
shift the circadian oscillator. Advance shifts of the endog-
enous clock by melatonin are much larger at late after-
noon and early night [157,158]. Therefore, melatonin
should be given relatively precisely at the same hour, to
avoid phase shifts differing in extent and pushing of the
circadian oscillator back and forth. As mentioned above,
pertubations of the internal time structure can also cause
oxidative stress [77].

Conclusion
In terms of nutrition, melatonin is interesting both as a
natural constituent of food, and as a food additive. Its use
for the latter purpose can be recommended only with
some caution, given the present state of our knowledge,
although the risks by melatonin appear remarkably low,
compared to other medications and food additives. Mela-
tonin's antioxidant capacity is based not only on direct
radical detoxification, but comprises manifold effects.
Some of the most promising areas, modulation of mito-
chondrial metabolism by melatonin and actions of its
kynuric metabolites, deserve particular attention in the
future and may change our view of the value of these com-
pounds profoundly.
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