Vafaee et al. BMC Systems Biology 2013, 7:22
http://www.biomedcentral.com/1752-0509/7/22 BMC

Systems Biology

METHODOLOGY ARTICLE Open Access

Novel semantic similarity measure improves
an integrative approach to predicting gene
functional associations

Fatemeh Vafaee'”, Daniela Rosu?, Fiona Broackes-Carter! and Igor Jurisica'23#"

Abstract

Background: Elucidation of the direct/indirect protein interactions and gene associations is required to fully
understand the workings of the cell. This can be achieved through the use of both low- and high-throughput
biological experiments and in silico methods. We present GAP (Gene functional Association Predictor), an integrative
method for predicting and characterizing gene functional associations. GAP integrates different biological features
using a novel taxonomy-based semantic similarity measure in predicting and prioritizing high-quality putative gene
associations. The proposed similarity measure increases information gain from the available gene annotations. The
annotation information is incorporated from several public pathway databases, Gene Ontology annotations as well as
drug and disease associations from the scientific literature.

Results: We evaluated GAP by comparing its prediction performance with several other well-known functional
interaction prediction tools over a comprehensive dataset of known direct and indirect interactions, and observed
significantly better prediction performance. We also selected a small set of GAP’s highly-scored novel predicted pairs
(i.e., currently not found in any known database or dataset), and by manually searching the literature for experimental
evidence accessible in the public domain, we confirmed different categories of predicted functional associations with
available evidence of interaction. We also provided extra supporting evidence for subset of the predicted
functionally-associated pairs using an expert curated database of genes associated to autism spectrum disorders.

Conclusions: GAP’s predicted “functional interactome” contains ~1M highly-scored predicted functional
associations out of which about 90% are novel (i.e., not experimentally validated). GAP's novel predictions connect
disconnected components and singletons to the main connected component of the known interactome. It can,
therefore, be a valuable resource for biologists by providing corroborating evidence for and facilitating the
prioritization of potential direct or indirect interactions for experimental validation. GAP is freely accessible through a
web portal: http://ophid.utoronto.ca/gap.
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Background

Many different elements, e.g.,, DNA, protein, coding
and non-coding RNA associate and cooperate to form
diverse networks that make up the functional machinery
of a normal living cell: the interactome. These func-
tional associations can be defined as physical binding,
such as protein-protein or protein-DNA interactions, or
may refer to a group of genes or proteins involved in a
signaling pathway, or encompass genetic or phenotypic
associations between candidate genes in a disease process.

Our knowledge of these functional associations remains
limited and fragmented. Considering protein-protein
interactions (PPls), the experimental coverage of the
human proteome is at least one order of magnitude lower
than the true proteome, according to some estimates [1,2],
and we have even less understanding of dynamics of these
interactions. Other types of interactions, such as protein-
DNA or microRNA-mRNA interactions, lag behind PPIs
both in coverage and curation, although there have been
recent efforts to compile and integrate known interactions
into databases and portals (e.g., hmChIP [3], PSICQUIC
[4], mirDIP [5], and IPAD [6]).

Improving the coverage and connectivity of the interac-
tome requires new experimental data; however, empirical
methods, particularly high-throughput technologies, have
anumber of practical limitations and biases that cause the
generation of false positives and false negatives. These can
arise due to the nature and sensitivity of current meth-
ods, where, for example, stable interactions are more likely
to be detected than weak or transient ones, and interac-
tions among abundant proteins are more often detected
than those with low copy number. Additionally, interac-
tions can be condition-specific, adding yet another layer
of complexity to the issue of false discovery [7,8].

In silico methods, despite their own limitations, can pro-
vide a complementary accompaniment to experimental
methods. They are useful to conduct data quality con-
trol such as reliability assessment and validation [9,10],
and they can effectively reduce noise when combining
predicted interactions with experimental data [11,12].
Through an integrative analysis of biological data from
different sources such as protein/DNA sequences, gene
expression, and pathways, they can also facilitate knowl-
edge exploration and interaction characterization for a
deeper understanding of cellular mechanisms [13,14].

Many computational tools have focused on predicting
PPI; by contrast, predicting functional associations has
received less attention, with the notable exceptions of
STRING [15], GeneMANIA [16] and Reactome’s FI [14].
Gene functional association prediction, however, has a
far broader application for the interactome since it can
incorporate all forms of interactions (e.g., protein-DNA,
microRNA-protein, pathway co-membership) involved in
a biological process, pathway or disease. Such data can
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be useful to elucidate cellular pathways, create functional
links between genes and diseases, and can help direct and
prioritize future experimental hypotheses that best fill the
current gaps in our knowledge.

Our main focus in this paper is to determine whether
two genes are functionally associated. We propose an
integrative method, called Gene functional Association
Predictor (GAP), which calculates a quantitative measure
of gene functional relatedness, using a novel semantic sim-
ilarity measure that increases information gain from the
available gene annotations. The proposed semantic mech-
anism of inferring gene associations can process implicit
evidence in order to identify and prioritize novel predic-
tions of genes’ functional relationships.

The current version of GAP systematically integrates
pathway information from multiple public online data-
bases (e.g., Reactome, KEGG, NetPath and NCI-Nature
PID), Gene Ontology annotations as well as drug and dis-
ease associations mined from PubMed. However, since
the semantic similarity measure in GAP is general, it
can take advantage of any type of biological data source,
and can be extended to different organisms (provided
that the employed databases and services cover multi-
organism information). In this paper we use GAP to
predict interactions among 19,027 human protein-coding
genes; the gene names and symbols are those provided
by the HUGO Gene Nomenclature Committee (HGNC)
[17].

Several research groups have proposed methods to
combine multiple information sources for computation-
ally predicting direct and indirect gene or protein asso-
ciations, e.g., [2,15,16,18-20]). These services predict
likely direct and indirect associations based on conserved
sequence motifs, gene fusion events, gene co-expression,
orthology, and pathway co-annotation. Some of these
databases also incorporate evidence obtained by text min-
ing of the scientific literature. GAP integrates similar
resources to predict level of gene association; however,
its strengths comes from novel semantic similarity mea-
sure (introduced in the next section) and from using
sophisticated natural language processing techniques in
GoPubMed [21] to elucidate accurate information about
genes from PubMed.

We have reviewed existing protein interaction predic-
tion approaches and databases (see Additional file 1:
Table S1), but selected only comparable tools for in-
depth performance comparison with GAP?. We compared
the predictive power of the selected methods with that
of GAP over a gold standard dataset that we compiled
from several sources of experimentally validated direct
and indirect interactions. We showed that GAP has a
superior positive predictive value (i.e., precision rate), and
specificity vs. sensitivity (i.e., true positive vs. true nega-
tive rates) in identifying known interactions as compared
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to the existing interaction predictors. In support of the
novel potential interactions predicted by GAP, we selected
a set of highly-scored novel interactions (i.e., not cur-
rently found in interaction databases), and then manually
searched the scientific literature for corroborating infor-
mation. We also provided further supporting evidence
for GAP’s predictions from an external expert-curated
gene-disease association database.

Methods
GAP calculates functional relatedness among all 19,027
human protein-coding genes using a novel taxonomy-
based semantic similarity measure (as described below).
This similarity measure increases information gain from
the available gene annotations, and thus can be used in
various subsequent analysis such as gene functional asso-
ciation prediction, which is the main focus of this paper.
We denote by G = {g1,...,g4} the set of n genes
under consideration. We associate with each gene g,
d feature-sets, (F{ ...,Ffi), where each feature-set F,i
includes a subset of Fi = {fx1,..., ¢k}, the set of all
possible terms the k' feature can take. For example,
assume feature Fgo denotes all possible gene ontology
terms contained in a gene ontology annotation database,
and gene g; is VEGFA, then the feature-set FiGO gives the
set of all GO terms in Fgo associated to VEGFA, e.g.,
FéO = {vascular endothelial growth factor receptor
signaling pathway,

foregut regionalization, lung

field specification, intussusceptive angiogenesis,
negative regulation of vascular permeability,
trachea development, trigeminal nerve development,
chromatin silencing by small RNA, chemorepellent
activity, NFAT1 protein binding}

Prior to defining a measure of similarity between two
genes, we need to define similarity measures between the
feature-sets corresponding to these genes. Furthermore,
in order to assess the similarity between correspond-
ing feature-sets, we need to define a strategy to evaluate
the similarity between the individual terms, i.e., feature

values, contained in the sets being compared.

Term similarity measures

We use feature sets with categorical values of two types,
and thus, we need two term-based similarity measures: (1)
data-driven, for terms with no partial order over them,
such as hierarchical taxonomies; and (2) ontology-based,
for measuring the similarity between the terms whose val-
ues belong to ordered taxonomies, the Gene Ontology in
our case.

Data-driven term similarity

We use a data-driven approach to calculate the similarity
between features whose values are not part of any par-
tially ordered structure. Even if no inherent ordering of
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the categorical terms is available, we can derive similarity
judgements by taking advantage of supplementary infor-
mation, such as the frequency of each term in the data
sources included in the study. We define the similarity
measure between the possible terms taken by a feature as
the inverse frequency of the term, when the feature values
are identical, and 0 otherwise. We define oy : Fy X Fy —
[0,1], a similarity measure between the possible values
taken by a feature Fy, as:

1 .

Ok (trass try) = | o) i b =t 1)
0 otherwise

where f () is the frequency of term i, in the data source
under consideration. The intuition behind this definition
is as follows: two different feature values do not contribute
to the similarity of the pair of objects to which they are
associated, while identical values contribute to the similar-
ity of the pair in a manner proportional to how informative
they are. We estimate the informativeness of a term as
its inverse frequency in the data set under consideration.
More specifically, a feature value used frequently in a data
corpus is considered less informative, and has a corre-
spondingly more modest contribution to the similarity of
the pair of genes annotated with it. The same principle
is applied in information retrieval techniques which rank
documents based on measures built around the inverse
document frequency of the search query terms contained
in the documents to be ranked [22].

Ontology-based term similarity
For categorical values that belong to partially ordered sets,
such as biological ontologies, we use a similarity assess-
ment strategy based on information theoretic principles.
In this approach it is assumed that the similarity between
two terms is captured by their shared information, which
is in turn encoded by the information in their common
ancestor. Under these premises, the similarity between
two terms can be estimated as the information content
(IC) of their least common ancestor. In this framework,
the methods for estimating the information content of
a term are chosen according to the principle that the
informativeness of a concept decreases with its level of
abstraction, i.e., the higher in the taxonomical tree the
concept is located, the lower its information content is.
There are at least two approaches for estimating the
information content of an ontological concept: the fre-
quentist and the intrinsic approach. In the frequentist
approach, pioneered by Philip Resnik [23], the relative fre-
quency of encountering an instance of a term in a text
corpus, or database is used to quantify the information
content of the term. The intrinsic strategy exploits the
inherent structural information encoded in ontologies,
which enables the modeling of the information content of
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ontological terms in ways that do not rely on the avail-
ability and the quality of statistical information about the
usage of these terms. Intrinsic methods also subscribe
to the assumption that concepts higher up in the ontol-
ogy hierarchy are less informative than the concepts at
lower levels, but they also make additional assumptions,
such as that the number of terms a concept subsumes
is proportional to how informative it is. An early exam-
ple is the measure introduced by Seco and co-workers
[24] for assessing the similarity of terms belonging to the
WordNet [25] thesaurus.

No ontology based measure strictly dominates the
others in terms of performance; thus, in GAP we
implemented and evaluated multiple similarity mea-
sures, including our two novel proposals, i.e., Leaves and
Specificity-descendant, described below..

The Leaves measure assumes that the information con-
tent of a term ¢ is only proportional to the number of
terminal concepts, i.e., leaf terms, subsumed by ¢ in a
given taxonomy. Leaves measure distinguishes between
the most specific descendants of a term ¢, but it does not
take into account the depth in the ontology of term ¢ or
the local density of the ontology in the neighborhood of
£ In order to incorporate this information in the estima-
tion of the information content of a term ¢, we introduce
Specificity-descendant information content:

IC(t) = f(fi(depth(t)), fa(local_density(t))), (2)

where f (f1, f2) = fi*f2.f1 and f quantify the contribution of
term depth and local density to the similarity assessment
by taking into account all the descendants subsumed by a
term ¢:

depth(t
fi(depth(t)) = o
max  depth(v)
vedescendants(t) (3)
) MaXterms
fr(local_density(t)) = descendants(t)’

where descendants(t) is the number of subconcepts of ¢
and maxX;.;s IS a constant set to the number of terms in
the hierarchy.

All term similarity assessment strategies have strengths
and weaknesses. In particular, the information theoretic
methods anchored by a frequentist approach to informa-
tion content modeling are highly sensitive to (1) bias in
word usage or biases in research literature, and (2) data
sparseness, i.e., not all ontological concepts can be found
in text corpora or annotation databases. The influence of
the quality and availability of statistical data is not a fac-
tor for the performance of the intrinsic approaches for
measuring the semantic similarity of ontological terms,
but these measures are sensitive to the quality of the
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design of the ontology such as irregular levels of granu-
larity between different sections of the ontology and the
amount of overlap between the children of some concepts.

Feature-set similarity

Estimating the similarity between a gene pair, requires cal-
culating first the similarity between the respective feature-
sets of the two comparing genes. Let &;(gi,g) be the
feature-set similarity function, which assesses the simi-
larity between Fj and F;{, the k' feature-sets of g; and
gj» respectively. We define our feature-set similarity func-
tion as an aggregation of the similarity scores of the terms
contained in feature-sets as follows:

1
5k (8ing) = ——— > okltru tr), (4)
Fi|x |Fl| “~—~
k k tkuEF;(,thEF/}(
and
Sk(gng) = max  ox(tgu thy)- (5)

tkueF/i:tk‘vEF;(

Gene similarity

The similarity scores for each gene feature set can be
combined in several ways in order to obtain a similarity
measure for pairs of genes. The weighted sum is a popu-
lar aggregation operator since it provides a natural way of
combining the similarity assessed according to the chosen
axes of comparison. We also define the similarity measure
for pairs of genes as the weighted sum of the gene feature
scores. We define § : G x G +— R, the similarity measure
for pairs of genes in G, as the weighted sum of the gene
feature scores:

d
S(girgj) = Z Wk8k(gi!gj)’ (6)
k=1

where wy denotes the weight assigned to feature Fy, and
Sk (gi» g) is the similarity measure associated to feature Fy.
A weighted sum of similarity scores has the advantage of
being easy to comprehend and calculate, but requires that
the scores be on the same numerical scale (range). Defin-
ing a suitable technique for transforming the location and
scale parameters of the similarity scores distributions is
therefore essential to the meaningful aggregation of the

similarity values obtained for each comparison feature.
Generally, we require the transformations of the scores
to be monotonic. When the distribution of the simi-
larity values is known, several parametric normalization
approaches can be applied, e.g., the Z-score standard-
ization for Gaussian distributions. When the distribution
of the similarity scores is not known, non-parametric
methods, such as quantile normalization, should be used.
Since we do not know the distribution of the similar-
ity scores, we used two non-parametric transformation
strategies for merging feature similarities into a scalar
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gene similarity value: (1) decile-only aggregation in which
each feature similarity score is mapped to an integer /1 €
[1,10] such that the score is at the 4! decile of the sample,
and (2) decile-weighted aggregation, which is a weighted
sum calculation where the weights are decile values as
described in decile-only method, and the scores are the (0,
1]-scaled feature similarity measures.

The significance assessment of gene similarity scores

We estimated the statistical significance of GAP’s gene
similarity scores using an empirical phenotype-based per-
mutation test procedure that preserve the distribution of
terms and feature sets’ size and structure. We randomly
permuted the original feature sets among all genes, and
re-computed GAP’s gene similarity scores for the per-
muted data. We repeated this process 10,000 times to
generate a null distribution for the gene similarity scores.
The statistical significance (nominal p-value) of the actual
similarity score is then estimated relative to this null dis-
tribution (details of significance estimation are described
in Additional file 1, Section 1.2).

Materials

In this section, we give an overview of the chosen feature
sources, define the gold-standard databases, and describe
the performance measures that we used for evaluating
GAP.

Selected features and their source

As a general integrative framework for gene association
prediction, GAP can employ any type of biological data
source for extracting gene features. For the current imple-
mentation, we have extracted seven features from two
major sources of scientific literature, and online biological
databases. The selected features and their corresponding
sources are described below, and summarized in Table 1.

Table 1 Information on the selected features
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The last column of Table 1 reports the percentage of
feature missing values, i.e., for each feature Fy, the last col-
umn in Table 1 lists the proportion of genes g;’s such that
F,i = @. About 10% of the human protein-coding genes
included in this study have no feature values, according to
the current version of the data sources.

To keep up with the updates in the data sources inte-
grated by GAP, we plan to update GAP quarterly. This
rate of updates is computationally feasible and reason-
able, as we do not expect the changes in the external data
sources to notably affect GAP’s performance in shorter
time intervals.

Text-based feature sources

We extracted text-based features from two, freely avail-
able, online scientific text search engines: FACTA and
GoPubMed.

FACTA (Finding Associated Concepts with Text Anal-
ysis) [26]—developed by the National Center for Text
Mining (NaCTeM), University of Manchester, UK—is a
real-time text-mining system, which processes MEDLINE
abstracts for finding and visualizing direct and indirect
associations between biomedical concepts. Given a query
gene, FACTA returns related biomedical concepts (e.g.,
genes, diseases, and drugs), and presents them in a tabu-
lar format ranked based on co-occurrence statistics. The
concept IDs and their names and synonyms are collected
from several biomedical databases such as UniProt, Bio-
Thesaurus, UMLS, and DrugBank.

We queried FACTA with all human protein-coding
genes and stored for each query gene the set of related
gene IDs¢, UMLS and DrugBank terms.

GoPubMed [21]—developed by the Transinsight and
the bioinformatics groups at TU Dresden, Germany—is
a knowledge-based, semantic search engine that searches

Missing feature

Feature type Feature source Feature name values (%)
GoPubMed-related-gene 2475
GoPubMed GoPubMed-related-GO 25.79
Extracted by GoPubMed-related-disease 29.74
text-mining tools FACTA-related-gene 2824
FACTA FACTA-related-disease 3259
FACTA-related-drug 57.15
Pathway databases:
Extracted from Reactome, KEGG, Related-pathway 6591

NetPath, and
NCI-Nature PID

online databases

The selected features and their corresponding sources are summarized in this Table. The last column reports the percentage of feature missing values.
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PubMed using Gene Ontology (GO) and Medical Sub-
jects Headings (MeSH) terms. GoPubMed uses advanced
natural language processing algorithms to provide a com-
prehensive and accurate semantic search. It makes use
of efficient concept recognition and word sense disam-
biguation algorithms to cope with varying morphology,
syntax and meaning of concept labels in different contexts
[21]. GoPubMed also provides the search platform for
GoDiseases [27], which we used in this study. GoDiseases
supports functional annotation of gene products by sys-
tematically linking genes to processes, functions, diseases,
etc. through evidence in the literature.

We queried GoPubMed in Jan 2012 with all human
protein-coding genes and stored for each gene, the gene
IDs, MeSH terms, and GO terms which were found by
GoPubMed to be related to the gene of interest.

Online biological databases used for feature extraction

GAP also incorporates information from several curated
biological pathway data-sources including Reactome-v32
[28], KEGG-v53 [29], NetPath-v1 [30], and NCI-Nature
Pathway Interaction Database (NCI-PID, 2010) [31]. Path-
ways are an essential feature for discovering functionally
interacting proteins, as proteins participating in similar
pathways are presumed more likely to be co-expressed,
or be involved in the same phenotype. Accordingly, using
the pathway data sources, we assigned to each human
gene all pathways in which its protein products are
participating.

Gold standard datasets

Positive examples

GAP is not designed to capture only direct protein inter-
actions. We thus need to build up a positive gold standard
consisting of both direct (i.e., physical) interactions and
indirect associations (e.g., co-complex relationship and
pathway co-membership). We sourced physical interac-
tions from [2D-v1.95 (Interologous Interaction Database)
[32], an on-line database of known (and predicted)
mammalian and eukaryotic protein-protein interactions,
which integrates interactions from several common PPI
databases such as BioGrid [33], BIND [34], HPRD ([35],
IntAct [36], MINT [37], etc. In this paper, we used
only known human protein interactions from I2D as the
gold standard set of the positive physical interactions.
Co-complex protein pairs were acquired from CORUM-
v09, the Comprehensive Resource of Mammalian Protein
Complexes [38]. The CORUM database is hand curated
based on evidence derived from diverse experimental
techniques, and it does not include high-throughput
experiments. Pathway relationships are extracted from
the following online databases: Reactome [28], KEGG
[29], NetPath [30], and NCI-Nature Pathway Interaction
Database [31].
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Table 2 Statistics on interaction data sources

DB Statistics

Type of Interaction

No. of proteins No. of protein pairs

Physical interaction 13,320 94,431
Co-pathway 7,170 1,332,037
Co-complex 2,527 35,062

Total: 14,794 1,432,937

This Table lists the number of protein pairs and the total number of proteins
extracted for each of the three types of protein interactions (i.e., physical
interaction, co-pathway, and co-complex).

Table 2 lists the number of protein pairs and the total
number of proteins extracted for each of the three types of
protein interactions (i.e., physical interaction, co-pathway,
and co-complex). Figure 1 depicts the overlap between
proteins and between protein pairs of these three sets.
As Figure 1 shows, 98% of the co-pathway pairs, 56% of
the co-complex pairs, and 84% of the physical interactions
are distinct (i.e., do not overlap with other sets). This low
overlap underscores the importance of including different
types of interactions in the gold standard datasets when
evaluating gene association prediction tools. We provide
the set of positive examples in Additional file 2.

Negative examples

Unlike positive interactions, confirmed reports of non-
interacting protein pairs are rarely available, especially
for indirect interactions/associations predictors. The
Negatome [39], is a collection of pairs of proteins, which
are unlikely to be engaged in direct physical interactions.
While Negatome is complementary to random datasets
for training algorithms that predict direct protein interac-
tions, it is not a suitable candidate for testing predictions
of co-complex relationships or pathway co-membership.
Many of the protein pairs contained in the Negatome are

2D Pathway

1,307,137

b fress T

\ 19565 \2.010, 79,325

C(J-(;mr;r;la;( ) Cu—com\p-lfzpz B

2D

Pathway
Figure 1 Overlap between the three interaction data sources.
Figure 1 depicts the overlap between proteins (left) and between
protein interactions (right) of the three gold standard positive
databases (i.e., physical interactions, co-pathway, and co-complex
associations).
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derived either by selecting the non-directly interacting
pairs out of protein complexes with known 3D struc-
tures, or by including pairs of proteins co-occurring in
biological pathways filtered against known directly inter-
acting proteins from the IntAct database. Since many of
the Negatome protein pairs are indirectly interacting, this
dataset is unsuitable to serve as a negative sample for the
purpose of this study.

The most common approach for constructing negative
“gold-standards” for direct interactions is to randomly
pair proteins having different cellular localization, or
being involved in different biological processes [40,40,41].
Such an approach, however, is prone to an over-optimistic
estimation of the predictor’s performance due to the
biased selection of the negative examples, as pointed out
by Ben-Hur and Noble [42]. Furthermore, restricting neg-
ative data only to pairs of proteins localized in different
cellular compartments is not a good choice for evaluating
predicted indirect interactions since indirectly interact-
ing proteins that belong to the same pathway can be
found in different cellular compartments (e.g., membrane-
associated TGFB receptor and SMAD4, which can be
either cytoplasmic or nuclear). Conversely, not all proteins
found in the same compartment will be interacting with
each other. Thus, such negative datasets are suitable for
the task of predicting protein co-localization, rather than
that of predicting direct or indirect protein interactions.

To minimize the biased distribution of negative exam-
ples, we opted for an unconstrained random sample of
protein pairs, since the fraction of interacting proteins is
assumed to be small compared to the total number of
potential protein pairs [43]. Therefore, the possibility of
including truly (unknown) interacting pairs among a ran-
dom sample is low enough for our approach to yield a
reasonably accurate test dataset. For each query gene, we
constructed a negative set by randomly sampling gene
partners from the set of available human protein-coding
genes such that the size of the random set is equal to
the size of the corresponding positive dataset. In general,
we observed an overlap of 5% between positive and ran-
dom sets. Notice that a random set is intrinsically different
from a true negative set: while negative and positive sets
should be logically distinct, positive and random sets may
overlap regardless of the size of the sets (excluding the
trivial scenario of empty positive/random sets). Excluding
the overlap from the random set creates an unjustified bias
to the gold standard database, and makes performance
measures difficult to interpret.

Performance evaluation measures

When queried with a gene, GAP returns a ranked list
of related genes, and their corresponding association
scores and evidence. The returned list of genes can be
dichotomized into related and unrelated groups using
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any threshold-setting technique. Accordingly, GAP can
be thought of as a binary classifier, and therefore, can
be evaluated using typical classifier evaluation measures,
which rely on a gold standard of experimentally vali-
dated direct and indirect interactions. We therefore used
three common evaluation measures: F1-score [44], preci-
sion versus recall curves [44], and area under the Receiver
Operator Characteristic (ROC) curve scores [45] to assess
GAP performance. The interpretation of these evaluation
measures in this application, and some relevant technical
details are described in Additional file 1.

Results and discussion

GAP predictive power over the known interactions

To assess GAP’s performance over the known interac-
tions, we randomly selected a set of 115 human genes that
have some known interactions in our positive gold stan-
dard data set.d GAP was then queried with these genes,
one at a time, and the performance measures (e.g., F1-
scores, PR curves, or AUC scores) were calculated using
the score-based ranked list of the predicted interacting
partners. The average of the scores, or the interpolation
of the curves, were then used to measure GAP’s perfor-
mance. Notice that since pathway information is included
in deriving our positive gold standard dataset, to avoid the
circular inclusion of the positive examples used for eval-
uation in the predictive feature set, the “pathway” feature
is not used throughout the experiments reported in this
section.

GAP performance at different configuration settings

We have used several methods to (1) calculate term-based
similarities (using various data-driven and ontology-based
approaches), (2) aggregate the term-based similarities into
feature similarities (using either max and average oper-
ators), and (3) combine the feature similarities into gene
similarity scores (using either weighted sums of feature
similarity scores or g-quantile sums). To study the effect
of each setting on GAP’s performance, we ran GAP with
different configuration settings and compared the result-
ing performance measurements. For ease of reference,
we assigned a “configuration number” to each setting as
displayed in Table 3.

Figure 2 depicts the Fl-scores for different configura-
tion settings when the threshold is set to select the 25%
and 10% of the highest-scored interactions—i.e., upper
quartile and upper decile, respectively. As Figure 2 shows,
the overall trend of GAP’s performance at different con-
figuration settings is similar for both the upper quartile
(Figure 2a) and upper decile (Figure 2b) threshold settings.
F1-scores, however, are generally higher using the upper
quartile threshold, although intuitively one may expect a
decrease in performance when using a looser threshold
setting, as retrieving more interactions typically introduce
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Table 3 GAP’s configuration settings
Configuration No.
1 2 3 4 5 6 8 9 10 1 12 13 14 15 16
Leaves X X X X
Term Resnik X X X
Sim. Seco X X X X
SD X X X X
Feature Avg X X X X X X X X
Sim. Max X X X X X X X
Gene Decile-w X X X X X X X
Sim Decile X X X X X X X X

For the ease of reference, at any threshold setting, different combinations of term similarity, feature similarity, and gene similarity measures are given specific
configuration numbers. “X” identifies the similarity measures selected for each of the configuration numbers. SD stands for specificity-descendant term similarity

measure. Decile-w refers to decile-weighted gene similarity measure.

more noise into the prediction performance. This implies
that the chance of retrieving noise (false positive) remains
low while predicting more interacting pairs. Notice that
the number of all possible interactions of the 115 genes
with other genes in the dataset (~19K) is 2,185,690. How-
ever, the network of known direct/indirect interactions
of the selected genes, retrieved from our gold standard
database, contains 6,899 unique genes and 42,228 inter-
actions (less than 2% of all possible interactions). As this
network is relatively sparse, better performance of the
upper-quartile threshold setting could not be the result of
a highly dense interaction network of these 115 genes in
the gold standard database.

Moreover, varying gene similarity aggregation methods
(decile-weighted vs. decile-only) insignificantly affects the
overall performance (i.e., p-values > 0.07 using Wilcoxon
rank sum test), and therefore, no definite conclusion on

the advantage of one over the other can be made, accord-
ing to our experiments.

Regarding the feature similarity aggregation methods
(average vs. maximum), except for when the specificity-
descendant (SD) term similarity measure is used,
maximum aggregation performs slightly better than
the average aggregation. On the one hand, the aver-
age method incorporates more information from term
similarities, but on the other hand, it is more prone to
including noisy information, if the adopted term similarity
method is not accurate enough.

Last but not least, as expected, the term similarity
method used seems to be the most influential factor, as
its quality would be propagated through the aggregation
chain. As Figure 2 shows, GAP performs best when using
SD as the term similarity measure. Configuration number
14 (SD-Avg-Decile) is the best performing configuration,
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Figure 2 F1-scores for different configuration settings. F1-scores for different configuration settings when threshold is set to upper quartile (2a)
and upper decile (2b). Error bars show the standard error of the mean.
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and therefore, this configuration was used in GAP for all
experiments, unless stated otherwise.

In order to more precisely evaluate and visualize the
effect of the term similarity settings, we have also reported
precision versus recall curves (Figure 3a) and the AUC
scores (Figure 3b) at different term similarity configura-
tions (i.e., config. numbers 2, 6, 10, and 14). As these
Figures reconfirm, SD significantly outperforms the rest
of term similarity configuration settings (p-value < 0.012
when applying Wilcoxon rank sum test on AUC scores of
SD as compared to the other 3 settings).

GAP’s hits on positive and random datasets

Even though the overall trend of the precision vs. recall
curves helps us form an impression about the rate of pos-
itive versus random hits as the scores of the predicted
interactions decrease, we are interested in more pre-
cisely monitoring the proportion of positive and random
hits, specifically over the highly-scored predicted interac-
tions. We therefore collected for each of the 115 query
genes considered in this study, the positive and random
hits over the 10% of the highest-score predicted interac-
tions, and displayed a set-view of the hits in Figure 4.
Each circle in the Figure 4 represents an interaction pre-
dicted by GAP. The size of a circle is proportional to
the score of the predicted interaction (i.e., the higher the
score, the larger the size). The circles’ color changes in
full spectrum from purple to red as the prediction scores
decrease. Figure 4 reveals several interesting aspects of
GAP’s performance. For instance, the overlap between
GAP’s high-scoring predictions and the positive gold stan-
dard dataset is significantly bigger than the overlap with
the random set (hypergeometric p-value ~ 0.0). More pre-
cisely, the number of positive hits in Figure 4 is 2,102

Page9of 17

while the number of negative hits is 197 (87 interactions
appear in both of the positive and random sets). Further-
more, the highest-scoring interactions only appear in the
positive overlap set, as the color spectrum in the over-
lap with the random set is more towards red with the
exception of those interactions that appear in the inter-
section of the two sets. For instance, the proportion of
negative hits among the 10% of the highest scoring pre-
dicted interactions is about 8%; this amount is reduced
to 5%, and 2% if we narrow down our analysis to include
only the best 5%, and 1% of the predicted interactions,
respectively.

Predictive power of individual features

To assess the predictive power of each individual feature,
we ran GAP with only one feature at a time, and report
the interpolated PR curves and averaged AUC scores in
Figures 5a and 5b, respectively. In order to investigate
the advantage of using ontology annotations (the “GO”
feature), we tested both ontology-based (i.e., SD) and data-
driven (i.e., frequency-based) term similarity methods. As
expected, the ontology-based similarity performs better,
specifically at higher recall points.

As expected, combining all features together leads to
the best performance (see Figure 5). Furthermore, “drug”
is the least, and “GO” is the most influential feature.
This observation, however, does not diminish the value
of “drug” feature in deriving gene functional associations.
This feature plays a part in extracting implicit associa-
tions, which are not sufficiently covered in our gold stan-
dard dataset. The advantage of these features would be
more evident in other GAP applications such as molecular
pharmacology studies rather than the protein interaction
prediction.
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Figure 4 GAP hits on positive and random datasets. Visual representation of GAP's hits on the positive (larger set on left) and random (smaller
set on right) datasets using upper percentile threshold setting. The hits in the intersection of the two yellow diamonds are those that appear in both
positive and random datasets. Each circle corresponds to an interaction predicted by GAP. The size of the circles is proportional to the score of the

scores decrease.

predicted interactions (i.e., the higher the score, the larger the size). The circles’ color changes in full spectrum from purple to red as prediction

Furthermore, it can be argued that as interaction
databases influence the way gene ontologies are built, this
inherent circularity would contribute to the GO predictive
power. Although this circularity cannot be fully elimi-
nated, it is minimized in GAP’s predictions as GAP makes
use of primary GO annotations without any explicit access

to interaction databases to infer GO term associations.
The GO feature-set associated to each gene is retrieved
by GoPubMed search engine by performing a knowledge-
based semantic search to effectively identify ontology
concepts in the texts of biomedical documents. In other
words, gene ontology concepts are directly retrieved from
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(5b): AUC score comparison when GAP is run with only one predictive feature at a time. The average of AUC values are shown as bars; the standard
error of the mean is shown as a thin error bar at the top of each bar.
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the scientific literature using similar procedure as for
other feature terms, such as disease terms.

GAP performance as compared to other protein interaction
predictors

To ascertain GAP’s predictive power in extracting true
gene associations, as compared to the existing tools, we
have selected several tools, and compared them against
GAP using our accumulated gold-standard dataset.

To make a fair comparison, we were interested in
functional interaction predictors; therefore, methods
specifically designed for “direct” protein interactions such
as tools using molecular docking or protein structural
similarity were not considered. Furthermore, we were
interested in human gene associations, and methods par-
ticularly developed for other species were excluded. To
enable the most direct comparison, we used only tools
that provide web server-based prediction, or those that
make the predictions available for download. Last but not
least, we favored well-developed and widely-cited tools,
which have been “validated” and proved useful in multiple
tasks.

We applied our selection criteria to many different pro-
tein interaction predictors or gene association mining web
servers, and selected (1) GeneMANIA: Gene Multiple
Association Network Integration Algorithm [16], (2) [2D-
Pred: Interologous Interaction Database (predicted inter-
actions) [18], (3) PIP: Potential Interactions of Proteins
[19], (4) PIPs: Human protein-protein interactions predic-
tion database [2], (5) PPIFinder: A Mining Tool for Human
Protein-Protein Interactions [20], and (6) STRING: Search
Tool for the Retrieval of Interacting Genes [15].

The predictors considered for inclusion in this study,
their prediction features and methodologies, and
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the corresponding selection constraints are listed in
Additional file 1: Table S1 followed by a brief description
of the six selected methods. As Table S1 shows, many
computational tools have focused on predicting direct
protein interactions rather than gene functional associ-
ations. Furthermore, functional interaction predictors
have been more studied for other species such as worm
and yeast, but received less attention for human.

To set up the experiments, we queried each of the com-
paring tools with the randomly selected human genes
under consideration in this study, and collected the related
genes or proteins ranked according to their similarity,
or confidence scores.® Figure 6 shows the precision ver-
sus recall curves, and the AUC scores of GAP and the
comparing protein interaction prediction tools.

The results depicted in Figure 6a and 6b suggest
that GAP outperforms existing systems in extracting the
experimentally known protein direct/indirect interactions
(p-value < 2.96E-08 using Wilcoxon rank sum tests on
AUC scores when comparing GAP with each of the indi-
vidual tools).

Evidence confirming and supporting GAP novel predictions
The value of protein interaction prediction and gene
association mining tools lies in their ability to predict
reliable novel interaction and association candidates. Bio-
logical experiments would provide validation of these
predicted interactions; thus, we searched the existing lit-
erature to determine whether such supporting evidence
can be identified. We also turned to manually curated
databases of genes associated to high profile diseases, to
support a subset of functional interactions predicted by
GAP. We used, as an example, autism spectrum disorders
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Figure 6 GAP performance as compared to other predictors. Precision vs. recall curves (6a), and the average AUC scores (6b) of GAP and the
six comparing protein interaction prediction tools. The average of AUC values are shown as bars; error bars corresponds to the standard error of the
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for which there exists an expert-curated database, SFARI
Gene [46].

Confirmation of GAP novel predictions

We queried GAP with both randomly selected genes and
pre-determined genes (known metastasis suppressors),
and chose for them interacting partners from the 10%
of the highest-scored predicted interactions, which are
also novel (i.e., protein pairs not currently found in any
known database/dataset). We then searched the scien-
tific literature for any information corroborating these
predictions.

We were able to confirm functional association with
available evidence of interaction for four categories of
interactions: (1) direct (physical) binding, (2) interaction
as part of a complex, (3) direct or indirect gene expres-
sion regulation, or (4) genetic association where genes
are implicated in same/similar diseases (Table 4). Some
of the confirmed interacting pairs warrant further dis-
cussion: in Dai et al. [47] a direct interaction between
nephrin and alpha-actinin 4 was demonstrated by co-
immunoprecipitation but additionally, it was shown that
the nephrin-alpha-actinin 4 interaction was dependent on
a third protein, integrin-linked kinase (ILK). The interac-
tion of ILK and nephrin, either directly or as a complex,
has not previously been found in any dataset/database
although it is predicted by GAP to be highly associated.
In all current literature, FGF2 and VEGFA belong to path-
ways that are treated separately, but are known to be syn-
ergistic in their action on angiogenesisi [48]; however, we
were able to find a direct regulatory link between the two
proteins: both appear to indirectly influence the transcrip-
tion of the other’s gene. Furthermore, the known metas-
tasis suppressor, CD82, was highly predicted by GAP to
interact with AMFR. We confirmed this direct physical
interaction via the literature, though it is not reported in
any dataset/database. Using only known interaction data
available in public database/dataset, AMFR could be con-
nected with CD82 through shortest path of length three,

Table 4 Confirmation of GAP’s novel predictions
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our confirmation of this GAP prediction increases that to
a direct connection between the two (Additional file 1:
Figure S1), and thus improves the connectivity of the PPI
network.

Supporting predicted associations using an expert curated
gene-disease association database

We have also found supporting evidence for our predic-
tions by examining the Human Gene module of SFARI
Gene [46], a web-based, publicly available, and expert-
curated repository of genes associated with autism spec-
trum disorders. The content of the Human Gene module
originates from published, peer-reviewed scientific liter-
ature, and is extracted through a systematic search of
the literature, followed by a multi-step annotation and
curation strategy.

Genes participating in the same phenotype are consid-
ered to be functionally related [49]. Since genes reported
by SFARI are known to be implicated in autism spectrum
disorders, we would expect to see high-density functional
connectivity among the autism-related genes based on the
predictions delivered by a comprehensive gene functional
association predictor. We were, therefore, interested to
determine how inter-connected the autism-related genes
would be according to GAP’s predictions, and as com-
pared to the existing best-performing functional predic-
tors.

Currently, SFARI human gene module includes 306
autism-related genes (downloaded in April 2012). We
report the analysis for all 306 genes in Additional file 1, but
present here, for ease of visualization, an in-depth analy-
sis of the 25 genes with the highest number of associated
studies. All 25 genes were the subject of at least 10 studies,
as reported by the SFARI database.

Figure 7 displays the functional inter-connectivity of
the autism-related genes predicted by GAP, as compared
to GeneMANIA and STRING.[ The size of a node is
proportional to its degree. The transparency of an edge
is proportional to the relative rank of its corresponding

Interactor Interaction Interaction Confirmed by: Experimental
set pair type Pubmed ID Journal Year method
ACTN4 and SYNPO Complex 12042308 J Biol Chem 2002 Co-IP, Pull down
Random FGF2 and VEGFA Regulation 18948122 Microvasc Res 2009 N/A
NPHST and ACTN4 Direct 16837631 J Am Soc Nephrol 2006 Co-IP
VHL and SDHB Association 19208735 Endocr Relat Cancer 2009 N/A
BRMST and SAP130 Complex 16914451 Nucleic Acids Res 2006 TAP Tag
Metastasis CD82 and AMFR Direct 18037895 Nat Med 2007 Co-IP
Suppressor KISST and KAL1 Association 22335740 N Engl J Med 2012 N/A
KISST and MED23 Regulation 16964286 Oncogene 2007 Chip

This Table summarizes a list of confirmed interactions, types of the interactions, corresponding PubMed IDs, and the experimental methods used.
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predicted association. The top 10% highest-ranked pre-
dicted interactions are colored in red.

As Figure 7 shows, autism genes are more densely
and more relevantly connected to each other, accord-
ing to GAP’s predictions as compared with the other
two methods. To quantitatively measure and compare
the connectivity of the autism genes, as well as the rel-
evance of the predicted connections, we used two mea-
sures of network-centrality and prediction-relevance. The
network-centrality is defined as the average of the degree
centrality of the autism genes in the networks predicted by
different methods, where the degree centrality of a node is

defined as the number of edges incident upon the node.
The network-centrality measures of the GAP’s, Gene-
MANIAs, and STRING’s graphs displayed in Figure 7,
are 16.08, 6.16, and 6.08 respectively, where p-value <
1.10E-08 using Wilcoxon rank sum test to assess the sig-
nificance of the difference between the distributions of the
degree centrality of the autism genes at GAP’s network as
compared to the other two methods.

The prediction-relevance is defined as the mean value of
the relative ranks of gene associations for each of the three
predicted networks: GAP (61.73), GeneMANIA (39.20),
and STRING (37.93). The significance of the difference in
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the distributions of the relative ranks for GAP’s network
as compared with others was assessed using the Wilcoxon
rank sum test (p-value < 6.89E-06).

To further support GAP’s prediction selectivity, we have
statistically shown that GAP does not simply predict every
random pair of genes to be associated. Accordingly, we
reproduced the experiment with a randomly selected set
of genes: we randomly selected 25 genes, and retrieved
their corresponding functional inter-connectivity net-
work predicted by GAP. We repeated this process 50
times, and averaged the number of high-confidence pre-
dicted associations: the average numbers of edges with
p-value < 0.01, and < 0.05 were 1.36, and 6.52, respec-
tively. These statistics are respectively 22, and 88 in the
network of autism-related genes (Figure 7a). This provides
further evidence that GAP associates those genes that are
indeed related.

Last but not least, to illustrate the utility of GAP as com-
pared to the datasets of experimentally validated direct
and indirect associations, we have also included the inter-
actions among autism genes derived from databases of
known physical interactions, complexes, and pathways
using our gold standard dataset. Figure 7d shows known
associations among autism genes, and exemplifies the
limitation of the existing PPI and pathway databases in
deriving functional associations.

Proposing novel candidate genes associated with autism
spectrum disorders
Since GAP successfully predicted functional associations
among known autism genes, we were encouraged to use
it for predicting novel genes associated with autism. We
queried GAP with 306 known autism genes from the
SFARI human gene module, and retrieved all function-
ally interacting partners predicted by it whose interaction
p-values are less than 0.05. 11,215 genes were predicted
to be functionally associated to at least one of the SFARI-
known autism genes. Notice that if we retrieve from our
gold standard database, all known direct/indirect inter-
acting partners of 306 SFARI genes, we would end up
with 5,509 unique interacting genes. Considering the lim-
ited size of the currently discovered gold standard, pre-
dicting 11,215 related-genes by GAP is quite reasonable.
However, as each of the SFARI genes may contribute
to different processes, and participate in diverse pheno-
types, not all the functionally related genes should be
necessarily implicated in autism spectrum disorders. Yet,
if a new gene is predicted to be functionally associated
to several known autism genes, it is more likely to be
involved in autism, a phenotype that is shared by all the
SFARI genes.

We define the association-degree of a predicted gene
to be the number of SFARI autism genes that are pre-
dicted by GAP to be functionally associated to it. The
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histogram of the association-degrees of all the 11,215
predicted novel genes is provided in Additional file 1:
Figure S3. We selected predicted genes with the high-
est 1% of association-degrees (i.e., association-degree >
15). 114 genes were accordingly selected and reported as
novel candidate autism genes not yet listed in the SFARI
database. Figure S4 of Additional file 1 displays the net-
work of functional associations of these 114 predicted
genes to SFARI autism genes, and Additional file 3 lists for
each of the 114 genes, the gene name, its interacting part-
ners from SFARI database, and supporting evidence, i.e.,
pathways, GO annotations, disease and drug information
used by GAP to produce the predictions.

Conclusions

In this paper, we proposed GAP, a general-purpose
integrative Gene functional Association Prediction tool.
Using common performance evaluation measures and a
gold-standard database of experimentally validated direct
and indirect interactions, we have shown that GAP sig-
nificantly outperforms the existing interaction prediction
tools in correctly identifying known interactions.

While several similar systems exist, GAP uses a fun-
damentally different method to drive gene associations.
For instance, STRING integrates and ranks gene associa-
tions by benchmarking them against a common reference
dataset. In contrast to STRING, GAP follows an unsuper-
vised strategy wherein gene associations are inferred with-
out using any training dataset (i.e., reference database).
Notice that in predicting gene functional associations,
supervised methodologies undergo a serious challenge
of selecting a suitable reference set: manually curated
databases are accurate enough but small in size (increases
the possibility of generating false negatives) and biased
(literature bias), and unrestricted datasets can be large
enough but inaccurate and noisy (increases the possibility
of generating false positives).

GAP is also different from the unsupervised tools
such as PIP, 12D, and PPI-Finder as GAP is designed to
extract semantic similarities by developing a taxonomy-
based scoring measure, and by using leading semantic
search engines to extract association information from the
published literature (e.g., GoPubMed). Other approaches
mostly use direct (rather than semantic) matching (e.g.,
BLAST searches, homology mapping, shared GO annota-
tions, etc.), or use co-occurrence-based and/or rule-based
approaches to extract associations from PudMed abstracts
(e.g., STRING searches for recurrent co-mentioning of
gene names; PPI-Finder mines protein interactions based
on their co-occurrences and interaction words).

Notice that GAP does not only use name co-occurrence
to extract associations from the published literature;
it makes use of the vast wealth of genes’ information



Vafaee et al. BMC Systems Biology 2013, 7:22
http://www.biomedcentral.com/1752-0509/7/22

available in the literature from the name co-occurrence
and GO annotation similarity, to being associated with
similar disease susceptibility and drug mechanisms. GAP
therefore retrieves more information from identical data
sources (e.g., scientific literature), and more precisely inte-
grates the available information using a taxonomy-based
scoring. Richer information enables GAP to select the
most relevant associations, and thus to lower the possibil-
ity of generating false negatives. To decrease the chance
of generating false positives, GAP weights the available
data according to their “information content” and their
frequencies in the scientific corpora, and then, integrates
different information to prioritize stronger associations.
Combining these diverse sources of information with rich
semantic similarity measure ensures GAP retrieves more
true positives yet with a low chance of retrieving noise
(i.e., GAP achieves higher precision value at each recall
point).

We have also confirmed a subset of GAP’s novel pre-
dictions, with respect to our gold standard database, by
manually searching the scientific literature®. We then cor-
roborated a subset of GAP’s novel predictions using an
expert curated database of genes associated to the autism
spectrum disorders, under the assumption that genes par-
ticipating in the same phenotype are expected to be func-
tionally related. Our primary reason for selecting autism
spectrum disorders for supporting GAP’s predictions was
data availability. However, autism is one of the most com-
mon neurological disorders [50] with a very complex
genetic architecture whose underlying genetic determi-
nants are still largely unknown, i.e., based on GWAS stud-
ies only a few genes with common polymorphisms have
reached genome-wide significance [51]. It is, therefore,
particularly useful to propose high-confidence candidate
genes associated with autism susceptibility. Using GAP,
we have identified 114 potential autism-related genes (cf.
Additional file 3), which are not currently listed in the
SFARI database.

GAP’s predicted “functional interactome”™ contains ~
1M predicted functional associations whose p-value <
0.01, out of which about 90% are novel. GAP’s novel pre-
dictions connect previously disconnected components
and singletons to the main body of the known interac-
tome. The disconnected components and singletons in
the network of experimentally validated direct and indi-
rect interactions, as well as GAP’s novel predictions are
provided by Additional file 1: Figure S5.

In summary, GAP can be applied to a wide range of
tasks such as phenotype prediction, gene clustering, and
pharmacology analysis. The underlying approach is gen-
eral, can take advantage of any type of biological data
sources, and can be extended to different organisms, pro-
vided that the employed databases and services cover
multi-organism information.

h
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Endnotes

2Tools that look for functional associations (i.e., not
specifically designed for predicting physical interaction)
among human genes, and offer a web server or make their
predicted interactome available for download.

PFormal definitions of Leaves, Seco, and Resnik measures
are provided in Additional file 1, Section 1.1.

“Note that the retrieved gene IDs are the genes that co-
occur with the queried gene in MEDLINE abstracts. This
feature provides a tramnsitive evidence for gene relation-
ship.

dWe put this constraint to avoid selecting genes with no
known interactions. All the performance measures would
be 0.0 using these genes since there is no “true positive”.
€We used the default settings of each tool. To avoid circu-
lar reasoning, in STRING and GeneMANIA, we excluded
interactions that are directly included from the databases
of experimentally known interactions.

fConsidering all compared methods for functional asso-
ciation prediction, GeneMANIA and STRING are the
techniques that are the most comparable to GAP, as they
seek gene associations in a general way. They are also
among the best-performing existing predictors.

8Though these confirmed predictions were experimen-
tally validated according to published literature, they are
new to the publicly available datasets of known direct and
indirect interactions.

"By “functional interactome” we mean a network in which
nodes correspond to genes and edges correspond to the
functional associations between the adjacent nodes.
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