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Abstract

Background: LiDAR is an established technology that is increasingly being used to characterise spatial variation in
important forest metrics such as total stem volume. The cost of forest inventory and LiDAR acquisition are strongly
related to the inventory plot size and the LiDAR pulse density, respectively. It would therefore be beneficial to
understand how reductions in these variables influence the strength of relationships between LiDAR and stand metrics.
Although relatively high pulse densities are required for creating Digital Terrain Models (DTMs), once a DTM has been
developed there is scope for reducing pulse density on subsequent flights to estimate stand metrics from LiDAR. This
study used an extensive national dataset (for which the DTM had been characterised) obtained within New Zealand’s
planted forests. Using this dataset, the objective of this research was to investigate how variation in both pulse density
and plot size influence the precision of relationships between LiDAR metrics and total stem volume.

Methods: LiDAR metrics were thinned to pulse densities ranging from 0.01 to 4 pulses m-2 across plot sizes ranging
from 0.01 to 0.06 ha. For each pulse density/plot size combination regressions between LiDAR mean height and total
stem volume were fitted using parameters fixed at values for the unthinned dataset or separately fitted for each pulse
density/plot size combination.

Results: Using the unthinned dataset (plot size = 0.06 ha; pulse density = 4 pulses m-2) the relationship between the
mean LiDAR height and total stem volume had a coefficient of determination (R2) of 0.77. Thinning of the data had
little effect on R2 above plot sizes of 0.03 ha and pulse densities of 0.1 pulses m-2. As pulse densities decreased below
0.1 pulses m-2 within plots of less than 0.025 ha, there was a sharp decline in R2 reaching values as low as 0.48 in plots
of 0.01 ha with pulse densities of 0.01 pulses m-2. Simulations where parameters were fixed yielded almost identical R2

values to those where they were refitted for each plot size/pulse density combination. The number of pulses per plot
integrates the effect of these two factors, with little change in the precision of the volume function until a threshold of
100 pulses per plot was reached.

Conclusions: This study showed that the precision of LiDAR-volume equations was relatively insensitive to reductions
in pulse density and plot size when an accurate DTM was available. Acquisition of LiDAR information at lower pulse
densities is likely to markedly improve the cost efficacy of this information for inventory purposes.
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Table 1 Summary of key LiDAR settings for the
dataset collected

Variable Value

Wavelength (nm) 1064

Scan angle (deg.) ± 6

Pulse frequency (kHz) 70

Scan frequency (Hz) 53

Footprint diameter (m) 0.27

Ground speed (knots) 105

Flying height (m) 1200
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Background
LiDAR is an established technology that is increasingly be-
ing used to derive spatial stand metrics, which is increas-
ing the accuracy and efficiency of operational forest
inventory. Since the first application of LiDAR in forestry
almost three decades ago (Nelson et al. 1984), the technol-
ogy has been widely used to quantify spatial variation in
stand height, basal area (Watt 2005; Means et al. 1999),
diameter, volume (Næsset 1997), canopy properties (Næs-
set and Okland 2002) and species composition (Donoghue
et al. 2007). The strength of LiDAR lies in its ability to
provide accurate distance information and to penetrate
the canopy, thereby providing information on both the
horizontal and vertical distribution of vegetation structure.
As stem volume is a key determinant of forest value, the

use of LiDAR to provide an unbiased and accurate esti-
mate of this stand dimension is of considerable interest to
forest managers. Volume is typically determined from in-
ventory measurements that are often time-consuming and
expensive. Metrics derived from LiDAR have been shown
to exhibit moderate to strong relationships with stem vol-
ume across a range of different coniferous species
(Næsset 1997; Means et al. 2000), demonstrating the
potential of LiDAR for inventory purposes. Compared
to traditional inventory, with only plot-based measure-
ments, LiDAR has a number of potential advantages
that include increased fine scale spatial resolution,
lower costs and increased precision (Næsset 2002;
Holmgren and Jonsson 2004).
Field inventory costs increase markedly with plot size,

and LiDAR costs increase with pulse density. Conse-
quently a key issue requiring investigation is how far these
elements can be reduced without compromising precision
of the regression between LiDAR metrics and volume. De-
velopment of accurate LiDAR height metrics are reliant
on an accurate digital terrain model (DTM) as the canopy
returns must be converted from elevation above sea-level
to height above the DTM. However, once an accurate
DTM has been obtained it should be possible to reduce
the pulse density for the estimation of volume.
The influence of pulse density on the precision of rela-

tionships between stand and LiDAR metrics has been
widely investigated. In stands dominated by Norway spruce
(Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.),
Gobakken and Næsset (2008) found that point densities
could be reduced from 1.13 point to 0.25 points m-2 with
little effect on the quality of inventory results. In a mixed
conifer forest, where pulse densities were reduced from 9
to 0.01 pulses m-2, it was found that correlations between
LiDAR metrics and key stand metrics (tree height, diam-
eter at breast height, and total basal area) were relatively
unaffected until pulse densities were reduced below 1
pulse m-2 (Jakubowski et al. 2013). In mixed conifer-
hardwood stands, it was found that pulse density could be
reduced from 3.2 to 0.5 pulses m-2 with little effect on the
precision of relationships between LiDAR and stand met-
rics (Treitz et al. 2012).
Fewer studies have investigated how plot size and the

interaction between pulse density and plot size influence
the precision of regressions between field measurements
and canopy metrics. In general the homogeneity of can-
opies in even-aged forests allows for reductions of plot sizes
to 0.02 ha, without substantial deterioration of the LiDAR-
volume relationships (Gobakken and Næsset 2008). There
are, however, substantial differences in this homogeneity
between different forest types that may necessitate variation
in plot sizes to accommodate this. This homogeneity ranges
from high (in very dense unthinned planted stands with
few gaps) through moderate (in thinned planted stands
with greater ground area) to low (in natural forests).
Research is required that investigates how plot size

and pulse density influence the quality of LiDAR-volume
relationships across planted forest stands that include a
wide variation in stand densities. Ideally, other important
factors that influence estimation of canopy metrics, such
as the laser system, flight specifications, data characteristics
and data processing steps should be maintained constant
to mitigate their influence. The characteristics described
were part of a recently acquired LiDAR dataset that sam-
pled the entire extent of New Zealand’s predominantly
Pinus radiata D. Don (radiata pine) resource. Using this
dataset, the objective of this research was to investigate
how pulse density and plot size influence the precision of
LiDAR metric-volume relationships.

Methods
Dataset used
The dataset used was from a national inventory of planted
forests (LUCAS) undertaken to measure and monitor
temporal change in national carbon stocks. This inventory
was undertaken by New Zealand as part of its obligations
under the Kyoto Protocol and the United Nations Frame-
work Convention on Climate Change (Beets et al. 2010).
This dataset has been fully described previously (Beets
et al. 2012; Stephens et al. 2012; Stephens et al. 2007).
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In stands established after 1 January 1990, circular
plots with an area of 0.06 ha were installed between
June and September 2008 using a regular systematic
4 km grid. In stands established prior to 1990, plots of
0.06 ha were installed during 2010 on an 8 km grid.
Field plot centres were located using a 12-channel dif-
ferentially corrected global positioning system (GPS) to
within ± 3 m.
The LiDAR survey was undertaken aerially using a

Cessna 207 aircraft in February 2008 (for pre-1990 forests)
and 2010 (for post-1989 forests) using a small footprint
(~0.20 m) Optech ALTM 3100EA system integrated with
a Rollei AIC digital camera. The LiDAR settings used to
achieve first-return pulse densities of at least 3 returns m-2
Figure 1 Distribution of plot locations used for the modelling.
are summarised in Table 1. The system also utilised an
Applanix 510 Position and Orientation System (POS) that
uses GPS and inertial measurement unit (IMU) sensors,
and a GPS-based computer controlled navigation system.
From this dataset, LiDAR metrics and stand information

for 374 plots were extracted for the analysis. These data
were taken across a range of plantation species that in-
cluded plot representation of the following species: 350
plots (94%) in Pinus radiata, 13 plots (3%) in Pseudotsuga
menziesii var menziesii (Mirb.) Franco (Douglas-fir), 7 plots
(2%) in Eucalyptus nitens H.Deane & Maiden (shining
gum), and the remaining four plots within stands with
minor species. The distribution of these plots is shown in
Figure 1.

http://www.nzjforestryscience.com/content/43/1/15


Table 2 Summary statistics describing the dataset

Variable Mean Range

Stand metrics

Stem volume (m3 ha-1) 240 (9.9) 0.05 – 1020

Crop stocking (stems ha-1) 464 (18) 17 – 2283

LiDAR metrics

Canopy cover (%) 69.7 (1.1) 1.4 – 99.1

Height of 30th percentile (m) 9.2 (0.3) 0.6 – 30.7

Mean height (m) 11.3 (0.3) 0.7 – 31.2

Height of 95th percentile (m) 17.8 (0.5) 1.0 – 43.1

Shown are the mean and standard error (in brackets) along with the data
range. LiDAR metrics shown include values from all returns.
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Diameter at breast height (dbh) was recorded for each
plot tree. A sample of at least 16 trees per crop type (i.e.
silvicultural regime, age, species etc.) within each plot also
had height measured. A plot-specific height-diameter rela-
tionship was used to determine height of any remaining
trees in the plot. The bearing and distance from each tree
to the plot centre was recorded. Stand slope was measured
using an inclinometer and defined as the average of the
maximum gradient at the plot centre and the gradient at
ninety degrees to that.
Within the dataset there was a wide range in stand and

LiDAR metrics (Table 2). Stand density ranged from 17 –
2283 stems ha-1 which exceeds the normal operational
range found within planted forests in New Zealand. Total
stem volume ranged from 0.048 to 1020 m3 ha-1. LiDAR
metrics also ranged widely with most variation noted in
the 30th height percentile which ranged 51-fold from 0.6
to 30.7 m (Table 2).

Processing of LiDAR and field data
Following the method described in Gonzalez Aracil (2011),
which uses the equations described in Goulding (1995), in-
dividual tree volumes were determined from diameter and
measurements (or estimations) of height. Summation of
these volumes yielded a plot level estimate of total stem
volume. Measurements of distance and bearing allowed
total stem volume to be recalculated under a range of plot
sizes. Where the plots were on sloping ground, a slope-
corrected radius was used (Hayes 2005), both for the ori-
ginal plots and the simulated reduced size plots.
Terra-Scan software was used to classify ground and non-

ground returns using the algorithm described by Axelsson
(2000). Manual identification of breaklines by skilled opera-
tors was undertaken to improve DTM quality. These classi-
fied ground returns were used to construct a DTM by
connecting them into a Triangulated Irregular Network
(TIN), and then linearly interpolating them onto a regular
grid. Pulses were extracted individually from the data and
assimilated using the raw coordinates. The DTM grid size
was 1 m, but linearly interpolated to the exact horizontal re-
turn location for more accurate ground characterisation.
LiDAR data were extracted for each plot assuming a

circular plot shape. Although field plots were often ellip-
tical, previous research demonstrates the assumption of
circularity to have little effect on values for key LiDAR
height metrics (<0.22%) within this dataset (Adams and
Pont 2012). LiDAR metrics extracted for the analysis in-
cluded the 30th, 70th and 95th height percentiles, mean
height and canopy cover (percentage of returns from
above a cut-off of 0.5 m to remove the understorey) as
these are widely used for development of volume equa-
tions. The described LiDAR metrics were generated
from all returns.
Thinning of LiDAR dataset
For the unthinned dataset (plot size = 0.06 ha; pulse dens-
ity = 4 returns m-2) the best model describing total stem
volume was,

V ¼ αHm þ β ð1Þ

where V is the total stem volume (m3 ha-1), Hm is the
mean LiDAR height (m), and α, β are the regression
coefficients, which had respective values of 28.02
and −76.45. This relationship had a R2 of 0.77. Addition
of further variables to this model did not substantially
improve model accuracy.
Models of V were developed under a wide range of plot

size and pulse densities using the independent variable
(Hm) described in Equation 1. LiDAR metrics were thinned
to 84 different pulse densities ranging from 4 pulses m-2 to
0.01 pulses m-2 for plot sizes ranging from 0.01 to 0.06 ha
(in 0.005 ha intervals). The raw data was thinned to re-
move a specified proportion of pulses (and all correspond-
ing returns). Each iteration removed a random set of
pulses from the original dataset, so successive thinnings
would not contain the same pulses.
Statistics were extracted for two sets of simulations.

In the first set, coefficients in the volume equation were
refitted for each pulse density/plot size combination. In
the second set, coefficients in the volume equation were
fixed at those used for the highest plot size (0.06 ha)
and pulse density (4 pulses m-2). For both sets of simu-
lations, the coefficient of determination (R2) was ob-
tained for each pulse density/plot size combination. For
plot size/pulse density combinations in the first simulation
the percentage variation in coefficients of the regression
equation was determined as the mean percentage change
in each of the two regression coefficients, compared to
their original values (for a plot size of 0.06 ha and pulse
density of 4 returns m-2).
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Figure 2 Relationship between pulse density and the coefficient of determination (R2) for simulations where a fixed plot size of
0.06 ha was used.
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Results
Influence of pulse density on model precision
For the first set of simulations, where coefficients were
allowed to vary, the model performance (R2) remained rela-
tively constant in response to reductions in pulse density
until values were reduced below 0.5 pulses m-2 (Figure 2).
Following this there was a marked decline in R2. The
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Figure 3 Relationship between pulse density and percentage variatio
for simulations where a fixed plot size of 0.06 ha was used.
coefficients in the regression were almost constant above 1
pulse m-2 (varying by less than 0.4%), and only varied by
more than 5% for the β coefficient (see Equation 1) with
pulse densities less than 0.25 pulses m-2 (Figure 3). This sta-
bility was also apparent in the very low variation in model
precision between simulations with fixed and varying coeffi-
cients. Differences in the coefficient of determination (R2)
2 2.5 3 3.5 4

ensity m-2

alpha

beta

n in coefficients of the regression equation (described in Eqn. 1)
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between the two simulations, for a given pulse density, did
not exceed 10-15.

Influence of plot size and pulse density on model precision
For the first set of analyses where the coefficients were
allowed to vary, the coefficient of determination (R2) exhib-
ited little change from the base value of 0.77 for plot sizes
greater than 0.03 ha where the pulse density exceeded ca.
0.1 pulses m-2 (Figure 4). As long as pulse densities were
maintained above 0.1 pulses m-2, reductions in plot size to
0.01 ha resulted in only moderate losses in R2 of up to ca.
Figure 4 Relationship between coefficient of determination (R2) for th
shown as a checkerboard plot (top) and as a 3D surface (bottom). The colo
0.03 (from ca. 0.77 to 0.74). Similarly, at plot sizes exceed-
ing 0.025 ha, pulse densities could be reduced to 0.01 pulses
m-2, with only moderate losses in R2 to 0.60 (Figure 4). As
pulse densities declined below 0.1 pulses m-2 within plots
of less than 0.025 ha, there was a sharp decline in R2

reaching values as low as 0.48 in plots of 0.01 ha with
pulse densities of 0.01 pulses m-2 (Figure 4).
At pulse densities exceeding 0.5 pulses m-2, coefficients

in the volume function were very stable across plot sizes
greater than 0.04 ha, exhibiting less than 1% variation
from the base coefficients (Figure 5). The average variation
e volume equation and plot size and pulse density. Values are
ur scale shows variation in R2 for the volume equation.
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Figure 5 The relationship between mean percentage variation in regression coefficients for the LiDAR volume equation and plot size
and pulse density. Values are shown as a checkerboard plot (top) and 3D surface (bottom). The colour scale shows percentage variation in
regression coefficients.
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of coefficients was never more than 13% for all plots
greater than 0.03 ha under pulse densities greater than
0.01 pulses per m2. There was a marked increase in aver-
age coefficient variation at very low pulse densities that
was particularly pronounced as plot sizes declined below
0.025 ha (Figure 5).
Findings were very similar for simulations run with re-

gression coefficients fixed at values found for the highest
plot size (0.06 ha) and pulse density (4 pulses m-2). These
simulations show a very similar decline in R2 to those
where parameters were refitted (i.e. Figure 4), with abso-
lute differences in R2 not exceeding 10-15. As R2 values for
these simulations were indistinguishable from those in
Figure 4 these data are not shown.
Regression of the number of pulses per plot against

model precision integrated the effect of the plot size and

http://www.nzjforestryscience.com/content/43/1/15
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pulse density, described previously. The coefficient of
determination did not markedly decline until a threshold
value of 100 pulses per plot was reached (Figure 6).

Discussion
The results from this study are broadly consistent with
previous research investigating the effects of plot size and
pulse density on precision of relationships between LiDAR
and canopy metrics. Most studies have found that LiDAR
pulse densities can be reduced to between 0.06 – 0.5 pulses
m-2 with little consequent effect on precision of canopy
metrics (Goodwin et al. 2006; Næsset 2004a; Gobakken and
Figure 6 The relationship between the coefficient of determination (R
values on the x-axis plotted using a linear scale (top) and log scale (b
Næsset 2008; Treitz et al. 2012; Jakubowski et al. 2013).
Similarly, previous research has shown that reductions in
plot size are possible to 0.02 ha without negative impacts
on the precision of regressions between LiDAR metrics and
volume (Gobakken and Næsset 2008).
This study extends previous research by examining the

combined effect of plot size and pulse density on model
precision. When these two variables were examined in
combination, little deterioration in the precision of the vol-
ume function was noted for plot sizes greater than 0.03 ha
where the pulse density exceeded ca. 0.1 pulses m-2. Ana-
lyses indicate that the number of pulses per plot integrates
2) of the volume equation and number of pulses per plot, with
ottom).
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the effect of these two factors, with little change in the pre-
cision of the volume function until a threshold of 100
pulses per plot is reached. Once this point is reached there
are too few pulses to enable the calculation of robust
LiDAR metrics. The volume equation was found to be
stable across most pulse density and plot size combina-
tions. The effect of data thinning on R2 hardly varied be-
tween simulations where the parameters were held
constant or allowed to change.
The relatively low sensitivity of model precision to

pulse density demonstrated in this study has implica-
tions for the cost effectiveness of LiDAR as an inventory
tool. Currently most LiDAR is acquired within forests at a
pulse density of between 1–2 pulses m-2 in New Zealand
(New Zealand Aerial Mapping pers. comm.). Reduction of
the pulse density to well below these levels, under situa-
tions where an accurate DTM is available, would markedly
increase the cost efficacy of LiDAR as a tool for describing
spatial variation in canopy metrics.
In an operational setting, pulse density and LiDAR

acquisition cost can be reduced through flying faster, re-
ducing the swath overlap or flying at higher altitude. In-
creases in aircraft speed or a reduction in the swath
overlap will reduce the pulse density without influen-
cing other specifications such as footprint diameter and
ability of the laser to penetrate the canopy (Magnusson
et al. 2010).
In contrast, flying at a higher altitude affects several fea-

tures of the data. The footprint diameter and swath width
increases while the reflected energy, ability of the laser to
penetrate the canopy, and maximum pulse repetition fre-
quency decline (Magnusson et al. 2010). As a result of these
changes flying at higher altitude results in a change in the
distribution of echo categories, an upward shift in the
canopy-height distribution and a lower proportion of mul-
tiple returns (Goodwin et al. 2006; Næsset 2004b, 2009).
Although changes to these features do not significantly
affect the precision of regression equations for common
stand metrics, such as height and stand volume, coefficients
in the regression equations are likely to change between ac-
quisitions at different altitudes (Næsset 2004b, 2009).
Conclusions
This study demonstrates the relative insensitivity of preci-
sion in LiDAR-derived models of volume to changes in
plot size and pulse density. Little change in R2 was noted
until data were reduced to plot sizes of 0.03 ha and pulse
densities of 0.1 pulses m-2. Simulations where model pa-
rameters were fixed yielded almost identical results to
those where parameters were refitted to each combination
of plot size/pulse density. Acquisition of LiDAR data at
lower pulse densities will markedly improve the cost-
effectiveness of this technology for inventory purposes.
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