
Eur. Phys. J. C (2014) 74:2877
DOI 10.1140/epjc/s10052-014-2877-4

Regular Article - Theoretical Physics

Double inclusive cross sections for gluon production in collision
of two projectiles on two targets in the BFKL approach

M. A. Brauna

Department of High Energy Physics, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia

Received: 9 February 2014 / Accepted: 28 April 2014 / Published online: 9 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Double inclusive cross sections for gluon pro-
duction in collision of two nucleons with two nucleons
are studied in the BFKL approach. Various contributions
include emission from the pomerons attached to the partici-
pants, from the BFKL interactions between these pomerons
and from the intermediate BKP state. The last contribution
may be observable, provided the growth with energy of the
pomeron contribution is tamed in accordance with unitarity.
The possibility of long-range azimuthal correlations due to
the BKP state are discussed.

1 Introduction

In our previous papers [1,2] we have derived the forward
scattering amplitude and single inclusive cross section for
gluon production for two-projectile–two-target collisions at
high energies in the BFKL approach. Their immediate appli-
cations are to the cross section for deuteron–deuteron colli-
sions, although this also concerns a part of heavy-nucleus–
heavy-nucleus collisions due to interaction of two pairs of
nucleons. A remarkable result found in [1] is that the cross
sections contain a contribution from the intermediate state
consisting of four reggeised gluons in the octet colour state
between the neighbours (BKP state [3,4]). In this paper we
study double inclusive cross sections for gluon production
for the same process. This process presents a special inter-
est in view of experimental observation of the long-range
azimuthal correlations in the production of a pair of particles.
Note that azimuthal asymmetry in two gluon production has
been claimed to be the source of the observed correlation
in the framework of the JIMWLK (or colour glass conden-
sate) approach in collision of two heavy nuclei [5]. We shall
study the same problem for collision of light nuclei, where
the results of [5] are not valid. In contrast to the case of heavy
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nuclei, where only approximate treatment of heavy-nucleus–
heavy-nucleus collisions is possible, the light nucleon case
allows a consistent and rigorous study. Thus we are going to
see for certain if the initial process of gluon production really
leads to the azimuthal asymmetry.

As derived in [1] in the lowest order in αs Nc, assumed
small, the scattering amplitude for the collision of two pro-
jectiles on two targets is described by the diagrams shown in
Fig. 1.

Diagram 1 corresponds to direct sewing of the two
pomerons attached to the projectiles with the two pomerons
attached to the targets with redistribution of colour. Diagram
2 describes the situation when the gluons connecting the pro-
jectiles and targets once interact between themselves. Dia-
grams 3 and 4 cover all the rest cases when the exchanged
gluons interact at least twice. The state formed between these
interactions is the BKP state made of four reggeised gluons.
The imaginary part of the forward scattering amplitude is the
sum of the contributions from Fig. 1-1–4 and 4:

D =
4∑

i=1

D(i). (1)

The forward amplitude D(1) corresponding to Fig. 1, derived
in [1], contains an infrared divergent part. Indeed both of
the two pairs of pomerons coupled to the projectiles and
targets contain the factor 1/(E −4ω(q)) where E is the two-
pomeron ‘energy’ and ω(q) is the gluon trajectory, which
correspond to free propagation. The diagram in Fig. 1 has to
contain only one such factor, which gives an extra factor E −
4ω(q). The term E transforms into −∂/∂Y and the divergent
part 4ω(q) is cancelled in the sum with terms coming from
pomeron interactions in Figs. 1 and 2. After this cancellation
the infrared finite part of D(1) is given by

D(1) = − ∂

∂Y

Y∫

0

dy′
∫

d2q

(2π)2 P2(Y − y′, q)P2(y′, q). (2)
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Fig. 1 The scattering amplitude for the collision of two projectiles on
two targets

Here P(y, q) is the forward pomeron with rapidity y and rel-
ative transversal momentum of reggeised gluons q attached
to one of the participant hadrons. It is the solution of the
BFKL equation for evolution in rapidity with the initial con-
dition corresponding to two reggeised gluons emitted from
the hadron (with their propagators included). In the follow-
ing, to economise on notation we shall suppress the transver-
sal variables and integrations over them evident from Fig. 1
and rewrite (2) as

D(1) = − ∂

∂Y

Y∫

0

dy′ P(12)(Y − y′)P(34)(Y − y′)

×P(13)(y′)P(24)(y′). (3)

Here we only indicate the numbers of the gluons which com-
bine into pomerons. In this notation the rest contributions
D(i) from Fig. 1, i , i = 2, 3, 4 were found to be

D(2) =
Y∫

0

dy′ P(12)(Y − y′)P(34)(Y − y′)(h23 + h14)P(13)

×(y′)P(24)(y′). (4)

D(3) =
Y∫

0

dy′
y′∫

0

dy′′ P(12)(Y − y′)P(34)(Y − y′)

×AG(y′ − y′′)B P(13)(y′′)P(24)(y′′). (5)

D(4) =
Y∫

0

dy′
y′∫

0

dy′′ P(12)(Y − y′)P(34)(Y − y′)

×AG̃(y′ − y′′)AP(12)(y′′)P(34)(y′′). (6)

Here

hik = −ωi − ωk − vik (7)

is the BFKL Hamiltonian for gluons (ik); ωi is the gluon
Regge trajectory and vik is the BFKL interaction between
gluons i and k in the symmetric form

vik(q
′
i , q ′

k |qi , qk) = 4παs Ncδ
2(q ′

i + q ′
k − qi − qk)

1

q ′
i q

′
kqi qk

×
(

q2
i q ′

k
2 + q2

k q ′
i
2

(qi − q ′
i )

2 − (qi + qk)
2

)
. (8)

Combinations of interactions A and B are given by

A = v23 + v14−v13−v24, B = v23 + v14−v12 − v34, (9)

both infrared safe. Finally G and G̃ are combinations of the
Green functions for the BKP state for different ordering of
the four gluons:

G = 1

4
[G1243 + G1342], G̃ = 1

4
[G1234 + G1432

+G1243 + G1342] (10)

where e.g. G1243 satisfies the equation
(

∂

∂y
− H1243

BKP

)
G1243(y) = δ(y), (11)

with the Hamiltonian

H1243
BKP = −

4∑

i=1

ωi − v12 − v24 − v43 − v31. (12)

In (4)–(6) all quantities between the pomerons are to be
understood as operators in the transverse momentum space.
Obviously transversal integrations include one, two and three
intermediate momenta for (3), (4) and (5) + (6), respectively.
Note that in (5) and (6) the interactions in A and B are not
to be included into the BKP Green function G. The division
between them is related to the change in the colour struc-
ture accomplished by these interactions. Say in the diagram
shown in Figs. 1 and 3 the colour structure above v23 and
below v12 is that of two pomerons and in between is that of
the BKP state, that is, of a cylinder with four reggeised glu-
ons on its surface. The interactions v23 and v12 themselves
cannot be included into either of them.

The observed gluons may be emitted (1) both from the
same pomeron, (2) from different pomerons, (3) one from
a pomeron and the other from the interactions between the
exchanged gluons, both explicitly appearing in the diagrams
of Fig. 1 and implicit in the BKP state, and finally (4) both
from these interactions. Correspondingly we shall study all
contributions successively: the contributions from the same
or different pomerons in Sect. 2, from a pomeron and explic-
itly shown interactions in Sect. 3 and both from the interac-
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Fig. 2 ‘Opening’ of the
pomeron

tions and from the BKP state in Sect. 4. Section 5 is devoted
to some conclusions.

For the double inclusive cross section in collision of two
projectiles with the same momentum k with two projectiles
with the same momentum l the high-energy part of the for-
ward scattering amplitude can be presented in the form

H(Y, y1, k1, y2, k2) = −i(2π)2δ(κ+)δ(q−)N 2
c (kl)2

×F(Y, y1, k1, y2, k2). (13)

Here Y is the overall rapidity, κ and q are the momenta trans-
ferred to the projectile nucleus and target nucleus respectively
with κ− = κ⊥ = q+ = q⊥ = 0. Factor N 2

c (kl)2 is present
in all diagrams, so that it is convenient to separate it. F gives
the contribution from the diagram for the S-matrix (hence
−i in (13)). Arguments y1, k1 and y2, k2 are the rapidities
and transverse momenta of the observed gluons. We assume
y1 >> y2 motivated by the desire to study long-range corre-
lations in rapidity (in practice y1 − y2 ∼ 2 ÷ 3). The double
inclusive cross section for two-nucleon–two-nucleon inter-
action in nucleus–nucleus scattering at a given impact param-
eter b is then

IAB(Y, b, y1, k1, y2, k2) ≡ (2π)2dσAB

d2bdy1d2k1dy2d2k2

= 1

4
A(A − 1)B(B − 1)T (2)

AB (b)F(Y, y1, k1, y2, k2), (14)

where the transverse density for two pairs of participants is

T (2)
AB (b) =

∫
d2bAd2bB T 2

A(bA)T 2
B(bB)δ2(bA − bB − b)

(15)

and TA,B(b) are the nuclear profile functions normalised to
unity. For deuteron–deuteron scattering we find instead

Idd(Y, y1, k1, y2, k2) = 1

4

〈
1

2πr2

〉2

d
F(Y, y, k). (16)

In the following we sometimes suppress the arguments
Y, y1, k1, y2, k2 in our formulae.

After separation of the δ-functions in (13) the correspond-
ing diagrams contain internal longitudinal integrations over
intermediate gluon momenta. For each of the observed inter-
mediate gluon these integrations are included in the defini-
tion of I leaving only a factor 1/4π . Other interactions may
refer to either real gluons in the intermediate state or virtual
gluons inside the production amplitudes. If the gluon is real,

longitudinal integrations reduce to the integration over its
rapidity with the same factor 1/4π . If the gluon is virtual,
integration of its propagator lifts one of the integrations leav-
ing the integration over its rapidity with an additional factor
−i/4π (see [1]). Taking into account that inclusion of the
virtual gluon provides an additional factor (−i)3 we find that
in the end virtual integrations give the same result as real
ones. This is important for our calculations: the contribution
from the internal gluon line does not depend on whether it
refers to the real gluon (is ‘cut’) or the virtual one (is ‘uncut’).
Apart from integrations over the unobserved or virtual gluon
rapidities, function F is just a contribution from the dia-
grams with transverse integrations over the gluon momenta
in accordance with the conservation laws.

2 Contribution from the pomerons

For the following note that in our kinematics the pomeron
wave function is real. The inclusive cross section for the pro-
duction of a gluon with rapidity y and transverse momentum
k from the pomeron is well known. It corresponds to sub-
stitution of the pomeron P(Y − y′, q) by the inclusive cross
section Py,k(Y, y′, q) obtained by ’opening’ one of the BFKL
interactions inside as shown in Fig. 2.

In our shorthand notation, suppressing the evident trans-
versal integrations, we have

Py,k(Y, y′) = P(Y − y)vG(y − y′), (17)

Likewise the double inclusive cross section corresponds to
substitution of the pomeron P(Y −y′, q) by the double inclu-
sive cross section Py1,k1,y2,k2(Y, y′, q) illustrated in Fig. 3
and given by

Py1,k1,y2,k2(Y, y′) = P(Y − y1)vG(y1 − y2)vG(y2 − y′).
(18)

Note that we assume y1 >> y2, so that diagrams with
the two observed gluons emitted from the same (vertical)
reggeon lines should be summed with those which contain
unobserved gluons emitted at intermediate rapidities, which
converts these lines into the full BFKL Green function.

The total double inclusive cross section from the pomerons
can be separated into two parts: with both gluons emitted
from the same pomeron and with gluons emitted from dif-
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Fig. 3 Double ‘opening’ of the
pomeron

Fig. 4 Cuts for emission of two
gluons from different pomerons

ferent pomerons from among the four which are present in
the diagrams of Fig. 1.

In the first case the double inclusive cross section will be
given by the same formulae as for the single inclusive cross
section in [2] in which one only has to substitute

Py,k(Y, q) → Py1,k1,y2,k2(Y, q). (19)

So one finds the contribution to F

F (1) = 2D(one of P ′s → Py1,k1,y2,k2) (20)

where D is given by (3)–(6) and the extra factor 2 is due to
two possibilities of choosing the production amplitude and
its complex conjugate.

So we study in some detail only the second case when
the two observed gluons belong to different pomerons. In
this case the double inclusive cross section will be obtained
if we cut the diagrams in all possible ways and substitute
two of the cut pomerons according to (17). A particular cut
may also pass or not pass through explicit interactions in
Fig. 1-2–4 or inside the BKP state. The resulting cross section
from the pomerons will not depend on whether these extra
interactions are cut or not, since the cut BFKL interaction is
equal to uncut one. So one can study different contributions
from the pomerons forgetting about these extra interactions.
The relevant cuts in this case are shown in Fig. 4.

Diagrams 1 and 2 correspond to diffractive configurations
respective to the target (DT) or projectile (DP). Diagram 3
illustrates the single cut configuration (S) in which one pro-
jectile and one target are cut. Diagrams 4–6 show the double
cut configuration (DC) in which both projectiles and both
targets are cut. Note that if the two gluons are both emitted
from the pomerons attached to the projectile (Fig. 4-1) or both
emitted from the pomerons attached to the target (Fig. 4-2)
they can bear any rapidity y1 or y2. If one of the gluons is
emitted from the pomeron attached to the projectile and the
other from the pomeron attached to the target then the first
should have rapidity y1 and the second rapidity y2. So effec-
tively the contributions from Fig. 4-1, 2, 4 and 5 are to be
multiplied by 2.

We start with the diffractive contributions. The one respec-
tive to the target (Fig. 4-1) gives the contribution to the high-
energy part F from Fig. 1-1:

F2,1
DT =4

∂

∂Y

Y∫

0

dy′ P(12)
y1,k1

(Y, y′)P(34)
y2,k2

(Y, y′)P(13)(y′)P(14).

(21)

The coefficient 4 takes into account two projectiles and two
targets. The diffractive contribution respective to the projec-

123



Eur. Phys. J. C (2014) 74:2877 Page 5 of 13 2877

tile (Fig. 4-2) gives

F2,1
DP = 4

∂

∂Y

Y∫

0

dy′ P(12)(Y − y′)P(34)(Y − y′)

×P(13)
y1,k1

(y′, 0)P(24)
y2,k2

(y′, 0). (22)

The single cut contributions (Fig. 4-3) enter with the minus
sign. In fact they contain one exchanged reggeon on the left
and three on the right giving i(−i)3 = −1. Their contribution
is

F2,1
S = −4

∂

∂Y

Y∫

0

dy′ P(12)
y1,k1

(Y, y′)P(34)(Y − y′)

×P(13)
y2,k2

(y′, 0)P(24)(y′). (23)

The coefficient 4 again takes into account interchanges of the
two projectiles and two targets.

Finally the DC contribution (Figs. 4-4, 5 and 6) gives

F2,1
DC = 4

∂

∂Y

Y∫

0

dy′(P(12)
y1,k1

(Y, y′)P(34)
y2,k2

(Y, y′)P(13)(y′)

×P(24)(y′) + P(12)(Y − y′)P(34)(Y − y′)
×P(13)

y1,k1
(y′, 0)P(24)

y2,k2
(y, 0′) + 2P(12)

y1,k1
(Y, y′)

×P(34)(y − y′)P(13)
y2,k2

(y′, 0)P(24)(y′)). (24)

In the first two terms the numerical factor is 4, correspond-
ing to different choice of (y1, k1) and (y2, k2) in upper or
lower pomerons and two and two different diagrams for the
DC configuration. In the last term this factor is twice larger
since (y1, k1) and (y2, k2) can be distributed in four manners
between upper and lower pomerons.

In the sum the S contribution cancels half of the last term in
the DC contributions and we get the final F from the gluons
inside the pomerons as

F2,1 = 4
∂

∂Y

Y∫

0

dy′(2P(12)
y1,k1

(Y, y′)P(34)
y2,k2

(Y, y′)P(13)(y′)

×P(24)(y′) + 2P(12)(Y − y′)P(34)(Y − y′)
×P(13)

y1,k1
(y′, 0)P(24)

y2,k2
(y, 0′) + P(12)

y1,k1
(Y, y′)

×P(34)(y − y′)P(13)
y2,k2

(y′, 0)P(24)(y′, q)). (25)

As mentioned, inclusion of other interactions in between does
not change the form of the result, which is obtained from the
formulae for the forward amplitude making the substitutions
(17) in the same manner as above. Referring the reader to [2]
for the details we only present the final results here. For the
diagram in Fig. 1-2 we find the corresponding F as

F2,2 =4

Y∫

0

dy′(2P(12)
y1,k1

(Y, y′)P(34)
y2,k2

(Y, y′, q ′)H P(13)(y′)

×P(24)(y′) + 2P(12)(Y − y′)P(34)(Y − y′)
×H P(13)

y1,k1
(y′, 0)P(24)

y2,k2
(y, 0′) + P(12)

y1,k1
(Y, y′)

×P(34)(y − y′)H P(13)
y2,k2

(y′, 0, q ′)P(24)(y′)

+P(12)
y1,k1

(Y, y′)P(34)(y−y′)H P(13)(y′)P(24)
y2,k2

(y′, 0)).

(26)

For the diagram in Fig. 1-3 with the BKP state we have
the amplitude F :

F2,3 = 4

Y∫

0

dy′
y′∫

0

dy′′(2P(12)
y1,k1

(Y, y′)P(34)
y2,k2

×(Y, y′, q4)M(y′ − y′′)P(13)(y′′)P(24)(y′′)
+2P(12)(Y − y′)P(34)(Y − y′)M(y′ − y′′)
×P(13)

y1,k1
(y′′, 0)P(24)

y2,k2
(y′′) + P(12)

y1,k1
(Y, y′)

×P(34)(Y − y′)M(y′ − y′′)P(13)
y2,k2

(y′′, 0)P(24)(y′′)

+P(12)
y1,k1

(Y, y′)P(34)(Y − y′)M(y′ − y′′)

×P(13)(y′′)P(24)
y2,k2

(y′′, 0)). (27)

Here M = AG(y′ − y′′)B where A, B and G are defined in
(9) and (10)

The contribution F2,4 from the diagram in Fig. 1-4 will
be given by a similar expression with the lower pomerons
P(13) P(24) → P(12) P(34) and M → M̃ = AG̃ A. The total
contribution of emission from two different pomerons is

F (2) =
4∑

i=1

F2,i . (28)

3 One gluon emitted from the pomeron, the other
from interactions

3.1 Single interaction between the pomerons

Here we study the contribution to the double inclusive cross
section in which one gluon comes from the four pomerons
attached to the projectiles or targets and the other from open-
ing the interaction in the diagram of Fig. 1-2. Again we shall
have different contributions depending on the cuts in the over-
all amplitude. Some typical ones are shown in Fig. 5-1–3 (the
full list of diagrams may be inferred from those in [2]).

Diagrams 1 and 2 describe the two D configurations, DT
and DP, diagram 3 describes the S configuration. Note that the
DC contribution does not contain any observed gluon in the
intermediate state and so gives no contribution. All contribu-
tions should be taken with coefficient 4 due to interchanges

123



2877 Page 6 of 13 Eur. Phys. J. C (2014) 74:2877

Fig. 5 Some typical diagrams for emission of one gluon from the
pomeron and another from interaction, with diffractive cuts (1, 2) and
a single cut (3). The rapidity and momentum of the interaction are
assumed to be fixed either to (y1, k1) or (y2, k2)

of projectiles and targets, which become non-equivalent due
to attachment of cut or non-cut pomerons, Also in the dia-
grams Figs. 5-1 and 3 the gluon emitted from the pomeron
is to have the larger rapidity than the one emitted from the
interaction and in the diagram Fig. 5-2 and the one similar
to Fig. 5-3 with emission from the lower pomeron the gluon
emitted from the pomeron is to have the lower rapidity. Tak-
ing into account contributions from all diagrams we find that
the S contributions cancel 1/2 of the diffractive contributions.
(The extra factor in the S contribution appears because of the
fact that of two possible interactions v23 and v13 only half of
them contains a real gluon in the intermediate state.) So for
the case when the gluon of higher rapidity is emitted from
the pomeron the result is

F3,h = 4

Y∫

0

dy′ P(12)
y1,k1

(Y, y′)P(34)(Y − y′)

×v23 P(13)(y′)P(24)(y′) (29)

and for the case when the gluon of higher rapidity is emitted
from the interaction the result is

F3,l = 4

Y∫

0

dy′ P(12)(Y − y′)P(34)(Y − y′)v23 P(13)
y2,k2

×(y′, 0)P(24)(y′). (30)

The total is

F (3) = F3,h + F3,l . (31)

Fig. 6 Cut interactions between different exchanged gluons for differ-
ent configurations

3.2 Two interactions between the pomerons
with redistribution of colour

In this subsection we study contributions to the double inclu-
sive cross section which comes from opening one of the
pomerons and one of the interactions explicitly shown in
Fig. 1-3. The relevant cuts are to pass through the interac-
tion which contains the observed gluon. They have also to
pass through the diagram as a whole and thus have to pass
through some pomerons attached to the projectile and target
and also through the BKP state. As a diagram the latter is a
cylinder with four reggeised gluons arranged on its surface in
the order 1243 or 1342 with interaction between neighbours.
The cut of the amplitude generates a cutting plane between
reggeised gluons in the BKP state. As discussed in [2], the
position of this plane is totally determined by the cut pass-
ing through the pomerons and for different configurations is
shown in Fig. 6 by its trace on the plane orthogonal to the
cylinder.

The forward scattering amplitude is given by (5). Since cut
and uncut interactions give the same contribution, this also
means that in all cases the BKP state will appear as a whole
between the interactions which generate the observed gluon.
So to simplify notations in some of the following formulae
we put G(y) → 1 and introduce this Green function between
the interactions only in the end.

The double inclusive cross sections correspond to opening
one of the pomerons and one of the interactions. Some typi-
cal diagrams illustrating contributions from various configu-
rations are shown in Fig. 7 (where we suppressed G between
the interactions).

In the double inclusive cross section with one of the gluons
emitted from the upper pomerons at rapidity y1 we are to
open either the upper interactions, which implies fixing Y −
y′ = y2 and the momenta transferred to k2 in one of the four
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Fig. 7 Typical diagrams for emission of one gluon from the pomeron
and another from one of the two interactions with redistribution of colour
in the diffractive (1, 2), single cut (3) and double cut (4) configurations.
The BKP state between the interactions is not shown

interactions on the left in (5), or the lower interactions, which
implies fixing y′′ = y2 and the momentum transferred in one
of the interactions on the right in (5).

In both cases contributions will come from DT, DP, S and
DC configurations. We shall write our results for the high-
energy part F with one of the gluon emitted from the upper
pomerons in the following form. For emission of the second
gluon from the interaction higher in rapidity

F4,hh =
y′∫

0

dy′′ P(12)
y1,k1

(Y, y′)P(34)(Y − y′)

× fhigh(y′ − y′′)P(13)(y′′)P(24)(y′′), y′ = y2 (32)

and for emission of the second gluon from the interaction
lower in rapidity

F4,hl =
Y∫

y′′
dy′ P(12)

y1,k1
(Y, y′)P(34)(Y − y′)

× flow(y′ − y′′)P(13)(y′′)P(24)(y′′), y′′ = y2 (33)

The operators fhigh and flow are different for different
configurations. A derivation of fhigh and flow can be found
in [2]. One has

fhigh = AG(y′ − y′′)(v23 − v34) = 1

2
AG(y′ − y′′)B (34)

with the observed gluon emitted from the interaction on the
left. Remarkably flow is given by the same formula but with
the gluon emitted from the interaction on the right.

A similar contribution has to be added in the case when
the gluon of a higher rapidity is emitted from one of the

interactions and the one of lower rapidity from one of the
lower pomerons. This contribution is given by two terms
similar to (32) and (33): for emission of the first gluon from
the interaction higher in rapidity

F4,lh =
y′∫

0

dy′′ P(12)(Y − y′)P(34)(Y − y′) fhigh(y′ − y′′)

×P(13)
y2,k2

(y′′, 0)P(24)(y′′), y′ = y1, (35)

and for emission of the first gluon from the interaction lower
in rapidity

F4,ll
ll =

Y∫

y′′
dy′ P(12)(Y − y′)P(34)(Y − y′) flow(y′ − y′′)

×P(13)
y2,k2

(y1)P24(y1), y′′ = y1, (36)

with the same fhigh and flow as given before.
Our final expression for the emission of one of the gluons

from the two explicit interactions in the diagram with the
other emitted from one of the pomerons is therefore given by
the sum

F (4) = F4,hh + F4,hl + F4,lh + F4,ll (37)

with the common function

f (y′ − y′′) = 1

2
AG(y′ − y′′)B. (38)

The observed gluon may be located either in the left interac-
tion or the right one and correspondingly y′ = y2 or y′′ = y2

when the first gluon is emitted from the upper pomeron or
y′ = y1 or y′′ = y1 when the second pomeron is emitted
from the lower pomeron.

3.3 Two interactions between the pomerons with direct
colour transmission (DCT)

The amplitude itself is given by (6) and shown in Fig. 1-4.
In this case the identity of the two projectiles and two targets
generates symmetries in independent interchanges 1 ↔ 2 or
3 ↔ 4.

As in the previous subsection the relevant cuts are to pass
through the interaction which contains the observed gluon
and also through the diagram as a whole and thus through
the BKP state. The position of the latter cut will again be
totally determined by the cut passing through the pomerons,
and is shown Fig. 8 for different configurations.

Again, since cut and uncut interactions give the same con-
tribution, in all cases the BKP state will appear as a whole
between the interactions which generate the observed gluon
and we can write contributions from the explicitly shown
interactions formally putting G̃ → 1 and afterwards intro-
duce this Green functions between the interactions. Some
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Fig. 8 Cut interactions between the different gluons for different cut
configurations with direct colour transmission

Fig. 9 Typical diagrams for emission of one gluon from the pomeron
and another from one of the two interactions with direct colour trans-
mission in the double diffractive (1), single cut (2) and double cut (3)
configurations. The BKP state between the interactions is not shown

typical diagrams for the double inclusive cross sections cor-
responding to opening one of the pomerons and one of the
interactions are shown in Fig. 9.

As in the previous subsection the inclusive cross section
can be separated into those in which the gluon of higher
rapidity y1 is emitted from the upper pomeron and those in
which the gluon of lower rapidity y2 is emitted from the
lower pomeron. In each case the other gluon may be emitted
from one of the interactions. So in the first case one has to
fix in the upper(lower) interaction Y − y′ = y2(y′ = y2)

and the transferred momenta to k2 and in the second case
fix in the upper lower) interaction Y − y′ = y1(y′ = y1)

and the transferred momentum to k1. In both cases we write
out results for the corresponding high-energy part F (5) in
the same forms as before, (32), (33), (35) and (36), in which
we only have to change the lower pomerons P(13) P(24) →
P(12) P(34).

The derivation of the new fhigh and flow can be found in
[2]. It turns out that both are again given by the same formula

f = AG̃(y′ − y′′)A, (39)

where the gluon of higher rapidity is emitted from the left
interactions and the one of lower rapidity from the right inter-
action. The total inclusive function F (5) will be given by a
sum similar to (37):

F (5) = F5,hh + F5,hl + F5,lh + F5,ll (40)

3.4 The BKP state

The simple inclusive cross section from the BKP state was
derived in [2]. So all we have to do is combine it with the
inclusive cross section from the pomeron. With the colour
redistribution the cross section is illustrated in Fig. 10. Only
some typical diagrams are shown in the diffractive, single
and double cut configurations. The full list of diagrams as
before can be inferred from [2].

We present the results in the form similar to the ones
before. For the case with colour redistribution and the gluon
(y1, k1) emitted from the upper pomeron

F6,h =
Y∫

0

dy′
y′∫

0

dy′′ P(12)
y1,k1

(Y, y′)P(34)(Y − y′)AG1243
y2,k2

×({v1243
BKP }, y′, y′′)B P(13)(y′′)P(24)(y′′). (41)

For the same case and the gluon (y2, k2) emitted from the
lower pomeron

F6,l =
Y∫

0

dy′
y′∫

0

dy′′ P(12)(Y − y′)P(34)(Y − y′)AG1243
y1,k1

×({v1243
BKP }, y′, y′′)B P(13)

y2k2
(y′′, 0)P(24)(y′′). (42)

Recall that A and B are defined by (9), v1243
BKP = v12 + v24 +

v43+v31 is the sum of interactions between the neighbouring
gluons in order 1243 and G1243

y,k ({ f }, y′, y′′) is given symbol-
ically as

G1243
y,k ({ f }, y′, y′′) = G1243(y′ − y) f G1243(y − y′′), (43)

where f corresponds to emission of a gluon (y, k). The total
contribution is

F (6) = F6,h + F6,l . (44)

For the case without colour redistribution to obtain the
corresponding contribution F (7) one has to change

P(13) P(24) → P(12) P(34) and

AG1243
y1,k1

({v1243
BKP }, y′, y′′)B → A[G1234

y1,k1
({v1234

BKP }, y′, y′′)
+G1243

y1,k1
({v1243

BKP }, y′, y′′)]A. (45)

123



Eur. Phys. J. C (2014) 74:2877 Page 9 of 13 2877

Fig. 10 Gluon production from
the pomeron and the BKP state
in the diffractive (1), single (2)
and double (2) cut
configurations

4 Both gluons emitted from the interaction

4.1 Two interactions with redistribution of colour

Here we study the contribution in which one gluon is emitted
from the upper interaction in Fig. 1-3 and the other from the
lower interaction. As before the cut BKP blob will enter as
a whole and we can formally put G → 1 restoring G in the
final formulae. The diagrams illustrating the double inclusive
cross section will be the same as in Fig. 7 in which one should
suppress emission from the pomeron but assume instead that
both interactions are opened, that is, with fixed rapidities
and transverse momenta. The amplitude F in this case can
be written as

F (8) = P(12)(Y −y1)P(34(Y −y1) f (8)
k1,k2

P(13)(y2)P(24)(y2),

(46)

where f (8)(k1, k2) is in fact made of products of upper and
lower interactions in which the transferred momenta are fixed
at k1 for the upper interaction and k2 for the lower one. The
final form of f is determined after the study of D,S and DC
configurations. As compared to the previous Sect. 3.1 we
have to retain only diagrams with two gluons in the interme-
diate state.

From the D configurations with respect to the target and
projectile we find

fDT = 2(v23 + v14)B, fDP = 2A(v23 + v14).

From the S configuration

fS = −AB − (v23 − v14)(v23 − v14). (47)

The DC contributions with two gluons in the intermediate
state is

fDC = 2(v13 + v24)(v12 + v34). (48)

Summing these contributions we find

f (8) = AB + 2(v23 + v14)(v23 + v14) − (v23

−v14)(v23 − v14).

Table 1 The coefficients CI J
with redistribution of colour 1 1 −1 −1

1 1 −1 −1

−1 −1 2 4

−1 −1 4 2

Restoring the BKP Green function, the result can be writ-
ten as

f (8)
k1,k2

=
4∑

I,J=1

CI J vI [G1243(y′−y′′) + G1342(y′−y′′)]vJ ,

(49)

where I = (13), (24), (23), (14), J = (12), (34), (23), (14)

and coefficients CI J are given in Table 1.

4.2 Two interactions with direct transmission of colour

Here we study the contribution in which one gluon is emitted
from the upper interaction in Fig. 1-4 and the other from the
lower interaction. As before the cut BKP blob will enter as a
whole and we can study the case with G̃ → 1 and introduce
the full G̃ into the final formulae. The diagrams illustrating
the double inclusive cross section will be the same as in Fig. 9
in which one should suppress emission from the pomeron but
assume instead that both interactions are opened, that is, with
fixed rapidities and transverse momenta. The amplitude F in
this case can be written as

F (9) = P(12)(Y −y1)P(34(Y −y1) f (9)
k1,k2

P(12)(y2)P(34)(y2),

(50)

where in f (9)(k1, k2) the transferred momenta are fixed at
k1 for the upper interaction and k2 for the lower one. The
final form of f (9) is determined after the study of the double
diffractive (DD, Fig. 9-1), S and DC configurations. Again
we have to retain only diagrams with two gluons in the inter-
mediate state.
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Table 2 The coefficients C̃I J
with direct colour transmission 4 6 −3 −3

6 4 −3 −3

−3 −3 4 6

−3 −3 6 4

We find

f (9)
DD = 2(v13 + v24 − v23 − v14)(v13 + v24 − v23 − v14),

f (9)
S = −1

2
{(v13 − v14)(v13−v14) + (v24−v14)(v24−v14)

+(v23 − v24)(v23 − v24) + (v23 − v13)(v23 − v13)},
f (9)
DC = (v23 + v14)(v23 + v14) + (v24 + v13)(v24 + v13).

Summing these contributions and restoring the BKP
Green functions we find

f (9)
k1,k2

= 1

2

4∑

I,J=1

C̃I J vI G̃(y′ − y′′)vJ , (51)

where I, J = (13), (24), (23), (14) and coefficients C̃I J are
given in Table 2.

4.3 One gluon from the interaction, the other from the BKP
state. Redistribution of colour

The amplitude F in this case can be written as

F (10) = P(12)(Y −y1)P(34(Y −y1) f (10)
k1,k2

P(13)(y2)P(24)(y2).

(52)

It can be illustrated by the same diagrams as in Fig. 10 with
the emission of the pomeron suppressed but instead one of the
two interactions opened. We have two possibilities: either the
gluon of higher rapidity is emitted by the upper interaction
and the one of lower rapidity from the BKP state and vice
versa.

We start from the first case. All we have to do is to take
the known inclusive cross sections from the upper interaction
and combine them with also known inclusive cross sections
from the BKP state. However, we have to do it separately
for each configuration of the cutting plane and also take into
account the symmetry factors and the minus factor for the
single cut for the contribution for a given configuration as a
whole.

In the DT configuration from the interaction and from
the BKP state we have, respectively, VDT = 2(v23 + v14)B
and BKPDT = v13 + v24. This gives a contribution to f
fDT = 2(v13 + v24)G(v13 + v24)G B where G is either
G1243 or G1342 with weight 1/2. Suppressing the common
right factor G B and the remaining Green function we rewrite
it as fDT = 2(v13 + v24)(v13 + v24). In the DP config-
uration from the interaction and from the BKP state we

Table 3 The coefficients Dh
I J

with redistribution of colour 1 1 1 1

1 1 1 1

−3 −2 −3 0

−3 0 −3 −2

Table 4 The coefficients Dl
I J

with redistribution of colour 1 1 0 −2

1 1 −3 −3

1 1 −2 0

1 1 −3 −3

have, respectively, VDP = AB and BKPDP = v12 + v34.

This gives a contribution fDP = 2A(v12 + v34). The sin-
gle cut contribution from the interaction (without the minus
sign) is VS = −(v13 − v14)B and from the BKP state
BKPS = v12 + v13. This gives a contribution for a given
choice of participants S = (v13 − v14)(v12 + v13). The total
contribution from the S configuration will be given by

fS = (v13 − v14)(v12 + v13) + (v13 − v23)(v13 + v34)

+(v24 − v23)(v12 + v24) + (v24 − v14)(v24 + v34).

Finally the DC contribution from the interaction and the BKP
state is, respectively, VDC = −(v13 + v24)B and BKPDC =
v1243

BKP , so the total contributions is fDC = −(v13 +v24)v
1243
BKP .

In the sum the total double inclusive f 10,h can be written as

f 10,h
k1,k2

= 1

2

∑

a

4∑

I,J=1

Dh
I J va

IGva
JG B, (53)

where a = 1243, 1342, I = (23), (14), (13), (24), J =
(12), (24), (34), (13) and the coefficients Dh are given in
Table 3.

The case of the gluon of the lower rapidity emitted from the
interaction is considered quite similarly. The corresponding
double inclusive function f 10,l can be written as

f 10,l
k1,k2

= 1

2

∑

a

4∑

I,J=1

Dl
I J AGava

IGvJ (54)

where a = 1243, 1342, I = (12), (24), (34), (13), J =
(23), (14), (12), (34) and the coefficients Dh are given in
Table 4.

In the end the total inclusive function F (10) will be given
by (52) with f (10) = f 10,h + f 10,l .

4.4 One gluon from the interaction, the other from the BKP
state. Direct transmission of colour

The amplitude F in this case can be written in the form

F (11) = P(12)(Y −y1)P(34(y−y1) f (11)
k1,k2

P(12)(y2)P(34)(y2)

(55)
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Table 5 The coefficients D̃h
I J

with direct transmission of
colour

2 2 2 2

1 2 1 0

1 −2 0 −1

0 −2 1 −1

The relevant BKP Green function is one of G1234, G1432,

G1243 and G1342 with weight 1/4. Again we have two possi-
bilities: either the gluon of higher rapidity is emitted by the
upper interaction and the one of lower rapidity from the BKP
state and vice versa. We start from the first case.

We find for the DD contribution from the interaction
VDD = AA and from the BKP state BKP = v14 +v23. Using
our previous notations and suppressing the right G A we have
the contribution fDD = 2A(v14+v23). For the S contribution
we find from the interaction VS = −(v13 −v14) (without the
minus sign). From the BKP state we find BKP = v12 + v14,
which gives the contribution to f

fS = (v13 − v14)(v12 + v14) + (v24 − v14)(v34 + v14).

Finally for the DC contribution we find from the interaction
VDC = v23 + v14 and from the BKP state BKP = v12 + v34,
which gives the contribution to f fDC = 2(v23 + v14)(v12 +
v34).

Summing all the contributions we find

f 11,h
k1,k2

= 1

4

∑

a

4∑

I,J=1

D̃h
I J va

IGva
JG A (56)

where a = 1234, 1432, 1243, 1342, I = (23), (14), (13),

(24), J = (12), (23), (34), (14) and the coefficients D̃h are
given in Table 5.

In the case when the gluon of the lower rapidity is emitted
from the interaction we similarly find

fDD = 2(v14 + v23)A,

fS = (v12 + v14)(v13 − v14) + (v34 + v14)(v24 − v14),

fDC = 2(v12 + v34)(v23 + v14).

Summed this gives

f 11,l
k1,k2

= 1

4

∑

a

4∑

I,J=1

D̃l
I J AGvIGvJ , (57)

where a = 1234, 1432, 1243, 1342, I = (12), (23), (34),

(24), J = (23), (14), (13), (24), and the coefficients D̃l are
given in Table 6.

The final inclusive function F (11) will be given by (55)
with f (11) = f 11,h + f 11,l .

Table 6 The coefficients D̃l
I J

with direct transmission of
colour

2 1 1 0

2 2 −2 −2

2 1 0 1

2 0 −1 −1

4.5 Both interactions from the BKP state

When both gluons are emitted from the BKP state, similarly
to the BFKL pomeron, we have to ’open’ it twice, that is,
change

G → G fy1,k1 G fy2,k2 G. (58)

It is important that the cutting plane cannot change its posi-
tion inside the BKP state, so that function f has to be the
same in both ’openings’, but different for different cuts. The
double inclusive cross section is illustrated by typical dia-
grams shown in Fig. 11.

Let us first consider the case of colour redistribution. The
relevant BKP Green function is one of G1243 and G1342.

The amplitude F in this case can be written as

F (12) = P(12)(Y − y1)P(34(y − y1)A f (12)
k1,k2

×B P(13)(y2)P(24)(y2) (59)

In the DT configuration we find the ’opened’ Green func-
tion

fDT = 2G(v12 + v34)G(v12 + v34)G.

In the DP configuration

fDP = 2G(v13 + v24)G(v13 + v24)G.

In the S configuration

fS = −G(v12 + v13)G(v12 + v13)G − G(v13 + v34)

×G(v13 + v34)G − G(v12 + v24)G(v12 + v24)G

−G(v34 + v24)G(v34 + v24)G.

In the DC configuration

fDC = 2Gv1243
BKP v1243

BKP G.

The final f can be presented as

f (12)
k1,k2

= 1

2

∑

a

4∑

I,J=1

EI J Gava
IGva

JG, (60)

where a = 1243, 1342, I, J = (12), (24), (34), (13) and the
coefficients E are given in Table 7.

Now the case of direct colour transmission. The BKP
Green function G is one of four G1234, G1432, G1243 and
G1342 with weight 1/4.
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Fig. 11 Double gluon
production from the BKP state
in the diffractive (1), single (2)
and double (2) cut
configurations

Table 7 The coefficients EI J
with redistribution of colour 2 1 4 1

2 2 1 4

4 1 2 2

1 4 1 2

Table 8 The coefficients Ẽ I J
with direct transmission of
colour

1 0 2 −1

0 2 0 2

2 0 1 −1

−1 2 −1 0

The inclusive function F in this case can be written as

F (13) =
∫

dτ P(12)(Y − y1)P(34(y − y1)A f (13)
k1,k2

×AP(12)(y2)P(34)(y2). (61)

In the DD configuration we find the ‘opened’ Green func-
tion

fDD = 2G(v14 + v23)G(v14 + v23)G.

In the S configuration

fS = −G(v12 + v14)G(v12 + v14)G

−G(v14 + v34)G(v14 + v34)G.

In the DC configuration

fDC = 2G(v12 + v34)v12 + v34)G.

The final f can be presented as

f (13)
k1,k2

= 1

4

∑

a

4∑

I,J=1

Ẽ I J Gava
IGva

JG (62)

where a = 1234, 1432, 1243, 1342, I, J = (12), (23), (34),

(14) and the coefficients Ẽ are given in Table 8.

5 Conclusions

We have calculated the non-trivial part of the double inclusive
cross section to produce two gluon jets in collision of two
projectiles on two targets. It consists of 13 terms

F =
13∑

i=1

F (i), (63)

where particular terms are given by (20), (28), (31), (37),
(40), (44), (45), (49), (50), (52), (55), (59) and (61).

This expression is not to be considered too complicated in
view of variety of different possibilities for gluon emission.
By its structure our theory is very similar to the old Regge–
Gribov model with a local pomeron and three-pomeron inter-
action generalised to include four-pomeron interactions (dia-
grams in Fig. 1-1, 2) and a new pomeron-like object, the BKP
state made of four reggeised gluons, with transitions to it from
normal pomerons. Obviously the two gluons can be emitted
from old and new pomerons and also from the two transi-
tion vertices. This gives rise to a multitude of contributions,
which lead to (63).

The found inclusive cross section depends on three rapidi-
ties, the overall one Y and two rapidities y1 >> y2 of
the observed gluons. All contributions have the same order
α2

s f (αs NcY, αs Nc y) where y = y1 − y2 and αs NcY ∼
αs Nc y ∼ 1. If one assumes the standard behaviour of
the BFKL pomeron at large Y in accordance with the
BFKL equation, that is, roughly as ∼ exp(Y
BFKL) where

BFKL = 4 ln 2αs Nc/π then all our contributions obviously
grow as the pomeron squared, namely, as ∼ exp(2Y
BFKL).
In this limit the BKP state appears at finite rapidities, since
it grows much slower, as ∼ exp(Y
BKP) where 
BKP =
0.243
BFKL [6]. As to the dependence on y = y1 − y2

then if one or both gluons are emitted from pomerons then
the contribution will grow as ∼ exp y
BFKL. Otherwise the
growth will be much weaker, as ∼ exp y
BKP. Obviously
the first type of contributions will dominate.

However, these estimates may be changed if one intro-
duces damping of the pomeron growth at high energies
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either by using the experimental behaviour of the hadronic
cross sections or the unitarisation procedure following the
Balitski–Kovchegov equation [7,8]. Then the dominant con-
tributions will come from the BKP state with a much weaker
growth and maybe be available for experimental observa-
tion unless the latter contributions will also be damped by
absorptive corrections similarly to the pomeron case.

Our contribution is of interest in view of recent experimen-
tal results on long-range rapidity and azimuthal correlations
measured in experiments on colliders in nucleus–nucleus,
proton–nucleus and proton–proton collisions. The immedi-
ate application of our results may be to deuteron–deuteron
collisions.

An old question is whether the strong azimuthal decorre-
lation found in the strict application of the BFKL equation to
dijet production (Mueller–Navelet jets [9]) is softened when
the equation is generalised to include new contributions or
higher order corrections. In particular in [10] it was found
that next-to-leading order corrections to the BFKL equa-
tion, which are known to be quite large, drastically dimin-
ish decorrelation, so that the azimuthal asymmetry in dijet
production remains well preserved up to rapidity distance
y = 10. In our paper we have actually studied a different
sort of corrections, of the leading order in αs Nc but sub-
dominant in 1/N 2

c , which involve quite different diagrams.
Staying at leading order in αs Nc we find that all parts of the
double inclusive cross section which involve emission from
the pomeron will damp azimuthal asymmetry exactly as for
the simple BFKL chain, that is, roughly as exp(−y
BFKL).
The new element is, however, inclusion of the intermedi-
ate BKP state whose ground state has a much smaller inter-
cept 
BKP. Since this ground state is non-degenerate it is
azimuthally symmetric. If, as with the BFKL pomeron, the
lowest intercept of the azimuthally anisotropic states lies
around zero then azimuthal decorrelation of jet pairs emitted
from the BKP state will be much weaker than from the BFKL
pomeron. In fact with 
BFKL = 0.3 the decorrelation factor
exp(−y
BKP) is around 0.5 even at rapidity distance as high

as y = 10. This effect can be traced experimentally even if
the relative contribution from the BKP state is small. Natu-
rally this conclusion has to be checked by the study of the
spectrum of the BKP states with non-zero angular momen-
tum, which is unknown at present. This problem is postponed
for future investigation. As mentioned in the Introduction the
origin of azimuthal asymmetry in nucleus–nucleus collisions
due to diagrams like Fig. 1-3,4 was considered in [5]. How-
ever, the possibility of the intermediate BKP state between
the interactions and the following (possibly weak) azimuthal
decorrelation was not taken into account there.
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