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1 Introduction and motivation

Anti-D3-branes in warped deformed conifold throats are widely used in string theory model

building and string cosmology, both to get de Sitter solutions [1], and to construct string

theoretic models of inflation using D3 branes moving in such throats [2].

In a previous work [3], three of us attempted to construct the first-order backreacted

supergravity solution for a stack of anti-D3 branes in the Klebanov-Strassler (KS) back-

ground [4]. Such antibranes were conjectured in [5] to give rise to holographic duals to

metastable vacua of a strongly-coupled gauge theory, and the supergravity analysis im-

plies that the would-be anti-D3 brane solution must have a certain infrared singularity.

A similar result was obtained by investigating anti-M2 branes in a warped Stenzel back-

ground [6]. If these singularities have a physical origin, then the solutions found in [3, 6]

describe the first-order backreaction of antibranes in these backgrounds. If these singu-

larities are pathological, the analyses of [3, 6] imply that antibranes in backgrounds with

positive brane charge dissolved in fluxes cannot be treated in perturbation theory.

In the present work we will work under the assumption that the singularities found

in [3, 6] are physical, and that antibranes can be treated as perturbations of their respective

backgrounds with charge dissolved in fluxes.1

In certain string inflation models, the inflaton is the position of a BPS D3 brane in a

warped background with anti-D3 branes at its bottom, and the brane-antibrane force gives

the derivative of the inflaton potential. There exist two methods to compute this potential.

The first, introduced in [2] and widely used in string cosmology constructions, treats the

anti-D3 branes as probes in the (easy to find) backreacted solution sourced by BPS D3

branes up the throat. This method involves calculating the change in the potential of the

anti-D3 branes as the position of the D3 branes is altered. This yields the force felt by

these D3 branes in the warped deformed conifold with anti-D3 branes.

1Note that this does not automatically imply that antibranes give rise to metastable vacua — for this

one would have to show also that the antibrane solution does not contain other non-normalizable modes.
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The second method to derive the inflaton potential consists in constructing the first-

order backreacted solution sourced by anti-D3 branes placed at the bottom of a warped

deformed conifold [3] and to compute the force felt by a probe D3 brane in this background.

Despite the rather complicated nature of the first-order deformation space, the force on

a probe D3 turns out to depend only on one of the fourteen integration constants that

parametrize the space of SU(2)× SU(2)×Z2-invariant deformations [3]. Furthermore, the

leading large-distance behavior of the inflaton potential agrees with the one computed in [2].

One natural question to ask is whether the two calculations for the inflaton potential

agree also beyond leading-order. At first glance, one expects that they should indeed agree.

However, the answer does not appear to be so simple. If in the vacuum the calculations of

the force using the bare action of one brane in the background of the other should indeed

agree, there is no reason this should happen in a background where the charge/anticharge

symmetry is broken by the D3 charge dissolved in flux. Indeed, because of harmonic

superposition, the fields of the D3 brane are not screened [7]. Yet, there is no reason

why the anti-D3 would not be screened by the D3 charge dissolved in flux. Hence, one

would expect to have a screening cloud around the anti-D3 branes, which would affect the

potential felt by a bare D3 brane. Note that this is a generic phenomenon in media where

positive and negative charges are screened differently: because of the different profiles of

the screening clouds, the force computed using the action of a bare negative charge in the

background of the screened positive charge needs not agree with the force computed using

the action of a bare positive charge around the screened negative charge. In the language

of plasma physics, the Debye screening lengths of the positive and of the negative charges

need not be equal.

The purpose of this letter is to show that the forces computed in the two approaches

outlined above agree not only in leading behavior, but in full functional form, modulo

a to-be-determined overall normalization constant. This indicates that this force is not

screened by the brane charge dissolved in flux.2 There are two obvious explanations for

this: either anti-D3 branes are not screened by the positive D3 brane charge dissolved in

flux, or they are screened, but the screening cloud does not interact with D3 branes. This

latter possibility would imply that antibranes change the profile of the cloud of charge

dissolved in fluxes, but do not alter its properties, in particular the fact that the local D3

charge density remains equal to the mass density; such a cloud would not interact with

probe D3 branes and would not screen the force.

We find no brane-antibrane force screening, both for anti D3-branes at the bottom of

the Klebanov-Strassler solution, and for anti-M2 brane at the bottom of a warped Stenzel

space with M2 brane charge dissolved in flux [8, 9], and hence we believe this is likely a

generic phenomenon in flux compactifications.3

2Our analysis does not formally exclude screening by a delta-function-shaped screening cloud, which

would keep the same functional expression of the force while changing the overall normalization constant.

However, it is hard to believe this is anything but a formal possibility. We leave the actual computation of

this constant to a forthcoming publication [10].
3In an upcoming paper [11] we will also show this for anti-D2 branes in backgrounds with D2 brane

charge dissolved in fluxes [12].
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Hence, in an optimistic scenario (if the IR singularities found in [3] and [6] are phys-

ical, and we can trust perturbation theory), modulo this subtle issue about the overall

constant, our calculation yields the exact functional form of the inflaton potential in a

brane/antibrane realization of inflation in string theory. It also demonstrates that the

force between branes and antibranes is not screened, and therefore the probe antibrane

calculation à la KKLMMT [2] of this inflaton potential in other string inflationary models

gives the exact functional form of the potential, not only its leading behavior. This should

allow in turn to accurately compute the power spectrum in those models and to compare

them with observation.

The paper is organized as follows. In section 2 we review the calculation of the

brane/antibrane force, treating the smeared antibranes as probes, both for anti-D3 branes

in KS and for anti-M2 branes in a warped Stenzel background [8, 9]. In section 3 we use

the first-order backreacted solutions of [3] and [6] to compute this force using the action of

probe D3 and M2 branes, respectively. As advertised, the two calculations agree.

Note. Three months after this paper appeared on the main electronic archive, the

preprint arXiv:1102.1734 appeared, which shows that our results can also be obtained

out of perturbing a solution with positive charge dissolved in fluxes by a certain func-

tion that controls the force on a probe brane (called Φ−), in a manner first discussed in

arXiv:0808.2811. Seven months later, the preprint arXiv:1106.6165 appeared, which, in

particular, also reproduces the result from the present note by fully solving the equations

that give the perturbative anti-D3 brane solution numerically. The advantage of the ap-

proach of arXiv:1102.1734 and of the modus operandi of arXiv:1106.6165 is that they yield

the exact normalization of the force as well. Namely, they show that not only the functional

form of the force but also its overall coefficient is the same as the one stemming from the

KKLMMT [2] analysis.

2 Computing the force using the action of probe antibranes

To establish whether antibranes are screened by charge dissolved in flux in the warped de-

formed conifold or the Stenzel space, we first smear them at the tip of those two geometries.

This way we preserve the symmetries of the solution without antibranes, and render the

calculation of the backreaction of the antibranes an achievable task. The force between the

smeared antibranes and the BPS branes at some distance r = r0 up the throat will then be

the same, by symmetry, as the force between the smeared antibranes and a uniform shell

of BPS branes at the same distance.

We demonstrate how to compute the force generated between a stack of antibranes at

the bottom of a warped throat and a stack of branes some distance up the throat. This is

computed in two ways: either by backreacting the branes while leaving the antibranes as

probes; or from backreacting the antibranes and leaving the branes as probes.

2.1 Backreacted D3 branes in the warped deformed conifold

To obtain a fully backreacted solution with BPS D3 branes in the warped deformed conifold

one simply needs to add to the warp factor a harmonic function (given by the Green’s
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function on this Calabi-Yau manifold) sourced by these branes [7]. While in general this is

a non-trivial task [13, 14], here we are considering smeared branes and as such the Green’s

function is radially symmetric and the problem is tractable.

The two radially symmetric solutions to the Laplace equation on the deformed coni-

fold are

H1(τ) = c1 , (2.1)

H2(τ) = c2

∫
∞

τ

dτ ′
(
sinh 2 τ ′ − 2 τ ′

)2/3 . (2.2)

With a shell of D3 branes at τ = τ0, the full warp factor is

H(τ) = H0(τ) + δH(τ) . (2.3)

Here H0(τ) is the zeroth-order warp factor for the warped deformed conifold:

H0 = e−4A0−4p0+2x0

= h0 − 32P 2

∫ τ

0

t coth t− 1

sinh2 t

(
1
2 sinh(2 t)− t

)1/3
dt , (2.4)

where P is the RR three-form flux through the S3 of the deformed conifold, and h0 is a

constant.4 On top of the warp factor for the zeroth-order solution, there is the following

contribution from the N D3 branes at τ = τ0:

δH(τ) =

{
H1(τ) , τ < τ0 ,

H2(τ) , τ > τ0 .
(2.5)

The two integration constants (c1, c2) are related by matching at the source the solutions

in the two domains above:

c1 = H2(τ0) . (2.6)

To fix the other integration constant in terms of the number of D3 branes, we rely on the

standard quantization formula for the five-form field strength:

1

(4π2 α′)2

∫
F5 = N , (2.7)

and integrate on the T 1,1 surfaces right outside and right inside the shell using

gsF5 = ∗10dH−1 ∧ dx0 ∧ . . . ∧ dx3 . (2.8)

The difference of the two integrals gives the D3 brane charge of the shell and its relation

to the coefficient in δH:

c2 = 4π

(
21/3 α′

ε4/3

)2

gsN , (2.9)

where we use the conventions of [15].

4Explicitly, we have h0 = 32P 2
∫

∞

0

τ coth τ−1

sinh2 τ
( 1
2
sinh(2 τ)− τ)1/3 dτ = 18.2373P 2.
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We now compute the potential of probe anti-D3 branes placed at the tip of the cone.

Since for a BPS D3 brane the DBI and WZ potentials cancel, for anti-D3 branes these

potentials are equal in magnitude and sign:

VD3 = VDBI + VWZ = 2VWZ . (2.10)

Expanding the potential to first-order in the number of D3 branes we find

VD3 = 2H−1 ,

= 2H−1
0

(
1− δH

H0

)
+O((N/P )2). (2.11)

The force exerted by the anti-D3 branes on the D3 branes can then be obtained from

the variation of this potential as the source D3 branes are moved [2]

FD3 = −∂VD3

∂τ0

∣∣∣
τ=0

= − 1

H2
0 |τ=0

c2

(sinh 2 τ0 − 2 τ0)2/3
. (2.12)

The dependence of this force on N appears through the constant c2 (2.9).

2.2 M-theory on a warped Stenzel space

The generalization of the probe brane computation of Kachru, Pearson and Verlinde [5] to

a warped Stenzel space M-theory background [8, 9] has recently been performed in [16].

Motivated by this analysis, three of the authors have used the technology of [3] to study the

backreaction of anti-M2 branes in this space [6]. The probe brane analysis of the previous

section can also be performed, and we find that although the Green’s function itself is a

complicated combination of incomplete elliptic integrals:

H1(y) = d1 ,

H2(y) =
2

45
d2

[
9
√
y4 − 1

y5
+ 3E (arcsin(1/y) | −1)− 3F (arcsin(1/y) | −1)

+ 5
√
3
(
Π
(√

3;− arcsin(1/y) | −1
)
−Π

(
−
√
3;− arcsin(1/y) | −1

))]
, (2.13)

with di integration constants and k a constant that ensures that H2 vanishes at large y,

the derivative of this Green’s function is very simple:5

H ′

2(r) =
3
√
2 d2 csch

3r

(2 + cosh 2 r)3/4
. (2.14)

From flux quantization
1

(2π ℓp)6

∫

V5,2

∗11G4 = N , (2.15)

5The standard coordinate we use is y4 = 2 + cosh 2 r.

– 5 –
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with

G4 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ,

we find that the M2 brane charge of the shell, N , is related to the constant in the new

warp factor via

d2 = (2π)2 ℓ6p
√
2N . (2.16)

In addition, there is the matching condition

d1 = H2(y0) . (2.17)

If we now consider the change in the potential of probe antibranes with the position

of the source M2 branes in this background, we obtain the force:

FM2 = − 1

H2
0 |r=0

3
√
2 d2 csch

3r0

(2 + cosh 2 r0)3/4
. (2.18)

3 Computing the force on probe branes

3.1 Warped deformed conifold

We now use the results from [3] and refer to this work for much of the notation. In that

paper three of the authors found that the force felt by a probe D3 brane in the first-order

deformed KS background has the remarkably-simple form

FD3 =
2

3
e−2x0 ξ̃1 , (3.1)

where ξ̃1 is one of the sixteen modes parameterizing the deformation space6 [22] and is

given by

ξ̃1 = X̃1 exp

(∫ τ

0
dτ ′e−2x0

[
2P f0 − F0 (f0 − k0)

])
. (3.2)

Here X1 is an integration constant and

ex0 =
1

4
H

1/2
0

(
1
2 sinh(2 τ)− τ

)1/3
,

f0 = −P
(τ coth τ − 1)(cosh τ − 1)

sinh τ
, (3.3)

k0 = −P
(τ coth τ − 1)(cosh τ + 1)

sinh τ
,

F0 = P
(sinh τ − τ)

sinh τ
,

with H0 given in (2.4).

We make great use of the simple yet elusive observation that this integral can in fact

be performed exactly

ξ̃1 = X̃1 exp

(∫ τ

0
dτ ′

H ′

0

H0

)

= X1H0(τ) . (3.4)

6This deformation space has been considered previously in various respects [17–21].
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The force now takes the form

FD3 =
2

3
e−2x0 X1H0(τ)

=
32

3

22/3X1

(sinh 2 τ − 2 τ)2/3
. (3.5)

Remarkably enough, this has exactly the same functional form as the force computed

in (2.12) using the probe antibrane potential. As mentioned in the Introduction, the fact

that the two calculations of the force agree implies that this force is not screened by the

positive D3 brane charge dissolved in flux.

As has been explained in [3] the value of X1 can be determined in terms of the UV

and IR boundary conditions, but this requires relating the UV and IR values of all sixteen

integration constants involved in the full solution, which can only be done numerically.

Once this numerical work is completed, we will be able to compare the coefficient of the

force computed in this section with the calculation of section 2.1. Whether these two

numbers agree or not will help elucidate the physics of anti-D3 branes in the Klebanov-

Strassler background. We plan to report on these results soon [10].

3.2 M-theory on a warped Stenzel space

The same steps for M-theory on a Stenzel space have recently been performed in [6] and

we merely quote the results and refer to this work for the notation. When considering the

candidate backreacted solution corresponding to anti-M2 branes, the force felt by a probe

M2 brane is

F = −2

3
e−3 (α0+β0)(r) e−3z0(0)X4

= −18 e−3z0(0)X4 csch
3r

(2 + cosh 2r)3/4
. (3.6)

This has again the same functional form as (2.18), up to the determination of the integration

constant X4 in terms of the charges of the system. This demonstrates that, much like in

the anti-D3 brane story, the force between anti-M2 branes and M2 branes is not screened

by the charge dissolved in flux.
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