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We devote this paper to solving the variational inequality of finding x∗ with property x∗ ∈ Fix(T)
such that 〈(A−γf)x∗ , x−x∗〉 ≥ 0 for all x ∈ Fix(T). Note that this hierarchical problem is associated
with some convex programming problems. For solving the above VI, we suggest two algorithms:
Implicit Algorithmml: xt = TPc[I − t(A − γf)]xt for all t ∈ (0, 1) and Explicit Algorithm: xn+1 =
βnxn + (1 − βn)TPc[1 − αn(A − γf)]xn for all n ≥ 0. It is shown that these two algorithms converge
strongly to the unique solution of the above VI. As special cases, we prove that the proposed
algorithms strongly converge to the minimum norm fixed point of T .

1. Introduction

Variational inequalities are being used as a mathematical programming tool in modeling a
wide class of problems arising in several branches of pure and applied sciences. Several
numerical techniques for solving variational inequalities and the related optimization
problem have been considered by some authors. See, for example, [1–16].

Our main purpose in this paper is to consider the following variational inequality:

Find x∗ ∈ Fix(T) such that
〈(
A − γf

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T), (1.1)

where T is a nonexpansive self-mapping of a nonempty closed convex subset C of a real
Hilbert space H , A : C → H is a strongly positive linear bounded operator, and f : C → H
is a ρ-contraction.
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2 Fixed Point Theory and Applications

At this point, we wish to point out this hierarchical problem associated with some
convex programming problems. The reader can refer to [17–21] and the references therein.

For solving VI (1.1), we suggest two algorithms which converge to the unique solution
of VI (1.1). As special cases, we prove that the proposed algorithms strongly converge to the
minimum norm fixed point of T .

2. Preliminaries

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let C be
a nonempty closed convex subset of H . Let f : C → H be a ρ-contraction; that is, there exists
a constant ρ ∈ [0, 1) such that

∥∥f(x) − f
(
y
)∥∥ ≤ ρ

∥∥x − y
∥∥, ∀x, y ∈ C. (2.1)

A mapping A is said to be strongly positive onH if there exists a constant γ̃ > 0 such that

〈Ax, x〉 ≥ γ̃‖x‖2, ∀x ∈ H. (2.2)

Recall that a mapping T : C → C is said to be nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (2.3)

A point x ∈ C is a fixed point of T provided Tx = x. Denote by Fix(T) the set of fixed points of
T ; that is, Fix(T) = {x ∈ C : Tx = x}.

Remark 2.1. If A : C → H is a strongly positive linear bounded operator and f : C → H is
a ρ-contraction, then for 0 < γ < γ̃/ρ, the mapping A − γf is strongly monotone. In fact, we
have

〈(
A − γf

)
x − (

A − γf
)
y, x − y

〉
= 〈A(

x − y
)
, x − y〉 − γ

〈
f(x) − f

(
y
)
, x − y

〉

≥ γ̃
∥∥x − y

∥∥2 − γρ
∥∥x − y

∥∥2

≥ 0.

(2.4)

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ C the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = inf
y∈C

∥
∥x − y

∥
∥ =: d(x, C). (2.5)

The following properties of projections are useful and pertinent to our purposes.

Lemma 2.2. Given x ∈ H and z ∈ C,

(a) z = PCx if and only if there holds the relation

〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C, (2.6)
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(b) z = PCx if and only if there holds the relation

‖x − z‖2 ≤ ∥
∥x − y

∥
∥2 − ∥

∥y − z
∥
∥2
, ∀y ∈ C, (2.7)

(c) there holds the relation

〈
PCx − PCy, x − y

〉 ≥ ∥∥PCx − PCy
∥∥2
, ∀x, y ∈ H. (2.8)

Consequently, PC is nonexpansive and monotone.

In the sequel, we will make use of the following for our main results.

Lemma 2.3 (Demiclosedness Principle for Nonexpansive Mappings, [22]). Let C be a
nonempty closed convex subset of a real Hilbert space H and T : C → C be a nonexpansive mapping
with Fix(T)/= ∅. If {xn} is a sequence in C weakly converging to x and if {(I − T)xn} converges
strongly to y, then (I − T)x = y; in particular, if y = 0, then x ∈ Fix(T).

Lemma 2.4 (see [14]). Let C be a nonempty closed convex subset of a real Hilbert space H . Assume
that the mapping F : C → H is monotone and weakly continuous along segments, that is, F(x +
ty) → F(x) weakly as t → 0. Then the variational inequality

x∗ ∈ C, 〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ C (2.9)

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, x − x∗〉 ≥ 0, ∀x ∈ C. (2.10)

Lemma 2.5 (see [23]). Let {xn} and {yn} be bounded sequences in a Banach space X and {βn} be a
sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.11)

Suppose that xn+1 = (1−βn)yn +βnxn for all n ≥ 0 and lim supn→∞(‖yn+1 −yn‖−‖xn+1 −xn‖) ≤ 0.
Then limn→∞‖yn − xn‖ = 0.

Lemma 2.6 (see [24]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + γnδn, ∀n ≥ 0, (2.12)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in � such that

(a)
∑∞

n=0 γn = ∞,

(b) lim supn→∞δn ≤ 0 or
∑∞

n=0 |δnγn| < ∞.

Then limn→∞an = 0.
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3. Main Results

In this section, we first consider an implicit algorithm and prove its strong convergence for
solving variational inequality (1.1).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let A : C → H
be a strongly positive linear bounded operator and f : C → H be a ρ-contraction. Let T : C → C
be a nonexpansive mapping with Fix(T)/= ∅. Let γ > 0 be a constant satisfying (γ̃ − 1)/ρ < γ < γ̃/ρ.
For each t ∈ (0, 1), let the net {xt} be defined by

xt = TPC

[
I − t

(
A − γf

)]
xt, ∀t ∈ (0, 1). (3.1)

Then the net {xt} converges in norm, as t → 0+, to x∗ ∈ Fix(T) which is the unique solution of VI
(1.1).

Proof. First, we note that the net {xt} defined by (3.1) is well-defined. As a matter of fact, we
have, for sufficiently small t,

∥∥TPC

[
I − t

(
A − γf

)]
x − TPC

[
I − t

(
A − γf

)]
y
∥∥

≤ ∥∥[I − t
(
A − γf

)]
x − [

I − t
(
A − γf

)]
y
∥∥

≤ tγ
∥∥f(x) − f

(
y
)∥∥ + ‖I − tA‖∥∥x − y

∥∥

≤ tγρ
∥∥x − y

∥∥ +
(
1 − tγ̃

)∥∥x − y
∥∥

=
[
1 − (

γ̃ − γρ
)
t
]∥∥x − y

∥
∥, ∀x, y ∈ C,

(3.2)

which implies that the mapping x → TPC[I− t(A−γf)]x is a contractive fromC into C. Using
the Banach contraction principle, there exists a unique point xt ∈ C satisfying the following
fixed point equation:

x = TPC

[
I − t

(
A − γf

)]
x, (3.3)

this is,

xt = TPC

[
I − t

(
A − γf

)]
xt, (3.4)

which is exactly (3.1).
Next, we show that the net {xt} is bounded. Take an x∗ ∈ Fix(T) to derive that

‖xt − x∗‖ =
∥
∥TPC

[
I − t

(
A − γf

)]
xt − TPCx

∗∥∥

≤ ∥
∥[I − t

(
A − γf

)]
xt − x∗∥∥

≤ tγ
∥
∥f(xt) − f(x∗)

∥
∥ + t

∥
∥γf(x∗) −Ax∗∥∥ + ‖(I − tA)(xt − x∗)‖

≤ (
1 − γ̃ t

)‖xt − x∗‖ + tγρ‖xt − x∗‖ + t
∥∥γf(x∗) −Ax∗∥∥.

(3.5)
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This implies that

‖xt − x∗‖ ≤ 1
γ̃ − γρ

∥
∥γf(x∗) −Ax∗∥∥. (3.6)

It follows that {xt} is bounded, so are the nets {f(xt)} and {Axt}.
From (3.1), we get

‖xt − Txt‖ =
∥∥TPC

[
I − t

(
A − γf

)]
xt − TPCxt

∥∥

≤ t
∥
∥(A − γf

)
xt

∥
∥

−→ 0.

(3.7)

Set yt = PC[I − t(A − γf)]xt for all t ∈ (0, 1). It follows that

∥∥yt − xt

∥∥ ≤ t
∥∥(A − γf

)
xt

∥∥ −→ 0. (3.8)

At the same time, we note that

‖xt − x∗‖ ≤ ∥
∥yt − x∗∥∥. (3.9)

From (3.1) and the property of the metric projection, we have

∥∥yt − x∗∥∥2 =
〈
PC

[
I − t

(
A − γf

)]
xt −

[
I − t

(
A − γf

)]
xt, yt − x∗〉

+
〈[
I − t

(
A − γf

)]
xt − x∗, yt − x∗〉

≤ 〈[
I − t

(
A − γf

)]
xt − x∗, yt − x∗〉

= t〈γf(xt) −Ax∗, yt − x∗〉 + 〈
(I − tA)(xt − x∗), yt − x∗〉

≤ (
1 − tγ̃

)‖xt − x∗‖
∥
∥yt − x∗∥∥ + t

〈
γf(xt) −Ax∗, yt − x∗〉

≤ (
1 − tγ̃

)∥∥yt − x∗∥∥2 + t
〈
γf(xt) −Ax∗, yt − x∗〉.

(3.10)

It follows that

∥∥yt − x∗∥∥2 ≤ 1
γ̃

〈
γf(xt) −Ax∗, yt − x∗〉

=
1
γ̃

[
γ
〈
f(xt) − f(x∗), yt − x∗〉 +

〈
γf(x∗) −Ax∗, yt − x∗〉]

≤ 1
γ̃

[
γρ

∥∥yt − x∗∥∥2 +
〈(
A − γf

)
x∗, x∗ − yt

〉]
.

(3.11)
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That is,

∥∥yt − x∗∥∥2 ≤ 1
γ̃ − γρ

〈(
A − γf

)
x∗, x∗ − yt

〉
. (3.12)

Therefore,

‖xt − x∗‖2 ≤ ∥
∥yt − x∗∥∥ ≤ 1

γ̃ − γρ

〈(
A − γf

)
x∗, x∗ − yt

〉
. (3.13)

In particular,

‖xn − x∗‖2 ≤ 1
γ̃ − γρ

〈(
A − γf

)
x∗, x∗ − yn

〉
. (3.14)

Next, we show that {xt} is relatively norm-compact as t → 0+. Assume {tn} ⊂ (0, 1) is
such that tn → 0+ as n → ∞. Put xn := xtn and yn := ytn . From (3.7), we have

‖xn − Txn‖ −→ 0. (3.15)

Since {xn} is bounded, without loss of generality, wemay assume that {xn} converges weakly
to a point x̃ ∈ C and hence yn also converges weakly to x̃. Noticing (3.15), we can use
Lemma 2.3 to get x̃ ∈ Fix(T). Therefore, we can substitute x̃ for x∗ in (3.14) to get

‖xn − x̃‖2 ≤ 1
γ̃ − γρ

〈(
A − γf

)
x̃, x̃ − yn

〉
. (3.16)

Consequently, the weak convergence of {yn} to x̃ actually implies that xn → x̃ strongly. This
has proved the relative norm-compactness of the net {xt} as t → 0+.

Now, we return to (3.14) and take the limit as n → ∞ to get

‖x̃ − x∗‖2 ≤ 1
γ̃ − γρ

〈(
A − γf

)
x∗, x∗ − x̃

〉
, ∀x∗ ∈ Fix(T). (3.17)

Hence x̃ solves the following VI:

〈(A − γf
)
x∗, x∗ − x̃〉 ≥ 0, ∀x∗ ∈ Fix(T) (3.18)

or the equivalent dual VI (see Remark 2.1 and Lemma 2.4)

〈(
A − γf

)
x̃, x∗ − x̃

〉 ≥ 0, ∀x∗ ∈ Fix(T). (3.19)

From the strong monotonicity of A − γf , it follows the uniqueness of a solution of the above
VI (see [11, Theorem 3.2]), x̃ = PFix(T)(I−A+γf)x̃. That is, x̃ is the unique fixed point in Fix(T)
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of the contraction PFix(T)(I − A + γf). Clearly this is sufficient to conclude that the entire net
{xt} converges in norm to x̃ as t → 0+. This completes the proof.

Next, we suggest an explicit algorithm and prove its strong convergence.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H . Let A : C → H
be a strongly positive linear bounded operator and f : C → H be a ρ-contraction. Let T : C → C
be a nonexpansive mapping with Fix(T)/= ∅. Let γ > 0 be a constant satisfying (γ̃ − 1)/ρ < γ < γ̃/ρ.
For x0 ∈ C, let the sequence {xn} be generated iteratively by

xn+1 = βnxn +
(
1 − βn

)
TPC

[
I − αn

(
A − γf

)]
xn, ∀n ≥ 0, (3.20)

where the sequences {αn} ⊂ [0, 1] and {βn} ⊂ [0, 1] satisfy the following control conditions:

(C1) limn→∞αn = 0,

(C2) limn→∞αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then {xn} converges strongly to x∗ ∈ Fix(T) which is the unique solution of the variational inequality
VI (1.1).

Proof. First we show that {xn} is bounded. Set yn = TPCun and un = [I − αn(A − γf)]xn for
all n ≥ 0. For any p ∈ Fix(T), we have

∥∥yn − p
∥∥ =

∥∥TPCun − TPCp
∥∥

≤ ∥
∥[I − αn

(
A − γf

)]
xn − p

∥
∥

≤ αn

∥
∥γf(xn) − γf

(
p
)∥∥ + αn

∥
∥γf

(
p
) −Ap

∥
∥ + ‖I − αnA‖

∥
∥xn − p

∥
∥

≤ αnγρ
∥∥xn − p

∥∥ + αn

∥∥γf
(
p
) −Ap

∥∥ +
(
1 − αnγ̃

)∥∥xn − p
∥∥

=
[
1 − (

γ̃ − γρ
)
αn

]∥∥xn − p
∥∥ + αn

∥∥γf
(
p
) −Ap

∥∥.

(3.21)

It follows that

∥∥xn+1 − p
∥∥ ≤ βn

∥∥xn − p
∥∥ +

(
1 − βn

)∥∥yn − p
∥∥

≤ βn
∥∥xn − p

∥∥ +
(
1 − βn

)[
1 − (

γ̃ − γρ
)
αn

]∥∥xn − p
∥∥

+ αn

(
1 − βn

)∥∥γf
(
p
) −Ap

∥∥

=
[
1 − (

γ̃ − γρ
)
αn

(
1 − βn

)]∥∥xn − p
∥
∥

+
(
γ̃ − γρ

)
αn

(
1 − βn

)
∥
∥γf

(
p
) −Ap

∥
∥

γ̃ − γρ
,

(3.22)

which implies that

∥∥xn − p
∥∥ ≤ max

{
∥∥x0 − p

∥∥,

∥
∥γf

(
p
) −Ap

∥
∥

γ̃ − γρ

}

, ∀n ≥ 0. (3.23)
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Hence {xn} is bounded and so are {yn}, {un}, {Axn}, and {f(xn)}.
From (3.20), we observe that

∥
∥yn+1 − yn

∥
∥ = ‖TPCun+1 − TPCun‖
≤ ∥
∥[I − αn+1

(
A − γf

)]
xn+1 −

[
I − αn

(
A − γf

)]
xn

∥
∥

=
∥∥αn+1γ

(
f(xn+1) − f(xn)

)
+ (αn+1 − αn)γf(xn)

+(I − αn+1A)(xn+1 − xn) + (αn − αn+1)Axn

∥∥

≤ αn+1γ
∥∥f(xn+1) − f(xn)

∥∥ +
(
1 − αn+1γ̃

)‖xn+1 − xn‖
+ |αn+1 − αn|

(∥∥γf(xn)
∥
∥ + ‖Axn‖

)

≤ αn+1γρ‖xn+1 − xn‖ +
(
1 − αn+1γ̃

)‖xn+1 − xn‖
+ |αn+1 − αn|

(∥∥γf(xn)
∥∥ + ‖Axn‖

)

=
[
1 − (

γ̃ − γρ
)
αn+1

]‖xn+1 − xn‖ + |αn+1 − αn|
(∥∥γf(xn)

∥∥ + ‖Axn‖
)
.

(3.24)

It follows that

∥
∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖ ≤ (

γ̃ − γρ
)
αn+1‖xn+1 − xn‖ + |αn+1 − αn|

(∥∥γf(xn)
∥
∥ + ‖Axn‖

)
,

(3.25)

which implies, from (C1) and the boundedness of {xn}, {f(xn)} and {Axn}, that

lim sup
n→∞

(∥∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (3.26)

Hence, by Lemma 2.5, we have

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.27)

Consequently, it follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)∥∥yn − xn

∥
∥ = 0. (3.28)

On the other hand, we have

‖xn − Txn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − Txn‖
= ‖xn+1 − xn‖ +

∥
∥β(xn − Txn) +

(
1 − βn

)(
yn − Txn

)∥∥

≤ ‖xn+1 − xn‖ + βn‖xn − Txn‖ +
(
1 − βn

)∥∥yn − TPCxn

∥
∥

≤ ‖xn+1 − xn‖ + βn‖xn − Txn‖ +
(
1 − βn

)
αn

∥∥(A − γf
)
xn

∥∥,

(3.29)
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that is,

‖xn − Txn‖ ≤ 1
1 − βn

‖xn+1 − xn‖ + αn

∥
∥(A − γf

)
xn

∥
∥. (3.30)

This together with (C1), (C3), and (3.28) implies that

lim
n→∞

‖xn − Txn‖ = 0. (3.31)

Next, we show that, for any x∗ ∈ F(T),

lim sup
n→∞

〈
un − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.32)

Now we take a subsequence {xnk} of {xn} such that

lim sup
n→∞

〈
xn − x∗, γf(x∗) −Ax∗〉 = lim

k→∞
〈
xnk − x∗, γf(x∗) −Ax∗〉. (3.33)

Since {xn} is bounded, we may assume that xnk → z weakly. Note that z ∈ Fix(T) by virtue
of Lemma 2.3 and (3.31). Therefore,

lim sup
n→∞

〈
xn − x∗, γf(x∗) −Ax∗〉 =

〈
z − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.34)

We notice that

‖un − xn‖ ≤ αn

∥∥(A − γf
)
xn

∥∥ −→ 0. (3.35)

Hence, we get

lim sup
n→∞

〈
un − x∗, γf(x∗) −Ax∗〉 ≤ 0. (3.36)

Finally, we prove that {xn} converges to the point x∗. We observe that

‖un − x∗‖ ≤ ‖xn − x∗‖ + αn

∥
∥(A − γf

)
xn

∥
∥. (3.37)
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Therefore, from (3.20), we have

‖xn+1 − x∗‖2 ≤ βn‖xn − x∗‖2 + (
1 − βn

)∥∥yn − x∗∥∥2

≤ βn‖xn − x∗‖2 + (
1 − βn

)‖un − x∗‖2

= βn‖xn − x∗‖2 + (
1 − βn

)∥∥αn

(
γf(xn) −Ax∗) + (I − αnA)(xn − x∗)

∥
∥2

≤ βn‖xn − x∗‖2 + (
1 − βn

)

×
[(
1 − αnγ̃

)2‖xn − x∗‖2 + 2αn

〈
γf(xn) −Ax∗, un − x∗〉

]

=
[
1 − 2αnγ̃ +

(
1 − βn

)
α2
nγ̃

2
]
‖xn − x∗‖2

+ 2αn

〈
γf(xn) − γf(x∗), un − x∗〉 + 2αn

〈
γf(x∗) −Ax∗, un − x∗〉

≤
[
1 − 2αnγ̃ +

(
1 − βn

)
α2
nγ̃

2
]
‖xn − x∗‖2

+ 2αnγρ‖xn − x∗‖‖un − x∗‖ + 2αn

〈
γf(x∗) −Ax∗, un − x∗〉

≤ [
1 − 2αn

(
γ̃ − γρ

)]‖xn − x∗‖2 + (
1 − βn

)
α2
nγ̃

2‖xn − x∗‖2

+ 2α2
nγρ‖xn − x∗‖∥∥(A − γf

)
xn

∥∥ + 2αn

〈
γf(x∗) −Ax∗, un − x∗〉.

(3.38)

Since {xn}, {f(xn)}, and {Axn} are all bounded, we can choose a constant M > 0 such that

sup
n

1
γ̃ − γρ

{(
1 − βn

)
γ̃2

2
‖xn − x∗‖2 + γρ‖xn − x∗‖∥∥(A − γf

)
xn

∥∥
}

≤ M. (3.39)

It follows that

‖xn+1 − x∗‖2 ≤ [
1 − 2

(
γ̃ − ργ

)
αn

]‖xn − x∗‖2 + 2
(
γ̃ − ργ

)
αnδn, (3.40)

where

δn = αnM +
1

γ̃ − γρ

〈
γf(x∗) −Ax∗, un − x∗〉. (3.41)

By (C1) and (3.36), we get

lim sup
n→∞

βn ≤ 0. (3.42)

Now, applying Lemma 2.6 and (3.40), we conclude that xn → x∗. This completes the
proof.
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From Theorems 3.1 and 3.2, we can deduce easily the following corollaries.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H . Let T : C → C
be a nonexpansive mapping with Fix(T)/= ∅. For each t ∈ (0, 1), let the net {xt} be defined by

xt = TPC(1 − t)xt, ∀t ∈ (0, 1). (3.43)

Then the net {xt} defined by (3.43) converges in norm, as t → 0+, to the minimum norm element
x∗ ∈ Fix(T).

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert spaceH . Let T : C → C be
a nonexpansive mapping with Fix(T)/= ∅. For x0 ∈ C, let the sequence {xn} be generated iteratively
by

xn+1 = βnxn +
(
1 − βn

)
TPC(1 − αn)xn, ∀n ≥ 0, (3.44)

where the sequences {αn} ⊂ [0, 1] and {βn} ⊂ [0, 1] satisfy the following control conditions:

(C1) limn→∞αn = 0,

(C2) limn→∞αn = ∞,

(C3) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Then the sequence {xn} generated by (3.44) converges strongly to the minimum norm element x∗ ∈
Fix(T).
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