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1 Introduction

It has been realised in the last few years that holographic brane constructions can be suc-

cessfully used to study condensed matter systems in the strong coupling regime. Many

features of a growing number of models bear a surprisingly close resemblance to actual

physical systems. Examples include high-Tc superconductivity, strange metals, and quan-

tum liquids of the marginal and non-Fermi type. The probe brane configuration employed

in this paper leads to a (2+1)-dimensional defect field theory of strongly coupled fermions

living on domain walls in the (3+1)-dimensional ambient space-time, and is potentially use-

ful to describe the physics of monolayers (one sheet) and bilayers (two sheets) of graphene.

The specific construction under consideration, which is a generalisation of the situation

studied in [1], involves Nf � Nc D5/D5-probe brane pairs in the Klebanov-Witten back-

ground generated by Nc D3 branes located at the tip of the singular conifold [2]. In [1], the
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focus was on studying an r-dependent profile of the D5/D5-brane embedding in the internal

space (thus corresponding to a monolayer phase) which geometrically realises spontaneous

conformal [3] and chiral symmetry breaking via a U-shaped brane embedding similar to

the Kuperstein-Sonnenschein D3/D7/D7 construction [4]. There is also the possibility of

straight embeddings that fall into the horizon of the black hole once a non-zero tempera-

ture is turned on. An interesting competition between U-shaped and straight embeddings

corresponding to chiral/conformal symmetry broken and restored phases, resp., can be

observed by turning on world volume gauge fields on the probe brane corresponding to

external (electro-)magnetic fields [1, 5]. In the present paper, we generalise the aforemen-

tioned model by considering the possibility of an r-dependent profile z(r) in the x3-direction

transverse to the (domain wall) defects, at finite temperature and magnetic field.1 In this

way, we obtain an even richer phase structure of single and combined bilayer and mono-

layer phases of our (2+1)-dimensional model. Namely, we study the embedding equations

obtained from the DBI action of the D5/D5-branes, and compare the free energies of the

resulting configurations. This construction can potentially play a rôle in improving the

understanding of dynamical symmetry breaking in graphene monolayers and bilayers, see

e.g., [7, 8] and references therein; the reader should also consult [9–12] for a recent related

holographic model involving D7-branes, and a more detailed explanation of the relevance

of holographic setups to learn some lessons about graphene bilayers.

The paper is organised as follows: in section 2, we present the general setup of the brane

construction, mainly repeating the essentials from [1]. Then, in section 3, we study in detail

the single bilayer phase at zero and non-zero temperature as well as an external magnetic

field and present the bilayer/monolayer phase transition. This is followed in section 4 by

a thorough investigation of the corresponding meson spectrum and its stability analysis.

Finally, in section 5, we study the combined bilayer and monolayer phase at zero and

non-zero temperature and finite magnetic field.

2 General setup

Let us consider the Klebanov-Witten background, i.e., type IIB supergravity on AdS5×T 1,1

space-time, as the near-brane geometry generated by Nc D3-branes placed at the tip of

the conifold singularity [2]. The metric is given by

ds2 =
r2

L2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
L2

r2

dr2 +
r2

6

(
2∑
i=1

dθ2
i + sin2θidφ

2
i

)
+
r2

9

(
dψ +

2∑
i=1

cosθidφi

)2
 , (2.1)

where L4 = 27
4 πgsNcl

4
s and the range of angles is 0 < θ1,2 < π, 0 < φ1,2 < 2π and

0 < ψ < 4π. Moreover, we will introduce Nf � Nc flavour probe D5/D5-brane pairs such

that (2+1)- dimensional fundamental degrees of freedom are added to the quiver diagram

of the theory. This means that the flavour and the colour branes have to intersect in a

1See [6] for a recent, related (2+1)-dimensional bilayer construction in the AdS5 × S5 background.
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(2+1)-dimensional defect in the (3+1)-dimensional ambient Minkowski space-time. The

case where the flavour branes are located at x3 = const. was recently constructed and

investigated in [1, 3].

Here, we will study a generalisation of this construction, when x3 is also allowed to describe

a profile in r, which leads to the following ansatz for the U-shaped embeddings:

x0 x1 x2 x3 r θ− φ+ θ+ φ− ψ

D3 × × × × · · · · · ·
D5/D5 × × × z(r) × × × · · ψ(r)

Using the notations of [1], we have defined

θ± =
θ1 ± θ2

2
and φ± =

φ1 ± φ2

2
, (2.2)

and we henceforth fix, without loss of generality, θ− = 0 , φ+ = π.

3 Single bilayer

We will start our discussion by studying in detail the single bilayer configuration, for which

x3 = x3(r) =: z(r) describes a profile in r and ψ = const. at zero temperature. We then

generalise our results to finite temperature and external magnetic field perpendicular to

the (2 + 1)-dimensional defect. With the above mentioned ansatz, the induced metric on

the world volume of the D5-brane configuration is:

ds2 =
r2

L2

(
−dt2 + dx2

1 + dx2
2

)
+
L2

r2

[
dr2

(
1 +

r4

L4
z′(r)2

)
+
r2

3
dΩ2

2

]
(3.1)

and the corresponding DBI action becomes

SD5 = −τ5

∫
dξ6
√

detP [g] = −2N
∫
dr r2

√
1 +

r4

L4
z′(r)2 , (3.2)

where N = 2π
3 τ5Vol(R2,1). Integrating once the equation of motion, for z we obtain

r6

L4 z
′(r)√

1 + r4

L4 z′(r)2
=

r4
z

L2
, (3.3)

where rz is the minimum value of r that the U-shaped embedding reaches, i.e., the position

where the two branches (D5 and D5 brane) merge. The resulting profile for z(r) is

z(r) = ±L
2

rz

(
π1/2Γ(5

8)

Γ(1
8)

+
r5
z

5r5 2F1

[
1

2
,
5

8
,
13

8
,
r8
z

r8

])
, (3.4)

where the two choices of the overall sign correspond to the two branches of the U-shaped

embedding (see figure 1). For the large r expansion of z we obtain:

z(r) = ±

(
π1/2Γ(5

8)

Γ(1
8)

L2

rz
− r4

zL
2

5r5
+O(r−13)

)
. (3.5)
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Figure 1. Analytic D5/D5-brane U-shaped embedding with profile in the z and r.

This implies that in the limit r → ∞ the branches of the U-shaped embedding approach

two straight brane D5-brane embeddings corresponding to a set of defect field theories

localised at z = −π1/2Γ( 5
8

)

Γ( 1
8

)
L2

rz
and z =

π1/2Γ( 5
8

)

Γ( 1
8

)
L2

rz
, respectively. Thus this is a bi-layer

configuration with separation between the layers ∆z given by:

∆z =
2π1/2Γ(5

8)

Γ(1
8)

L2

rz
. (3.6)

Furthermore, if we denote schematically the fundamental fields on the two defects as ψ+

and ψ−, correspondingly, the AdS/CFT dictionary relates the bi-layer condensate 〈Oψ+ψ−〉
sourced by ∆z to the radial distance rz via:

〈Oψ+ψ−〉 ∝ cz = −r
4
zL

2

5
. (3.7)

The condensate 〈Oψ+ψ−〉 breaks conformal symmetry and also breaks some of the global

U(Nf)×U(Nf) flavour symmetry of the theory, since the operator Oψ+ψ− couples the fields

ψ+ and ψ−. While we do not know the explicit form of the operator Oψ+ψ− , we are still able

to determine its conformal dimension. According to the standard AdS/CFT dictionary,

the conformal dimension is encoded in the exponent of the corresponding supergravity field

z(r) as r → ∞. For a three dimensional field theory, the leading mode should behave as

r∆−3+p, while the subleading mode should asymptote to r−∆+p for some constant p. Using

equation (3.5), one can easily check that the operator Oψ+ψ− has conformal dimension four.

Using equations (3.6) and (3.7), one can verify that 〈Oψ+ψ−〉 ∝ 1/(∆z)4, which agrees with

the operator Oψ+ψ− having engineering dimension four.

Note that if we set rz = 0, the analogue of the U-shaped embedding is given by a

pair of parallel D5/D5-branes positioned at z = ±π1/2Γ( 5
8

)

Γ( 1
8

)
L2

rz
for all r. In this case, the

two embeddings represent independent domain walls, and there is no condensate coupling

the two defect field theories; the theory is in a mono-layer phase. For a given separation
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between the domain walls, ∆z, this configuration competes with the U-shaped embedding.

To determine which phase of the theory is preferred, we have to compare the free energies

of each phase. The free energy is proportional to the regularised wick rotated on-shell

action of the system. One can show that the on-shell action diverges as Λ3
UV , where ΛUV

is a UV cut-off. To regularise the on-shell action, it is sufficient to add a volume counter

term [13] proportional to
∫ √

γ at r = rmax ∝ ΛUV . Using equations (3.3) and (3.2) for the

free energies of the U-shaped and parallel embeddings we obtain

FU = 2N ′
 ∞∫
rz

dr

(
r6√
r8 − r8

z

− r2

)
− r3

z

3

 =
N ′
√
π Γ
(
−3

8

)
r3
z

4 Γ
(

1
8

) < 0 , (3.8)

F|| = 0 , (3.9)

where N ′ = 2π
3 τ5Vol(R2). We conclude that FU < F|| and therefore the U-shaped em-

beddings are preferred to the parallel ones. This suggests that, at zero temperature, the

theory is always in the bilayer phase.

Note that the only independent scale in the theory is the separation between the two

domain walls, ∆z. Since the underlying theory is conformal, it is not a surprise that all

physical quantities can be expressed in terms of the energy scale 1/∆z associated with this

separation. The situation will be different if we introduce an extra physical scale such as

temperature or magnetic field.

3.1 Bilayer/monolayer thermal phase transition

In this subsection we investigate the effect of finite temperature on the bilayer configuration

studied above. Intuitively, we expect that above some critical temperature Tc ∝ 1/∆z the

bilayer condensate will melt and the theory will be in a mono-layer phase. To turn on a

temperature, we substitute the AdS5 part of the geometry with an AdS-black hole. Then

the temperature of the dual gauge theory is given by the temperature of the black hole.

For the induced metric on the world volume of the D5-brane we obtain

ds2 =
r2

L2

(
−b(r) dt2 + dx2

1 + dx2
2

)
+

L2

r2 b(r)

[
dr2

(
1 +

r4 b(r)

L4
z′(r)2

)
+
r2

3
dΩ2

2

]
, (3.10)

where the emblackening factor is b(r) = 1− r4H
r4

.

The corresponding DBI action and equation of motion become:

SD5 = −τ5

∫
dξ6
√

detP [g] = −2N
∫
dr r2

√
1 +

r4 b(r)

L4
z′(r)2 , (3.11)

r6 b(r)
L4 z′(r)√

1 + r4 b(r)
L4 z′(r)2

= ΠT
z . (3.12)

Next defining rz such that

r4
z

√
b(rz) = ΠT

z L
2 for rz ≥ rH (3.13)
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we find

z(r) = ±
r∫

rz

dr̄
r4
z

√
b(rz)L

2

r̄2
√
b(r̄)

√
r̄8 b(r̄)− r8

z b(rz)
; for rz > rH , (3.14)

z(r) = const = ±∆z

2
; for rz = rH , (3.15)

where ∆z = 2|z(∞)|. The large r expansion of z yields

z(r) = ±

(
∆z

2
−
r4
z

√
b(rz)L

2

5 r5
+O(1/r9)

)
, (3.16)

therefore the bilayer condensate is given by

〈Oψ+ψ−〉 ∝ cz = −L
2

5
r2
z

√
r4
z − r4

H . (3.17)

We see that at rz = rH the condensate vanishes and the parallel embeddings given by

equation (3.15) correspond to two non-interacting domain walls — a monolayer phase. To

determine the stable phase we have to compare the free energies of the U-shaped (3.14)

and parallel (3.15) embeddings. Using the same regularisation as in the zero temperature

case, the free energies are

FU = 2N ′
 ∞∫
rz

dr

(
r6
√
b(r)√

r8 b(r)− r8
z b(rz)

− r2

)
− r3

z

3

 , for rz > rH (3.18)

F|| = 2N ′
 ∞∫
rH

dr
(
r2 − r2

)
−
r3
H

3

 = −2N ′

3
r3
H . (3.19)

To compare the free energies we have to evaluate numerically the free energy of the bilayer

phase (3.18). To this end it is convenient to define the dimensionless variables,

r̃ =
r

rH
; ∆z̃ =

rH
L2

∆z; r̃z =
rz
rH

; (3.20)

The free energy is then given by F = N ′ r3
H F̃ (r̃z). As expected it scales as T 3. Clearly

for the parallel embeddings F̃|| = −2/3, while for the U-shaped embeddings we have to

calculate F̃U numerically as a function of the parameter r̃z. Since r̃z is not a bare parameter

of the dual gauge theory (it is related to the condensate), we express r̃z = r̃z(∆z̃) and plot

the free energy F̃ ∝ F
T 3 as a function of ∆z̃ ∝ ∆z T .

In figure 2, we present plots of the free energy and the condensate c̃z as functions of

the separation between the layers, ∆z. The blue curve in the first plot from left to right

represents the free energy in the bilayer phase, while the red line represents the free energy

in the monolayer phase. The vertical dashed line represents the critical value of ∆z̃, for

which the free energies are the same. One can see that at ∆z̃cr = rH ∆z/L2 ≈ 0.5285

there is a first order phase transition from the bilayer phase to the monolayer phase. Since

T = rH/(πL
2), we find the following result for the critical temperature,

– 6 –
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Figure 2. Free energy F̃ and condensate c̃z as functions of the separation between the layers, ∆z.

Tcr =
(∆z̃cr/π)

∆z
≈ 0.1682

∆z
. (3.21)

As one expects from conformality, the critical temperature is set by the only other energy

scale in the theory, 1/∆z. In the second plot in figure 2, the blue curve represents the

bilayer condensate, while the red line represents the vanishing condensate in the monolayer

phase. The dashed vertical line again represents the critical value ∆z̃cr. One can see that

at the phase transition there is a finite jump of the condensate. Furthermore, one can verify

that the shaded regions in the plot have equal areas, which is consistent with Maxwell’s

equal area law.

Note that while, technically the bilayer U-shaped configuration that we considered in

this section is an analogue of the U-shaped embedding in the (r, ψ)-plane considered in

ref. [1], the physics described by these configurations is completely different. Indeed, at

finite temperature the parallel embeddings are always preferred relative to the U-shaped

embeddings in the (r, ψ)-plane. Here, by contrast, we have uncovered a first order phase

transition for the bilayer configuration. The intuitive explanation for this difference is that,

while in the bilayer case the parameter ∆z is dimensionful and defines an energy scale 1/∆z,

for the configuration considered in ref. [1], the analogous parameter ∆ψ is dimensionless

and there is no energy scale associated to it that could set the critical temperature (as in

equation (3.21)). The situation changes if one introduces an extra scale into the theory,

such as magnetic field [1], which breaks conformality even at zero temperature. In the next

subsection we consider the single bilayer in the presence of both finite temperature and

magnetic field.

3.2 Single bilayer at finite temperature and magnetic field

In order to excite an external magnetic field, we turn on a U(1) gauge field on the probe

branes. To this end, we consider the ansatz A2 = B
2πα′x1, which corresponds to a constant

magnetic field F12 = B/(2πα′) along the x3 direction, perpendicular to the defect. For the

DBI action and the first integral of the equation of motion we obtain

SD5 = −2NT
∫
dr
√
r4 +B2L4

√
1 +

r4 b(r)

L4
z′(r)2 , (3.22)

– 7 –
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where NT = N ′
T = 2π

3 τ5Vol(R2)/T , and

r6

L4

√
1 +B2L4

r4
b(r)z′(r)√

1 + r4b(r)
L4 z′(r)2

= ΠT,B
z . (3.23)

Defining rB =
√
B L and ΠT,B

z := r4z
L2

√
b(rz)

√
1 +

r4B
r4z

, we find the following result for the

profile of z ,

z(r) = ±
r∫

rz

dr
L2 r2

z

√
b(rz)

√
r4
z + r4

B

r2
√
b(r)

√
r4 (r4 + r4

B) b(r)− r4
z (r4

z + r4
B) b(rz)

; for rz > rH , (3.24)

z(r) = const = ±∆z

2
; for rz = rH , (3.25)

where ∆z = 2|z(∞)|. For the large r expansion of z we obtain

z(r) = ±

∆z

2
−
L2
√
r4
z − r4

H

√
r4
B + r4

z

5 r5
+O(1/r9)

 . (3.26)

Therefore the bilayer condensate is

〈Oψ+ψ−〉 ∝ cz = −L
2

5

√
r4
z − r4

H

√
r4
B + r4

z . (3.27)

Note that the condensate decreases as rH (the temperature) is increased. At rH = rz the

bilayer condensate vanishes and the theory is in a monolayer phase containing two parallel

domain walls described by parallel D5-brane embeddings. On the other hand, we see that

the magnetic field enhances the condensate (its absolute value grows with rB). This is an

expected behaviour, due to the universal nature of the effect of magnetic catalysis of chiral

symmetry breaking. The competition between the dissociating effect of the temperature

and the binding effect of the external magnetic field results in an interesting phase diagram,

which we analyse below.

As before the stable phase is determined by the minimisation of the free energy. Sub-

stituting equations (3.24) and (3.25) into the wick rotated on-shell action and regularising

as before, one finds the following expressions for the free energies of the U-shaped and

parallel embeddings,

FU = 2N ′
 ∞∫
rz

dr

 r2 (r4 + r4
B)
√
b(r)√

r4 (r4 + r4
B) b(r)− r4

z (r4
z + r4

B) b(rz)
− r2

− r3
z

3

 , for rz > rH

(3.28)

F|| = 2N ′
 ∞∫
rH

dr

(√
r4 + r4

B − r
2

)
−
r3
H

3

 = −2N ′

3
r3
H 2F1

[
−3

4
,−1

2
,
1

4
,−

r4
B

r4
H

]
.

(3.29)
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Figure 3. Phase diagram at non-zero temperature and external magnetic field for the single bilayer/

double monolayer (domain wall) phase transition. The white region corresponds to states where

only the deconfined (monolayer) phase is possible. In the light shaded region, both deconfined and

bilayer phases are possible, however only the deconfined phase is thermodynamically stable. The

dark shaded region represents the stable bilayer phase.

The numerical results can be summarised in the following phase diagram (figure 3). Note

that the positive slope of the critical curve separating the deconfined (monolayer) and the

bi-layer phases shows that, at fixed temperature (fixed rH) and separation ∆z the bilayer

phase is stabilised by the external magnetic field. This is yet another confirmation that

magnetic catalysis is realised in this system.

4 Meson spectrum of the single bilayer and stability analysis

In this section, we will study the meson spectrum of the proposed model.2 It should be

noted that the spectrum will be different from the one presented in [1]. For the case at

hand, the angle ψ has a zero classical value, while there is a profile for the x3 coordinate.

Contrary to the approach followed in [1] (and also in [4]), we will not introduce a new set

of Cartesian coordinates in order to realize even and odd boundary conditions. Instead,

this will be achieved by a convenient reparametrization of the relevant equations in their

Schrödinger form.

2The meson spectrum calculation is performed at zero temperature and zero magnetic field. The stability

at finite temperature and magnetic field can be inferred from thermodynamic analysis. The magnetic field

tends to stabilize the chiral symmetry broken phase and therefore we do not expect it to induce any

instabilities in the spectrum.

– 9 –
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We choose the following ansatz for the scalars,

z = z(r) + (2πα′) δz (t, r, θ+, φ−) , θ− = (2πα′) δθm (t, r, θ+, φ−) ,

φ+ = π + (2πα′) δφp (t, r, θ+, φ−) , ψ = (2πα′) δψ (t, r, θ+, φ−) , (4.1)

where the profile z(r) is given by (3.4). The construction is supplemented with a U(1)

gauge field of the D5-brane, which contributes to quadratic order in the α′ expansion.

Following closely the general prescription, we introduce the symmetric matrix S in the

following way,3

||E0
ab||−1 = S , (4.2)

while the non-zero elements are

Stt = G−1
00 , S11 = S22 = G−1

11 , Srr = G−1
rr ,

S++ = G−1
θ+θ+

, S−− = G−1
φ−φ−

, (4.3)

with

G00 = g
(0)
tt , G11 = g

(0)
11 , Grr = g(0)

rr + g
(0)
33 z

′(r)2 ,

Gθ+θ+ = g
(0)
θ+θ+

, Gφ−φ− = g
(0)
φ−φ−

. (4.4)

The non-cross terms in the quadratic expansion of the action are

−
L(2)
δθmδθm√
−E0

=
1

2
g

(0)
θ−θ−

Sab∂aδθm∂bδθm +

(
1

3
+ cot2 θ+

)
δθ2
m ,

−
L(2)
δψδψ√
−E0

=
1

2
g

(0)
ψψ S

ab∂aδψ∂bδψ , −
L(2)
δφpδφp√
−E0

=
1

2
g

(0)
φ+φ+

Sab∂aδφp∂bδφp , (4.5)

−
L(2)
δzδz√
−E0

=
1

2
Srr Sab∂aδz∂bδz , −

L(2)
δFδF√
−E0

=
1

4
Smp Snq Fpq Fmn ,

while the cross terms are

−
L(2)
δφpδψ√
−E0

= g
(0)
φ+ψ

Sab∂aδφp∂bδψ ,
L(2)
δθmδψ√
−E0

=
2

3

1

sin θ+
δθm∂φ−δψ

−
L(2)
δθmδφp√
−E0

=
2

3
cot θ+ δθm∂φ−δφp . (4.6)

4.1 Fluctuation along z

Since the scalar modes of δz decouple from all the other modes, it is possible to solve them

separately. For this reason we apply the usual ansatz to separate variables

δz = eiωt h3(r) Θ(θ+) Φ(φ−) (4.7)

3Since, in this section, we are not studying the effect of the addition of the magnetic field, there is no

antisymmetric contribution to the zeroth order expansion of the metric
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and after redefining r and ω as r = ρ rz and ω = M rz/L
2, we have

h
′′
3(ρ) +

6

ρ

ρ8 + 1

ρ8 − 1
h
′
3(ρ) +

3 ρ6

ρ8 − 1

[
κ +

M2

3 ρ2

]
h3(ρ) = 0 (4.8)

cot θ+ Θ
′
(θ+)

Θ(θ+)
+

Θ
′′
(θ+)

Θ(θ+)
+

1

sin2 θ+

Φ
′′
(φ−)

Φ(φ−)
= −κ . (4.9)

Equation (4.9) is easily recognized as the known differential equation for the two-sphere

spherical harmonics

Y (θ+, φ−) ≡ Θ(θ+) Φ(φ−) = Cl,m P
m
l (cos θ+) eimφ− with κ = l (l + 1) (4.10)

where Cl,m is the normalization constant. The stability analysis of the fluctuations only

requires the study of the lowest lying Kaluza-Klein mode, so from now on we set κ = 0

in (4.8).

The coordinates that we considered cover only one branch of the U-shaped embeddings.

To cover both branches and bring the equation of motion (4.8) to a Schrödinger form we

consider the following coordinate and functional change

η(ρ) = ±

( √
π Γ(9

8)

Γ(5
8)

− 1

ρ
2F1

[
1

8
,
1

2
,
9

8
,

1

ρ8

])
and Ψ(η) = ρ2 h3 (ρ(η))

√
1 − 1

ρ(η)8
,

(4.11)

where η ∈ [−
√
π Γ( 9

8
)

Γ( 5
8

)
,
√
π Γ( 9

8
)

Γ( 5
8

)
] and a different sign of η corresponds to a different branch of

the U-shaped embedding. The differential equation for the function Ψ(η) is

Ψ
′′
(η) +

(
M2 − V (η)

)
Ψ(η) = 0 with V (η) =

6 ρ(η)8 − 10

ρ(η)6
. (4.12)

Plotting the potential as a function of η, it is easy to notice (see figure 4) that for a wide

range of parameter space the potential is positive. Nevertheless, a small negative part near

the region η = 0 exists. Numerical computation of the spectrum of fluctuations will show

that this is not sufficient to produce tachyonic modes and the spectrum is indeed tachyon

free.

Solving (4.8) perturbatively around ρ = 1, we find that the general two parameter

family of solutions

h3(ρ) ≈ A +
B√
ρ − 1

, (4.13)

naturally splits into two one parameter classes, which can be turned on independently.

Solving the Schrödinger equation around η = 0 perturbatively, it is again clear that there

are two types of modes (as in [4]), namely even and odd. Inverting the r.h.s. of (4.11), it

is possible to relate the two classes of (4.13) with the even and odd types of modes. Doing

this identification, we conclude that

A = 0 and B 6= 0 ⇒ Ψ
′
(0) = 0 and Ψ(0) 6= 0 ⇒ even modes (4.14)

A 6= 0 and B = 0 ⇒ Ψ
′
(0) 6= 0 and Ψ(0) = 0 ⇒ odd modes (4.15)
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Figure 4. Plot of the Schrödinger potential as a function of η in the case of fluctuations along z.

The small negative part near the region η = 0 is not sufficient to produce tachyonic modes.

We conclude this subsection by solving numerically (4.8) after imposing either odd or

even boundary conditions, in the fashion outlined above. For the first several excited states

(in the l = 0 case), we find

Meven = 2.323, 6.209, 9.086, 11.873, . . . (4.16)

Modd = 4.693, 7.668, 10.486, 13.252, . . . (4.17)

As claimed above, the numerical computation confirms that the spectrum is tachyon free.

4.2 Fluctuation along θ

Following the same strategy as in [1], we suppress the φ− dependence. This leads to a full

decoupling of the δθm modes from the rest of the modes. Applying the usual separation of

variables ansatz

δθm = eiωt h(z)Y (θ+) . (4.18)

and redefining r and ω as r = ρ rz and ω = M rz/L
2, we have

h
′′
(ρ) +

4 ρ7

ρ8 − 1
h
′
(ρ) +

ρ6

ρ8 − 1

[
κ +

M2

ρ2

]
h(ρ) = 0 , (4.19)

Y
′′
(θ+) + cot θ+ Y

′
(θ+) − 1

3

(
κ− 2 +

3

sin2 θ+

)
Y (θ+) = 0 . (4.20)

Treating (4.20) as in [1], it is possible to quantize κ as follows

κ = − 4 − 3m (m + 3) with m > 0 . (4.21)

Since we are interested in the stabilty of the spectrum, we will focus on the lowest lying

Kaluza-Klein modes, implying κ = −4.
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Figure 5. Plot of the meson masses along z (left) and θ (right) directions for the first ten excited

states. The red (blue) bullets represent the even (odd) modes.

The Schrödinger form of (4.8) comes from the following coordinate and functional

change ,

η(ρ) = ±

( √
π Γ(9

8)

Γ(5
8)

− 1

ρ
2F1

[
1

8
,
1

2
,
9

8
,

1

ρ8

])
and Ψ(η) = ρ h3(ρ) , (4.22)

where again the different signs of η correspond to the different branches of the U-shaped

embedding. The differential equation for the function Ψ(η) is given by:

Ψ
′′
(η) +

(
M2 − V (η)

)
Ψ(η) = 0 with V (η) =

6 ρ(η)8 + 2

ρ(η)6
> 0 . (4.23)

The fact that the potential is strictly positive implies that the spectrum is tachyon free.

As a final consistency check of the stability of the spectrum we solve numerically (4.19)

for κ = −4, imposing even and odd boundary conditions along the lines of (4.14) and (4.15).

For the first several excited states, the result is

Meven = 3.590, 6.465, 9.249, 11.994, . . . (4.24)

Modd = 5.025, 7.863, 10.624, 13.360, . . . (4.25)

4.3 Fluctuations along ψ and φ

As can be seen from (4.6), after suppressing the φ− dependence only the fluctuations of

δψ and δφp couple between themselves. Since we are interested in the lowest lying Kaluza-

Klein mode, we consider the following ansatz

δψ = eiωt hψ(z) cos θ+ and δφp = eiωt hφ(z) . (4.26)

In this way, after redefining r and ω as r = ρ rz and ω = M rz/L
2, we end up with a

coupled system of differential equations for hψ and hφ

h
′′
ψ(ρ) +

4 ρ7

ρ8 − 1
h
′
ψ(ρ) +

ρ6

ρ8 − 1

[
M2

ρ2
− 10

]
hψ(ρ) = 0 (4.27)

h
′′
φ(ρ) +

4 ρ7

ρ8 − 1
h
′
φ(ρ) +

ρ4M2

ρ8 − 1
hφ(ρ) +

2ρ6

ρ8 − 1
hψ(ρ) = 0 . (4.28)
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Figure 6. Plot of the meson masses along ψ (left) and Λ (right) directions for the first seven

excited states. The red (blue) bullets represent the even (odd) modes.

Defining a new function Λ(ρ) as follows,

Λ(ρ) = hψ(ρ) + 5hφ(ρ) , (4.29)

it is possible to diagonalize the above system of coupled differential equations

Λ
′′
(ρ) +

4 ρ7

ρ8 − 1
Λ
′
(ρ) +

ρ4M2

ρ8 − 1
Λ(ρ) = 0 . (4.30)

The Schrödinger form of (4.27) and (4.30) comes from the same coordinate and func-

tional change we used for the θ fluctuations, namely (4.22). The forms of the potentials in

this case are given by

Vψ(η) = 2
6 ρ(η)8 + 2

ρ(η)6
> 0 and VΛ(η) =

2 ρ(η)8 + 2

ρ(η)6
> 0 . (4.31)

As previously, a strictly positive potential implies a spectrum without tachyonic modes,

and as a consistency check we again numerically evaluate, using even and odd boundary

conditions, the first several excited states both for ψ,

Mψ
even = 4.578, 7.578, 10.419, 13.199, . . . (4.32)

Mψ
odd = 6.099, 9.010, 11.814, 14.577, . . . (4.33)

and Λ,

MΛ
even = 2.606, 5.320, 8.043, 10.760, . . . (4.34)

MΛ
odd = 3.918, 6.680, 9.400, 12.111, . . . (4.35)

Note also that for M = 0 equation (4.30) has the special solution Λ = const. Similarly

to the situation in [1, 4], this Goldstone mode corresponds to the spontaneously broken

conformal symmetry.
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4.4 Fluctuations along the worldvolume gauge fields

Following the analysis of [1, 4], we will focus our attention on the modes independent

of the two-sphere coordinates, and also freezing the dependence on θ+ and φ−, allowing

coordinate dependence only along t, x1, x2 and r. We will also ignore all the components of

the gauge field along the θ+ and φ− directions. The main lesson of the equivalent analysis

in [1] was the presence of two Goldstone modes, one scalar and one vector, both of them

are renormalizable. This feature, which cannot be observed in the model of [4], continues

to exist also in the present analysis of the fluctuations of the gauge fields of the single

bilayer. The detailed analysis of the spectrum will be presented in the following.

The reduced action for the fluctuations of the gauge field is

S = − (2πα′)2N
∫

d3x dr
[
C(r)FµνF

µν + 2D(r)Fµr F
µ
r

]
(4.36)

where

C(r) =
π L4

3

r2√
r8 − r8

z

and D(r) =
π

6 r2

√
r8 − r8

z . (4.37)

Changing the radial coordinate from r to ξ as follows,

ξ(r) = ± 1√
2

r∫
rz

dz

√
C(z)

D(z)
= ±L2

[√
π

rz

Γ(9
8)

Γ(5
8)
− 1

r
2F1

[
1

8
,
1

2
,
9

8
,
r8
z

r8

]]
, (4.38)

where we need both signs of ξ in order to cover the two branches of the D5-brane and the

D5-brane, we arrive at

S = −T ′
∫

d3x

ξ∗∫
−ξ∗

dξ

(
1

4
Fµν F

µν +
1

2
Fµξ F

µ
ξ

)
, (4.39)

where

T ′ =
4

3
π L2 (2πα′)2N and ξ∗ =

L2√π
rz

Γ
(

9
8

)
Γ
(

5
8

) . (4.40)

Next, again following closely the analysis of [1], we proceed to expand the components of

the gauge field as

Aµ(x, ξ) =
∑
n

anµ(x)αn(ξ) and Aξ(x, ξ) =
∑
n

bn(x)βn(ξ) . (4.41)

The functions αn are defined in the interval ξ ∈ [−ξ∗, ξ∗] and a convenient choice of basis

turns out to be

αn =
1

ξ
1/2
∗

cos(Mn ξ) with Mn =
nπ

2 ξ∗
=

√
π

2

Γ
(

5
8

)
Γ
(

9
8

) n (4.42)

We find that the zero mode α0 = const. is normalizable, as in [1]. A convenient choice of

basis to parametrize the functions βn is

βn =


1
Mn

∂ξα
n = − 1

ξ
1/2
∗

sin(Mn ξ) for n ≥ 1

α0 = 1

ξ
1/2
∗

for n = 0
. (4.43)
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Figure 7. Schematic of possible flavour brane configurations in the
(
x3, ψ, r

)
-subspace. The filled

(empty) circles indicate orientation corresponding to D5(D5)-branes, so the U-shaped embeddings

have to connect a filled and an empty dot. The red curves (monolayer phase) correspond to two

copies of the ψ(r) embeddings studied in [1], while the blue curves (bilayer phase) represent two

(2+1)-dimensional layers which are separated (in the z direction) in the UV and connect smoothly

in the IR. In principle, it would also be possible to find some “diagonal” embedding along a linear

combination v± := z ± L2

3r ψ. It is clear, however, that these embeddings would have greater length

and thus higher free energies than the extremal embeddings and therefore we do not consider them

here.

With this choice of basis for the functions αn and βn, and a gauge transformation anµ →
anµ + 1

Mn
∂µb

n (for n ≥ 1), the total action for the meson modes becomes

S = −T ′
∫

d3x

{
1

2
∂µb

0 ∂µb0 +
1

4
f0
µν f

µν 0 +

∞∑
n=1

[
1

4
fnµν f

µν n +
1

2
M2
n a

n
µ a

µn

]}
, (4.44)

where Mn is given by (4.42).

The spectrum of the fluctuations of the gauge field gives rise to a plethora of fields:

massive (for n ≥ 1) and massless (the n = 0 mode) vector fields as well as a massless scalar

field b0. This latter mode is associated with the Goldstone mode of the spontaneously

broken U(1)×U(1) chiral symmetry, again in complete analogy with the analysis in [4].

5 Combined bilayer and monolayer phase

In this section we are going to explore in detail the different possible flavour brane con-

figurations in our framework. Besides studying the embedding equations, this includes a

thorough investigation of the free energies and phase transitions at finite temperature and

external magnetic field. Figure 7 schematically shows possible flavour brane embeddings

in the (z, ψ, r)-submanifold of the background.
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5.1 Zero temperature

The natural starting point for our investigation is the case of zero temperature and without

exciting any external fields. From the induced metric on the D5/D5-branes,

ds2 =
r2

L2

(
−dt2 + dx2

1 + dx2
2

)
+
L2

r2

[
dr2

(
1 +

r4

L4
z′(r)2 +

r2

9
ψ′(r)2

)
+
r2

3
dΩ2

2

]
, (5.1)

we obtain the relevant flavour brane DBI action,

SD5 = −τ5

∫
dξ6
√

detP [g] = −2N
∫
dr r2

√
1 +

r4

L4
z′(r)2 +

r2

9
ψ′(r)2, (5.2)

where N = 2π
3 τ5Vol(R2,1). From this, we can straightforwardly deduce the equations of

motion which can be integrated once, due to the cyclic nature of the z and ψ coordinates,

r6

L4 z
′(r)√

1 + r4

L4 z′(r)2 + r2

9 ψ
′(r)2

= Πz and
r4

9 ψ
′(r)√

1 + r4

L4 z′(r)2 + r2

9 ψ
′(r)2

= Πψ, (5.3)

where we introduced the conserved quantities and canonically conjugate momenta Πz and

Πψ. Solving for z′(r) and ψ′(r) we obtain

z′(r) = ±
L4

r2
Πz√

r8 − L4 Π2
z − 9 r2 Π2

ψ

and ψ′(r) = ±
9 Πψ√

r8 − L4 Π2
z − 9 r2 Π2

ψ

. (5.4)

We see that equations in (5.4) describe two branches of the D5-brane embedding. For

real values of Πz and Πψ, there is a minimal radial distance r0 at which the denominators

in (5.4) vanish and the two branches of the D-brane join smoothly to form a U-shaped

embedding. Only when both conjugate momenta vanish (Πz = Πψ = 0), the solution

corresponds to straight embeddings localized at constant z and ψ.

We consider the following configurations at zero temperature:

• The bilayer phase, i.e., the U-shaped embedding in the z-direction, for Πψ = 0. This

configuration was discussed in section 3.

• The two monolayers phase, i.e., the U-shaped embedding in the ψ-direction, for

Πz = 0. This was the subject of a recent paper by the present authors [1]. The

embedding equation and the analytic solution are in this case

ψ′(r) =
Πψ√

r8

81 −
r2

9 Π2
ψ

=
3rψ

r
√
r6 − r6

ψ

with ψ(r) = arccos

(
r3
ψ

r3

)
, (5.5)

where rψ represents the minimal radial position of the embedding.
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5.2 Finite temperature and external magnetic field

Let us introduce finite temperature through the inclusion of an emblackening factor b(r) :=

1− r4H
r4

in the metric, and also turn on a U(1) gauge field on the probe branes in order to

excite a magnetic field. Here, we will work with the ansatz A2 = Hx1, which corresponds

to a constant magnetic field F12 = H along the x3 direction, i.e., perpendicular to the

(2+1)-dimensional defects. Taking into account the combined effects of finite temperature

and constant magnetic field yields the DBI action for the flavour D5 branes,

SD5 = −2NT
∫
dr r2

√
1 +B2

L4

r4

√
1 +

r4

L4
b(r) z′(r)2 +

r2

9
b(r)ψ′(r)2, (5.6)

where B := 2πα′H. Thus, the resulting equation of motion reads

r6

L4

√
1 +B2L4

r4
b(r)z′(r)√

1 + r4b(r)
L4 z′(r)2 + r2b(r)

9 ψ′(r)2

= ΠT,B
z and

r4

9

√
1 +B2L4

r4
b(r)ψ′(r)√

1 + r4b(r)
L4 z′(r)2 + r2b(r)

9 ψ′(r)2

= ΠT,B
ψ ,

(5.7)

where now ΠT,B
z := r4z

L2

√
b(rz)

√
1 +B2L4

r4z
and ΠT,B

ψ :=
r3ψ
3

√
b(rψ)

√
1 +B2L4

r4ψ
. As before,

we can again distinguish between two extremal cases, namely the bilayer and monolayer

phases.

5.2.1 Bilayer phase

When ΠT,B
ψ = 0 = ψ′(r), we find

z′(r) = ±
L2r4

z

√
b(rz)

√
1 +B2L4

r4z

r2

√
r8b2(r)

(
1 +B2L4

r4

)
− r8

zb(r)b(rz)
(

1 +B2L4

r4z

) . (5.8)

Introducing rB := BL2, and for T = 0 and thus b(r) = 1, namely the case that we will be

mostly interested in subsequently, this simplifies to

z′(r) = ±
L2r2

z

√
r4
z + r4

B

r2
√
r8 + r4

B (r4 − r4
z)− r8

z

. (5.9)

The analysis of this case is identical to the analysis of the single bilayer presented in

section 3.2. The solution to equation (5.8) is thus given by (3.24).

5.2.2 Monolayer phase

On the other hand, setting ΠT,B
z = 0 = z′(r), we arrive at the familiar case [1],

ψ′(r) = ±
3r3
ψ

√
b(rψ)

√
1 +B2L4

r4ψ

r

√
r6b2(r)

(
1 +B2L4

r4

)
− r6

ψb(r)b(rψ)

(
1 +B2L4

r4ψ

) , (5.10)
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which reduces for zero temperature but finite magnetic field to

ψ′(r) = ±
3rψ
√
r4
ψ + r4

B

r

√
r6 + r4

B

(
r2 − r2

ψ

)
− r6

ψ

. (5.11)

This can be integrated to yield the numeric result for the ψ(r) embedding (for a detailed

discussion, cf. [1]).

5.3 Phase structure

In order to be able to decide which phase is energetically favoured, we have to evaluate

and compare the (regularised) free energy densities of the different possible phases.

5.3.1 Zero temperature and zero magnetic field

The regularised free energy density of the U-shaped monolayer phase can be expressed as

FUψ = 2N ′
∫ ∞
rψ

dr

 r5√
r6 − r6

ψ

− r2

− r3
ψ

3
= 0 , (5.12)

while the regularised free energy density of the U-shaped bilayer phase is given by

FUz = 2N ′
∫ ∞
rz

dr

 r6√
r8 − r8

ψ

− r2

− r3
z

3
=
N ′
√
π Γ
(
−3

8

)
r3
z

4 Γ
(

1
8

) < 0, (5.13)

which, for rz > 0, is always negative. Therefore, ∆F = FUz − FUψ < 0, and the bilayer

phase is energetically favoured at zero temperature.

5.3.2 Zero temperature and finite magnetic field

The regularised free energies are now given by

FUψ = 2N ′
∫ ∞
rψ

dr

 r(r4 + r4
B)√

r2(r4 + r4
B)− r2

ψ(r4
ψ + r4

B)
− r2

− r3
ψ

3
, (5.14)

FUz = 2N ′
∫ ∞
rz

dr

 r2(r4 + r4
B)√

r4(r4 + r4
B)− r4

z(r
4
z + r4

B)
− r2

− r3
z

3
. (5.15)

Important physical quantities, from the dual field theory point of view, are the asymp-
totic separations of the brane and anti-brane in the UV, given by the following expressions,

∆ψ∞ = 2

∫ ∞
r0,ψ

dr
3r3ψ

r
√
r6 + r2r4B − r6ψ

, Monolayer phase (5.16)

∆z = 2

∫ ∞
r0,z

dr
r4z

r2
√
r8 + r4r4B − r8z

, Bilayer phase. (5.17)

which we can evaluate numerically or find approximations.
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Figure 8. Phase diagram at T = 0 and finite external magnetic field.

As it was shown in [1], the parameter ∆ψ ranges from zero to 3π. However, since the

length of the ψ-cycle is 4π, at ∆ψ = 2π the two branches of the U-shaped embeddings are

at antipodal points. Increasing the separation further to ∆ψ > 2π is equivalent to having

a separation (4π −∆ψ) < 2π. Therefore, we will restrict the possible values of ∆ψ to the

interval [ 0 , 2π ] and when more than one U-shaped embedding exists, the one with lower

free energy will be selected.

If we compare the resulting free energies for the two possible U-shaped configurations,

we find the following phase diagram presented in figure 8. As one can see form the figure,

the mono layer phase exists only for π < ∆ψ < 2π and ∆z > ∆z∗, where ∆z∗ is determined

by the zero of the regularised free energy FUz .

5.3.3 Finite temperature and finite magnetic field

In the following we will present our results for the phase structure of the bilayer and

monolayer phases in the general case at finite temperature and finite external magnetic

field. As before, it is advantageous to work with the rescaled variables,

r̃ =
r

rH
, Π̃T,B

ψ =
ΠT,B
ψ

r3
H

, Π̃T,B
z =

ΠT,B
z

r2
H

, . . . (5.18)

In terms of these rescaled coordinates the regularised free energies are given by the following

expressions, cf. eq. (3.28) and [1], eqs. (4.16) and (4.17),4

F̃Uz =
FUz

(2N ′r3
H)

=

∞∫
r̃z

dr̃

(
r̃2
(
r̃4 + η2

)√
b(r̃)√

r̃4 (r̃4 + η2) b(r̃)− r̃4
z (r̃4

z + η2) b(r̃ψ)
− r̃2

)
− r̃3

z

3
, (5.19)

4Note the factor of 2 difference compared to the cited equations.
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Figure 9. Free energies of the U-shaped (blue) and straight embeddings (red) for η = 4. The

vertical dashed lines represent the critical values for ∆ψ and ∆z respectively, for which the free

energy of the U-shape embeddings and the straight embeddings are equal. The red dashed line in

the left panel shows an approximate solution.

F̃Uψ =
FUψ

(2N ′r3
H)

=

∞∫
r̃ψ

dr̃

 r̃
(
r̃4 + η2

)√
b(r̃)√

r̃2 (r̃4 + η2) b(r̃)− r̃2
ψ

(
r̃4
ψ + η2

)
b(r̃ψ)

− r̃2

− r̃3
ψ

3
, (5.20)

F̃|| =
F||

(2N ′r3
H)

=

∞∫
1

dr̃(
√
r̃4 + η2 − r̃2)− 1

3
= −1

3
2F1

(
−3

4
,−1

2
,
1

4
,−η2

)
. (5.21)

which can only be evaluated and compared numerically.

For any given η one can compute numerically the free energies of the U-shaped monolayers

and bilayers and compare it to the straight embeddings. An example is presented in figure 9

for η = 4.

In general the theory has four parameters: temperature (TH), magnetic field (B),

separation between the layers (∆z) and the dimensionless parameter ∆ψ. This suggests

that the phase diagram can be described by three dimensionless parameters. To facilitate

comparison to the zero temperature diagram presented in figure 8, we choose these physical

parameters5 to be ∆ψ, L2/(∆z rB) and η, and represent the three dimensional diagram in

terms of η = const. slices (see figure 10).

According to the analysis carried out in ref. [1], the monolayer phase exists only for

sufficiently large ratio of the magnetic field and the temperature squared, namely for η >

1/2. Therefore, for η < 1/2 the phase diagram in the ∆ψ — L2/(∆z rB) plane is determined

by the phase transition of the single bilayer phase described in section 3.2. As one can

see from figure 10, in this case the phase diagram has only deconfined and bilayer phases

separated by a critical line of first order phase transitions at ∆zcr. As long as η < 1/2,

the evolution of ∆zcr with η is determined by the phase diagram of the single bilayer (see

figure 3).

For η > 1/2, the monolayer phase is possible and the phase diagram contains three

different phases. As one can glean from figure 10, for η = 2 the phase diagram has a

strip of monolayer phase, which is stable for π < ∆ψ ≤ ∆ψcr and ∆z > ∆z∗. Here, as

5These parameters can be chosen as boundary conditions in the dual field theory in the UV.
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Figure 10. Phase diagram at finite temperature and finite external magnetic field for various finite

values of η.

in the previous section, ∆z∗ is determined by the vanishing of the regularised free energy

FUz . Furthermore at ∆z = ∆zcr and ∆ψ = ∆ψcr, there is a triple point, where all three

phases coexist. For ∆z > ∆zcr there are critical curves at ∆ψ = ∆ψcr and ∆ψ = π,

which separate the monolayer and the deconfined phases. For ∆z < ∆zcr there are critical

curves at ∆ψ(∆z) and ∆ψ = π, which merge at ∆z = ∆z∗ and separate the monolayer

and the bilayer phases. From figure 10, one can see that as η increases the area of the

monolayer phase increases as well as the critical parameters ∆ψcr and ∆zcr. At the same

time the parameter ∆z∗ remains almost unchanged. At sufficiently large η (at η ≈ 44.594),

∆ψcr = 2π and for even larger η (see figure 10 for η = 50) the monolayer phase is the

only stable phase for ∆ψ > π and ∆z > ∆zcr. Finally, in the limiting case η → ∞,

corresponding to the zero temperature limit, one has ∆zcr → ∞, the deconfined phase

ceases existence and one recovers the phase diagram presented in figure 8.

In conclusion, we see that at finite temperature and external magnetic, the theory

has a rich phase structure, characterised by a critical point of three coexisting phases. By

dialling the parameters of the theory one can stabilise any of the deconfined, monolayer or

bilayer phases.

6 Conlusions and outlook

In the present work, we have explored the phase structure of bilayer and monolayer phases

in the Klebanov-Witten model with embedded D5/D5 flavour probe brane pairs, resulting
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in a dual 2+1-dimensional defect field theory of strongly coupled fermions living on domain

walls in the 3 + 1-dimensional ambient space-time. The main advantage of the Klebanov-

Witten background, as opposed to the AdS5×S5 background, is the fact that the D5/D5-

brane configurations are stable without the necessity to stabilise them (see [9–12] for a

related construction involving D7/D7-branes in the AdS5 × S5 background, where it is

necessary to apply a pressure at the UV boundary to prevent the branes from annihilating

and to keep them at a fixed separation).

We have found a fairly rich phase structure at finite temperature and external magnetic

field from the competition of the dissociating effect of the temperature and the binding

effect of the magnetic field. The major novelty here is that we also find a competition

between the two possible U-shaped configurations corresponding to the bilayer (U-shaped

embedding in the z-direction) and monolayer (U-shaped embedding in the internal angle

ψ) phases. The hope is that the results reported here can be used to improve our un-

derstanding of spontaneous symmetry breaking in 2 + 1-dimensional real world materials,

although currently the details of such applications remain unclear. In addition, the bi-

layer/monolayer phase transitions that we describe could be relevant for real condensed

matter systems exhibiting bilayer structures.

Interesting directions for ongoing and future research include the generalisation of the

D5/D5-probe brane embeddings [14] to the Klebanov-Strassler model [15], its baryonic

branch [16] (or even the non-supersymmetric baryonic branch [17]), which are appealing

for phenomenological reasons, and would potentially allow to study quantum Hall states

(cf. e.g, [18–21]) in this framework, due to the existence of the C(2) RR-form and the

corresponding Chern-Simons term in these backgrounds. It would also be interesting to

study other phenomena in this model, like the existence and temperature dependence of

zero sound and diffusion modes at finite baryon chemical potential (see e.g. [22, 23] for

relevant results in other holographic models).
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