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Abstract

In this article, the parallel multiple access channel is studied under the assumption that transmitters maximize their
individual spectral efficiency by selfishly tuning their power allocation policy. Two particular scenarios are studied: (a)
transmitters are allowed to use all the available channels; and (b) transmitters are constrained to use a single channel.
Both scenarios are modeled by one-shot games and the corresponding sets of Nash equilibria (NE) are fully
characterized under the assumption that the receiver treads the multiple access interference as noise. In both cases,
the set of NE is non-empty. In the case in which transmitters use a single channel, an upper bound of the cardinality of
the NE set is provided in terms of the number of transmitters and number of channels. In particular, it is shown that in
fully loaded networks, the sum spectral efficiency at the NE in scenario (a) is at most equal to the sum spectral
efficiency at the NE in scenario (b). A formal proof of this observation, known in general as a Braess paradox, is
provided in the case of two transmitters and two channels. In general scenarios, we conjecture that the same effect
holds as long as the network is kept fully loaded, as shown by numerical examples. Moreover, the price of anarchy and
the price of stability in both games are also studied. Interestingly, under certain conditions on the channel gains,
Pareto optimality can be achieved at some NE if and only if the number of channels equals or exceeds the number of
transmitters. Finally, simulations are presented to verify the theoretical results.

1 Introduction
Multiple access channels (MAC) correspond to a com-
munication scenario where several transmitters commu-
nicate with a single receiver through a common channel
[1]. In parallel MAC, each transmitter can exploit a com-
mon set of orthogonal channels to communicate with
the receiver. Often, channel orthogonality is assumed in
the frequency domain, and thus, channels can be under-
stood as different non-overlapping frequency bands. This
model allows one to study communication scenarios such
as 802.11-based wireless local area networks [2,3], dis-
tributed soft or hard handovers in cellular systems [4],
or throughput-maximizing power control in multi-carrier
code division multiple access (MC-CDMA) systems [5].
In this article, we analyze the parallel MAC assuming

that transmitters selfishly maximize their individual spec-
tral efficiency (ISE) by autonomously selecting a single
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channel to perform their transmission. Here, the chan-
nel selection (CS) policy is not imposed by the receiver
to the transmitters, which justifies the terms decentral-
ized parallel MAC. The motivation for studying this sce-
nario and, in particular, the limitation of using a single
channel for transmitting stems from the fact that this is
often a practical constraint in some wireless networks,
for instance, Wi-Fi networks. Moreover, the choice of
enforcing radio devices to use only a subset of all the
available channels has been proved to be beneficial in
the case of rate-efficient centralized parallel MAC when
using successive interference cancellation [4]. In the case
of energy-efficient decentralized parallelMAC, it has been
shown that using a single channel is a dominant strat-
egy [5]. Within this framework, we study this scenario, to
which we refer to as CS problem, using a one-shot game
model. The players (the transmitters) have discrete action
sets (the channels) and their utility function (performance
metric) corresponds to their ISE. Our interest focuses on
the analysis of the set of Nash equilibria (NE) [6] of this
game. The relevance of the NE relies, in part, on the fact
that it describes a network state where the channel used
by each transmitter is individually optimal with respect to
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the channels adopted by all the other transmitters in the
network. Another reason is that an NE can be reached in
a fully decentralized fashion when radio devices interact
during certain time following particular behavioral rules
[7,8].
We distinguish the CS game described above from the

power allocation (PA) game. In the PA game, transmit-
ters can simultaneously use all the available channels, and
thus, the set of actions is a convex and closed set [9].
Indeed, the PA problem in decentralized parallelMAC has
been well investigated in the wireless literature [9-13]. In
these works, the main contribution consists in conducting
a complete analysis of the set of NE of the corresponding
one-shot games. Nonetheless, very few is known about the
set of equilibria in decentralized parallel MAC, with CS
policies. As we shall see, by dropping the convexity of the
set of actions, fundamental differences arise. For instance,
the uniqueness of the NE no longer holds.
Although the parallel MAC is, in terms of signal

model, a special case of the multiple-input multiple-
output (MIMO) interference channel (IC), the NE analysis
of the MIMO-IC [14-18] does not directly apply to the
case of parallel MAC. First, [10,11] address the case of fast
fading links and shows substantial differences between
both models especially in terms of the uniqueness of the
NE. Second, even if identical channel variation models
are considered in the MIMO-IC and parallel MAC, the
sufficient condition for the uniqueness of the NE derived
in [14,19] for static or block fading IC can be shown to
hold with probability zero in parallel MAC [9]. In par-
ticular, the sufficient condition for the uniqueness of the
NE provided in [14] is not necessary in general [20]. The
(more explicit) sufficient conditions for uniqueness given
by Scutari et al. [19] are generally not verified in parallel
MAC. More precisely, from [19] it is implied that there
exists a unique pure NE with high probability when for
each point-to-point communication the signal dominates
the interference. This condition is clearly not verified in
parallel MAC. For instance, in a 2-user parallel MAC, if
one user’s signal is dominated by the interference, the con-
verse holds for the other user. Finally, we highlight that
in the parallel MAC, when single-user decoding (SUD)
is assumed at the receiver, both the compact PA and CS
games have a special structure, namely, they are potential
games [21] or more specifically, best-response potential
games [22]. This structure is not observed in the case
of the MIMO-IC model. In Section 3, we discuss the
implications and advantages derived from this fact.
Within this context, the main contributions of this arti-

cle are described hereunder.

• The set of NE of the decentralized parallel MAC is
fully described in the case of CS policies and SUD at
the receiver. This set is shown to be non-empty and

an upper bound of its cardinality is provided as a
function of the number of transmitters and available
channels.

• In the 2-transmitter 2-channel case, it is formally
proved that for any realization of the channel gains,
there always exists at least one NE in the CS game
that produces a higher or equal network spectral
efficiency (NSE) than the unique NE in the PA game.
In wireless communications, this kind of observations
is often associated with a Braess-type paradox [23] as
in [20,24,25], where similar observations have been
made in other scenarios. For an arbitrary number of
transmitters and channels, we only provide numerical
results that support the aforementioned claim.

• The set of NE of the decentralized parallel MAC is
also studied in the asymptotic regime, that is for a
large number of transmitters in the case of CS
policies. In this context, we provide closed-form
expressions of the fraction of players which transmit
over each channel as a function of the ratio between
the channel bandwidth and the total available
bandwidth (sum of all channel bandwidths).

• Finally, we study the efficiency of the set of equilibria
in terms of the price of anarchy (PoA) and the price
of stability (PoS). We provide closed-form conditions
over which no loss of performance is observed at the
equilibrium in both the PA and the CS games.

The content of this article can briefly be summarized
as follows. In Section 2, the system and game models
are described. In Section 3, we revisit the existing results
regarding the PA problem and we provide new results on
the CS problem in terms of existence and uniqueness of
the NE. In Section 4, the contribution aforementioned are
fully detailed. In Section 5, we present simulation results
in order to verify our theoretical results. Finally, the article
is concluded by Section 6.

2 Models
2.1 Systemmodel

Let us define the sets K �= {1, . . . ,K} and S �= {1, . . . , S}.
Consider a parallel MAC with K transmitters and S chan-
nels (namely non-overlapping bands). Denote by y =
(y1, . . . , yS)T the S-dimensional vector representing the
received signal, which can be written in the baseband at
the symbol rate as follows

y =
K∑

k=1
Hkxk + w. (1)

Here, ∀k ∈ K, Hk is the channel transfer matrix from
transmitter k to the receiver, xk is the vector of sym-
bols transmitted by transmitter k, and vector w represents



Perlaza et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:15 Page 3 of 23
http://jwcn.eurasipjournals.com/content/2013/1/15

the noise observed at the receiver. We will exclusively
deal with the scenario where the matrices Hk are S-
dimensional diagonal matrices (parallel MAC), i.e., Hk =
diag

(
hk,1, . . . , hk,S

)
. In our analysis, block fading chan-

nels are assumed. Hence, for each channel use, the entries
hk,s, for all (k, s) ∈ K × S , are time-invariant realiza-
tions of a complex circularly symmetric Gaussian random
variable with zero mean and unit variance. Here, we
assume that each transmitter is able to perfectly estimate
its own channel realizations (coherent communications),
i.e., the channels hk,1 . . . hk,S for transmitter k. The vector
of transmitted symbols xk , ∀k ∈ K is an S-dimensional
complex circularly symmetric Gaussian random variable
with zero mean and covariance matrix Pk = E

(
xkxHk

) =
diag

(
pk,1, . . . , pk,S

)
. Assuming the transmit symbols to be

Gaussian and independent is optimal in terms of spectral
efficiency, as shown in [26,27]. For all (k, s) ∈ K × S ,
pk,s represents the transmit power allocated by transmit-
ter k over channel s and transmitters are power-limited,
that is

∀k ∈ K,
S∑

s=1
pk,s � pk,max, (2)

where pk,max is the maximum transmit power of trans-
mitter k. A PA vector for transmitter k is any vector
pk = (

pk,1, . . . , pk,S
)
with non-negative entries satisfy-

ing (2). The noise vector w is an S-dimensional zero
mean Gaussian random variable with independent, equal
variance real and imaginary parts. Here, E

(
wwH) =

diag
(
σ 2
1 , . . . , σ

2
S
)
, where σ 2

s represents the noise power
over channel s. We, respectively, denote the noise spec-
tral density and the bandwidth of channel s by N0 and
Bs, thus, σ 2

s = N0Bs. The total bandwidth is denoted by
B = ∑S

s=1 Bs.

2.2 Gamemodels
The PA and CS problems described in Section 1 can,
respectively, be modeled by the following two non-
cooperative static games in strategic form (with i ∈ {a, b}):

G(i) =
(
K,
(
P(i)
k

)
k∈K , (uk)k∈K

)
. (3)

In both games, the set of transmitters K is the set of
players. An action of a given transmitter k ∈ K is a par-
ticular PA scheme, i.e., an S-dimensional PA vector pk =(
pk,1, . . . , pk,S

) ∈ P(i)
k , where P(i)

k is the set of all possible
PA vectors which transmitter k can use either in the game
G(a) (i = a) or in the game G(b) (i = b). An action profile
of the game i ∈ {a, b} is a super vector

p = (
p1, . . . ,pK

) ∈ P(i),

where P(i) is a set obtained from the Cartesian product of
all the action sets, i.e., P(i) = P(i)

1 × · · · × P(i)
K , where

P(a)
k =

{ (
pk,1, . . . , pk,S

) ∈ RS : ∀s ∈ S , pk,s � 0,

∑
s∈S

pk,s � pk,max

}
, and

P(b)
k = {

pk,max es : ∀s ∈ S , es = (
es,1, . . . , es,S

)
,

∀r ∈ S \ s, es,r = 0, andes,s = 1
}
.

In the sequel, we respectively refer to the games G(a) and
G(b) as the PA game and CS game. Moreover, we drop the
super-indices (a) or (b) when interchangeably referring to
the game G(a) or G(b).
Let us denote by p−k any vector in the set

P(i)
−k

�= P(i)
1 × · · · × P(i)

k−1 × P(i)
k+1 × · · · × P(i)

K (4)

with (i, k) ∈ {a, b} × K. For a given k ∈ K, the vector
denoted by p−k represents the strategies adopted by all the
players other than player k.With a slight abuse of notation,
we can write any vector p ∈ P(i) as

(
pk ,p−k

)
, in order to

emphasize the kth component of the super vector p. The
utility for player k in the game G(i) is its spectral efficiency
uk : P(i) → R+, and

uk(pk ,p−k) =
∑
s∈S

Bs
B

log2
(
1 + γk,s

)
[bps/Hz], (5)

where γk,s is the signal-to-interference plus noise ratio
(SINR) seen by player k over its channel s, i.e.,

γk,s = pk,sgk,s
σ 2
s +∑

j∈K\{k} pj,sgj,s
, (6)

and gk,s �
∣∣hk,s∣∣2. Note that from (6), it is implied that

SUD is used at the receiver. The choice of SUD is basi-
cally due to scalability (in terms of signaling cost) and
fairness for the decoding scheme. Clearly, optimality is not
sought here, nonetheless, these constraints are inherit to
the decentralized nature of the network.
As a solution concept for both G(a) and G(b), we focus on

the notion of NE [6], which we define, using our notation,
as follows

Definition 1 (Pure NE). In the non-cooperative games
in strategic form G(i), with i ∈ {a, b}, an action profile p ∈
P(i) is a pure NE if it satisfies, for all k ∈ K and for all
p′
k ∈ P(i)

k , that

uk(pk ,p−k) � uk(p′
k ,p−k). (7)

The relevance of the NE is that at such state, the PA
or CS policy chosen by any transmitter is optimal with
respect to the choice of all the other transmitters. Thus, in
a decentralized network, the NE is a stable network state,
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since no player has a particular interest in deviating from
the actual state.
In the following, we provide some fundamental results

which we use in the further analysis of the games G(a) and
G(b).

3 Auxiliary results
In this section, we introduce some existing results on the
existence and uniqueness of the NE in the games G(a) and
G(b). For doing so, we use the fact that both games G(a) and
G(b) have been shown to be potential games (PG) [21,28]
in [4,29], respectively. We conclude this section by intro-
ducing a new result which allows us to establish an upper
bound on the number of NE that the game G(b) might
possess.

3.1 General results
The analysis presented in the following strongly relies on
the fact that both games G(a) and G(b) are potential games.
Thus, for the sake of completeness, we define exact PGs
using our notation.

Definition 2 (Exact PG). Any game in strategic form
defined by the triplet

G = (
K, (Pk)k∈K , (uk)k∈K

)
is an exact potential game if there exists a function φ (p)

for all p ∈ P = P1 × · · · × PK such that for all players
k ∈ K and for all p′

k ∈ Pk, it holds that

uk(pk ,p−k) − uk(p′
k ,p−k) = φ(pk ,p−k) − φ(p′

k ,p−k).

Note that the utility function of player k can be written
as follows,

uk
(
pk ,p−k

) = φ(p) − υk
(
p−k

)
, (8)

where

φ(p) =
∑
s∈S

Bs
B

log2

(
σ 2
s +

K∑
k=1

pk,sgk,s

)
and (9)

υk
(
p−k

) =
∑
s∈S

Bs
B

log2

⎛
⎝σ 2

s +
∑

j∈K\{k}
pj,sgj,s

⎞
⎠ . (10)

Interestingly, the first term φ(p) does not depend on the
index of k and the term υk

(
p−k

)
does not depend on the

actions of player k. Thus, the results initially mentioned
by the authors of [4,29] follow immediately from (8) and
Definition 2.

Lemma 1. The strategic form games G(i), with i ∈ {a, b},
are exact potential games with potential function φ(p) :
P(i) → R+ defined in (9).

The relevance of PG relies on the fact that it is a class
of games for which the existence of at least one pure NE
is always guaranteed [21]. In addition, many known learn-
ing procedures, such as, best response dynamics, fictitious
play, and some reinforcement learning dynamics converge
in PG. As a consequence, any of these dynamics can be
used to implement algorithms to achieve an equilibrium
in a fully decentralized fashion. Nonetheless, we leave the
design of decentralized techniques for achieving NE out of
the scope of this article and we focus on the analysis of the
equilibria.We refer the interested readers to [7,8,13,14,30]
for more details. In the following, we use Lemma 1 to ana-
lyze the set of NE of both our PA game G(a) and our CS
game G(b).

3.2 Known results concerning the PA game G(a)

In the following, we comment on the existence and
uniqueness of the NE in G(a).

3.2.1 Existence of an NE
Regarding the existence of pure NE, the following lemma
is an immediate consequence of our Lemma 1 and Lemma
4.3 in [21].

Lemma 2 (Existence of a pure NE). The game G(a) has
always at least one NE in pure strategies.

Regarding the existence of a mixed NE (i.e., a proba-
bility distribution on the possible actions which verifies
Definition 1), it follows from [31], that the existence of at
least one NE inmixed strategies always exists. This is basi-
cally because the action spaces P(a)

k are compact spaces
and the utility functions are continuous with respect to
the action profile. However, in compact strategy spaces,
mixed strategies are generally less attractive due to the dif-
ficulty of its implementation in wireless communications
systems [8].

3.2.2 Uniqueness of the pure NE
In the game G(a), the uniqueness of the NE has been
shown to hold with probability one [9].

Theorem 1 (NE uniqueness in parallel MAC). The
game G(a) has almost surely a unique pure NE.

A formal proof of Theorem 1 is provided in [9]. This
proof is based on the concept of degeneracy which allows
one to characterize the directions along which the poten-
tial remains constant. A simpler proof for the special case
of 2-players and 2-channels is given in [32].
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3.2.3 Determination of the NE
From Definition 2, it follows that the unique NE in pure
strategies, denoted by p†, is the unique solution of the
following optimization problem:

arg max
p∈P(a)

φ (p) . (11)

The components of the PA vector p† in (11) are for all
(k, s) ∈ K × S ,

p†k,s =
[
Bs
B

1
βk

− σ 2
s +∑j∈K\{k} p

†
j,sgj,s

gk,s

]+
, (12)

where βk is a Lagrangian multiplier chosen to saturate the
power constraints (2). Note that this result shows the con-
nections between the notion of NE and the well-known
water-filling PA policy [13]. For a further discussion on
this connection, the reader is referred to [7,8].

3.3 New results concerning the CS game G(b)

In the game G(b), it can be checked that given a vector
p−k ∈ P(b)

−k , it follows that ∀k ∈ K and ∀pk ∈ [
0, pk,max

]
,

the potential function satisfies that φ
(
pk es,p−k

)
�

φ
(
pk,max es,p−k

)
, where es = (

es,1, . . . , es,S
) ∈ RS, ∀r ∈

S \ s, es,r = 0, and es,s = 1. Thus, the problem of transmit
power control disappears and there is no lost of generality
by choosing the action sets as P(b)

k . Technically, the main
difference between G(a) and G(b) is that the latter is a finite
game (|K×S| < +∞). In the following, we investigate the
consequences of this fact on the existence and multiplicity
of the NE.

3.3.1 Existence of a pure NE
Regarding the existence of at least one NE in pure strate-
gies, we have that from our Lemma 1 and Corollary 2.2 of
[21], the following lemma holds.

Lemma 3 (Existence of a pure NE). The game G(b) has
always at least one NE in pure strategies.

Regarding the existence of an equilibrium in mixed
strategies, we have that given that the actions sets are dis-
crete and finite, then the existence of at least one NE in
mixed strategies is ensured [6].

3.3.2 Multiplicity of the pure NE
In the following, we show that multiple NE might exists in
the game G(b).

Proposition 1. Let K̂ ∈ N be the highest even number
which is less or equal to K. Then, the game G(b) has L pure
NE strategy profiles, where,

1 � L � 1 + (S − 1)
∑

i∈{2,4,...,K̂}

(
K
i

)
. (13)

The proof of Proposition 1 is given in Appendix. This
proof relies on the fact that whenever a player deviates
from a given action profile p, it achieves a different util-
ity. That is, given a set of channels

{
gij
}
∀(i,j)∈K×S , it holds

that uk(p) �= uk(p′), where p′ is obtained by letting only
one transmitter to deviate from p. This holds from the fact
that the channel realizations are drawn from a continuous
distribution and thus, Pr

(
uk(p) = uk(p′) | p �= p′) = 0.

Thus, under this condition, if p is an NE, then p′ is not
and vice versa. Following this procedure, a set of action
profiles can be eliminated and only some actions profiles
which are NE candidates are left over. In this way, a bound
on the maximum number of equilibria can be provided
independently of the exact channel realizations and only
relying on the parameters K and S. Indeed, this is one
of the main properties of the bound provided by Propo-
sition 1 since, a calculation of the exact number of NE
becomes cumbersome when the number of transmitters
K and channels S grows to infinity. As we shall see, the
bound in Proposition 1 holds with strict equality in the
case of K = 2 transmitters and S = 2 channels, that
is, 1 � L � 2. For an arbitrary number of transmitters
K > 2 and channels S > 2, the bound is not tight. This
is basically because some of the action profiles obtained
using the elimination processes described before might
mutually be exclusive of the set of NE. For instance, in
the game G(b) with K = 3 and S = 2, the set of PA
vectors pmax (e1, e1, e1), pmax (e1, e2, e2), pmax (e2, e2, e1),
and pmax (e2, e1, e2) might all be NE candidates. Nonethe-
less, if pmax (e1, e1, e1) is an equilibrium for a given vector
of channels

{
gij
}
∀(i,j)∈K×S , then the other three action

sets are not NE for the same set of channels and vice
versa. Thus, only three out of the four candidates can
be NE simultaneously. The exact number of NE can be
determined following the method described in the fol-
lowing section, but it requires the complete knowledge
of the channel gains. Proposition 1 aims at providing an
estimation based only on the parameters K and S.

3.3.3 Determination of the NE
In order to fully identify the action profiles correspond-
ing to an NE, we use the graph G described in the proof
of Proposition 1 in Appendix. Basically, we convert the
non-directed graph G into an oriented graph Ĝ whose
adjacency matrix is the non-symmetric square matrix Â
whose entries are ∀(i, j) ∈ I2 and i �= j,

âij =
{
1 if i ∈ Vj andφ

(
p(j)) > φ

(
p(i))

0 otherwise,
(14)

and âi,i = 0 for all i ∈ I . The set Vj contains the indices
of all the vector that can be obtained by letting only one
player to deviate from the action profile p(j). This set is
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also called the neighborhood of action profile p(j). More
specifically, in the oriented graph Ĝ, there exists an edge
or arrow starting in vertex vi and ending in vertex vj, i.e.,
âij = 1, if and only if φ(p(j)) > φ(p(i)) and φ(p(i)) is in the
neighborhood of φ(p(j)). Note that the first condition for
adjacency in Ĝ represents the assumption of rational play-
ers. That is, a player changes its strategy if the new strategy
brings a higher utility, i.e., it increases the potential func-
tion. The second condition enforces the fact that only one
player can deviate at a time from the initial action profile
p(i). In Figure 1, we show an example of the non-directed
G graph and how it is transformed into an oriented graph
Ĝ for the case where K = 3 and S = 2.
From the definition of the matrix Â, we have that a nec-

essary and sufficient condition for a vertex vi to represent
an NE action profile is to have a null out-degree in the
oriented graph Ĝ, i.e., there are no outgoing edges from
the node vi (sink vertex). Finally, one can conclude that
determining the set of NE in the game G(b) boils down
to identifying all the sink vertices in the oriented graph
Ĝ. Note that this method can be used only to determine
the whole set of NE. It does not pretend to be an algo-
rithm which can be directly implemented in decentralized
wireless networks, since it requires complete information
at each transmitter. Methods for achieving equilibria in
wireless networks are described in [7,8,13,14,30].

4 Equilibrium performance analysis and special
cases

In this section, we study in detail two special cases of
relevant interest to understand previous conclusions and
provide more insights into decentralized PA problem in
terms of design. First, the games G(a) and G(b) are stud-
ied assuming that there exist only K = 2 transmitters and
S = 2 available channels. In particular, we analyze the set
of NE action profiles of both games and compare the NSE,

U(i) : P(i) → R, obtained by playing both games. Here,
for all i ∈ {1, 2},

U(i)(p1, . . . ,pK ) =
K∑

k=1
uk(p1, . . . ,pK )[bps/Hz]. (15)

From this analysis, we conclude that limiting the trans-
mitters to use a single channel brings a better result in
terms of NSE (15). Second, we consider the case of a large
number of transmitters. This study leads to two important
conclusions: (i) the fraction of players using a given chan-
nel depends mainly on the bandwidth of each channel and
not on the exact channel realization nor the number of
players and channels; (ii) in the asymptotic regime (K →
∞) both games exhibit the same performance. Before we
start, let us introduce the notion of best response corre-
spondence, since it plays a central role in the following
analysis.

Definition 3 (Best-response correspondence). In a
non-cooperative game described by the 3-tuple(
K, (Pk)∀k∈K , (uk)∀k∈K

)
, the relation BRk : P−k → Pk

such that

BRk
(
p−k

) = arg max
qk∈Pk

uk
(
qk ,p−k

)
, (16)

is defined as the best-response correspondence of player k ∈
K, given the actions p−k adopted by all the other players.

4.1 The 2-transmitter 2-channel case
Consider the games G(a) and G(b) with K = 2 and S = 2.
Assume also that ∀k ∈ K, pk,max = pmax and ∀s ∈ S ,
σ 2
s = σ 2 and Bs = B

S . Denote by SNR = pmax
σ 2 the average

signal-to-noise ratio (SNR) of each active communication.

Figure 1 (a) Non-oriented graph and (b) oriented graph representing the gameG(b). The number of players is K = 3 and the number of
actions is S = 2, under the condition φ(p(2)) > φ(p(6)) > φ(p(1)) > φ(p(5)) > φ(p(4)) > φ(p(7)) > φ(p(8)) > φ(p(3)). Total number of vertices:
SK = 8, number of neighbors per vertex: K(S − 1) = 3. Maximum Number of NE: 4. Number of NE: 2 (red vertices in (b)).
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4.1.1 The PA game

Let us denote by p† =
(
p†1,p

†
2

)
the NE of the game G(a).

Then, following Definition 1, one can write the following
set of inclusions,

∀k ∈ K, p†k ∈ BRk
(
p†−k

)
. (17)

Note that, for all k ∈ K and for all p−k ∈ P(a), the
set BRk

(
p−k

)
is a singleton (Definition 3) and thus, (17)

represents a system of equations. By solving the result-
ing system of equations (17) for a given realization of the
channels

{
gij
}
∀(i,j)∈K×S , one can determine the NE of the

game G(a). We present such a solution in the following
proposition.
Proposition 2 (NE in G(a)). Let the action profile p† =(
p†1,p

†
2

)
∈ P(a), with p†1 =

(
p†11, pmax − p†11

)
and p†2 =(

pmax − p†22, p
†
22

)
be an NE action profile of the game G(a)

with channel realizations g = (
g11, g12, g21, g22

)
. Then,

with probability one, p† is the unique NE and it can be
written as follows:

• Equilibrium 1: if g ∈ A1=
{
g ∈ R4+ : g11

g12 �
1+SNRg11
1+SNRg22 ,

g21
g22 �

1+SNRg11
1+SNRg22

}
, then, p†11 = pmax and p†22 = pmax.

• Equilibrium 2: if g ∈ A2 =
{
g ∈ R4+ : g11

g12 � 1+
SNR

(
g11 + g21

)
, g21
g22 � 1 + SNR

(
g11 + g21

)}
, then,

p†11 = pmax and p†22 = 0.
• Equilibrium 3: if g ∈ A3=

{
g ∈ R4+ : g11

g12 �
1

1+SNR(g12+g22)
, g21
g22 �

1
1+SNR(g12+g22)

}
then, p†11 = 0 and

p†22 = pmax.
• Equilibrium 4: if g ∈ A4=

{
g ∈ R4+ : g11

g12 �
1+SNRg21
1+SNRg12 ,

g21
g22 � 1+SNRg21

1+SNRg12

}
, then, p†11 = 0 and p†22 = 0.

• Equilibrium 5: if g ∈ A5 =
{
g ∈ R4+ : g11

g12 � g21
g22 ,

1+SNRg11
1+SNRg22 <

g21
g22 < 1 + SNR

(
g11 + g21

)}
, then, p†11 = pmax

and p†22 = 1
2

(
pmax − σ 2

g22 + σ 2+g11pmax
g21

)
.

• Equilibrium 6: if g ∈ A6 =
{
g ∈ R4+ : g11

g12 � g21
g22 ,

1
1+SNR(g12+g22)

<
g11
g12 <

1+SNRg11
1+SNRg22

}
, then,

p†11 = 1
2

(
pmax − σ 2

g11 + σ 2+pmaxg22
g12

)
and p†22 = pmax.

• Equilibrium 7: if g ∈ A7 =
{
g ∈ R4+ : g11

g12 � g21
g22 ,

1+SNRg21
1+SNRg12 <

g11
g12 < 1 + SNR

(
g11 + g21

)}
, then,

p†11 = 1
2

(
pmax − σ 2+pmaxg21

g11 + σ 2

g12

)
and p†22 = 0.

• Equilibrium 8: if g ∈ A8 =
{
g ∈ R4+ : g11

g12 � g21
g22 ,

1
1+SNR(g12+g22)

<
g21
g22 <

1+SNRg21
1+SNRg12

}
, then, p†11 = 0 and

p†22 = 1
2

(
pmax − σ 2+g12pmax

g22 + σ 2

g21

)
.

The proof of Proposition 2 is given in Appendix.
In Figure 2, we plot the different types of NE of the game

G(a) as a function of the channel ratios g11
g12 and g21

g22 . Note
that under the knowledge of all channels, the set of all pos-
sible pure NE can be obtained by simply placing the point(
g11
g12 ,

g21
g22

)
in Figure 2. The uniqueness of the NE is not

ensured under certain conditions. In fact, infinitely many
NE can be observed, however, the conditions for this to
happen are zero probability events, as we shall see in the
following lemma.

Lemma 4. Let α
�= g11

g21 = g12
g22 and assume that the set of

channels
{
gij
}
∀(i,j)∈K×S satisfies the following conditions

1
1 + pmax

σ 2 (g12 + g22)
< α < 1 + pmax

σ 2
(
g11 + g21

)
,

Then, any PA vector p =
(p11, pmax − p11, pmax − p22, p22) ∈ P(a), such that

p11 = 1
2

(
pmax (1 − α) + σ 2

(
1
g12

− 1
g11

))
+ αp22

is an NE action profile of the game G(a).

The proof of Lemma 4 is the first part of the proof of
Proposition 2. In the following section, we perform the
same analysis presented above for the game G(b).

4.1.2 The CS game
When K = 2 and S = 2, the game G(b) has four possi-
ble outcomes, i.e.,

∣∣P(b)∣∣ = 4. We detail such outcomes
and its respective potential in Table 1. Following Defini-
tion 1, each of those outcomes can be an NE depending
on the channel realizations

{
gij
}
∀(i,j)∈K×S , as shown in the

following proposition.

Proposition 3 (NE in G(b)). Let the PA vector p∗ =(
p∗
1,p∗

2
) ∈ P(b) be one NE in the game G(b). Then, depend-

ing on the channel gains g = (
g11, g12, g21, g22

)
, the NE p∗

can be written as follows:

• Equilibrium 1: when g ∈ B1 =
{
g ∈ R4+ : g11

g12 �
1

1+SNRg22 and
g21
g22 � 1 + SNRg11

}
, then, p∗

1 = (pmax, 0) and
p∗
2 = (0, pmax).

• Equilibrium 2: When g ∈ B2 =
{
g ∈ R4+ : g11

g12 � 1+
SNRg21and g21

g22 � 1 + SNRg11
}
, then, p∗

1 = (pmax, 0) and
p∗
2 = (pmax, 0).

• Equilibrium 3: when g ∈ B3 =
{
g ∈ R4+ : g11

g12 �
1

1+SNRg22 and g21
g22 � 1

1+SNRg12

}
, then, p∗

1 = (0, pmax) and
p∗
2 = (0, pmax).
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Figure 2 Nash equilibrium action profiles as a function of the channel ratios g11
g12

and g21
g22

for the two-player-two-channel gameG(a). The

function ψ : R+ → R+ is defined as follows: ψ(x) = 1 + SNR x. The best response function BRk(p−k), for all k ∈ K, is defined by (12). Here, it has

been arbitrarly assumed that ψ(g21)
ψ(g12)

<
ψ(g11)
ψ(g22)

.

• Equilibrium 4: when g ∈ B4 =
{
g ∈ R4+ : g11

g12 � 1+
SNRg12and g21

g22 � 1
1+SNRg12

}
, then, p∗

1 = (0, pmax) and
p∗
2 = (pmax, 0).

The proof follows immediately from Definition 1 and
Table 1. In Figure 3, we plot the different types of NE
action profiles as a function of the channel ratios g11

g12

Table 1 Potential function φ of the gameG(a), withK = 2
and S = 2
Tx1\Tx2 p2 = (pmax, 0) p2 = (0,pmax)

p1=(pmax, 0)

1
2 log2

(
σ 2+pmax(g11+g21)

)
+1

2 log2
(
σ 2
)

1
2 log2

(
σ 2+pmaxg11

)
+ 1

2 log2
(
σ 2+pmaxg22

)

p1=(0, pmax)

1
2 log2

(
σ 2+pmaxg12

)
+ 1

2 log2
(
σ 2+pmaxg21

)
1
2 log2

(
σ 2+pmax(g12+g22)

)
+ 1

2 log2
(
σ 2
)

Player 1 chooses rows and player 2 chooses columns.

and g21
g22 . Note that under the knowledge of all chan-

nels, the set of all possible pure NE can be obtained
by simply placing the point

(
g11
g12 ,

g21
g22

)
in Figure 3. Note

how the action profiles p∗ = (pmax, 0, 0, pmax) and
p+ = (0, pmax, pmax, 0) are both NE, when the channel
realizations satisfy that g ∈ B5 = B1 ∩ B4, i.e.,

B5 =
{
g ∈ R4+ :

1
1 + SNRg22

� g11
g12

� 1 + SNRg21 and

1
1 + SNRg12

� g21
g22

� 1 + SNRg11
}
.

(18)

This confirms the fact that several NE might exist in the
game G(b) depending on the exact channel realization, as
stated in Proposition 1. Moreover, one can also observe
that there might exist an NE action profile which is not
a global maximizer of the potential function (9) [33] (e.g.,
φ (p∗) < φ

(
p+
2
)
).
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Figure 3 Nash equilibrium action profiles as a function of the channel ratios g11
g12

and g21
g22

for the two-player-two-channel gameG(b),

respectively. The function ψ : R+ → R+ is defined as follows: ψ(x) = 1+ SNR x. The best response function BRk(p−k), for all k ∈ K, is defined by
(12). Here, it has been arbitrarly assumed that ψ(g11) < ψ(g21).

In the sequel, the performance achieved by the trans-
mitters at the equilibrium in both games are compared.

4.2 A Braess-type paradox
As suggested in [23], a Braess-type paradox refers to a
counter-intuitive observation consisting in a reduction of
the individual utility at the equilibria, when the players are
granted with a larger set of actions. That is, by letting the
players to choose from a larger set of options, their indi-
vidual benefit reduces. Recently, the Braess-type paradox
has been also associated with the reduction of the sum-
utility instead of the individual utilities, as in [20,25,34] in
the wireless communications arena.
In our particular case, the set of actions for player k

in the game G(b) is a subset of its set of actions in the
game G(a), i.e., ∀k ∈ K, P(b)

k ⊆ P(a)
k . Interestingly,

as observed in [23], reducing the set of actions of each
player leads, in this particular game, to a better global
performance. This effect has been reported in the paral-
lel interference channel in [24,25] under the consideration
of particular channel conditions and later, more gener-
ally in [20]. However, a formal proof of the existence
of this paradox is not provided in the aforementioned
references. This observation has also been reported in

the parallel MAC for the case of successive interference
cancellation (SIC) in [35]. Nonetheless, the channel in
[35] was not fully decentralized, as it required a central
controller to dictate the channel policy to all the transmit-
ters. In the following, we study this observation in more
detail.
Let us denote by p(†,n)

k the unique NE action profile of
game G(a), when the vector g = (

g11, g12, g21, g22
) ∈ An,

for all n ∈ {1 . . . , 8}. Let us also denote by p(∗,n) one of the
NE action profiles of game G(b) when

(
g11, g12, g21, g22

) ∈
Bn, for all n ∈ {1, . . . 4}. The sets An and Bn are defined
in Propositions 2 and 3. Then, for a finite SNR level,
one can observe that ∀n ∈ {1, . . . , 4}, An ∩ Bn = An
and ∀g = (

g11, g12, g21, g22
) ∈ An, the following equal-

ity always holds p(†,n)

k = p(∗,n)

k , which implies the same
network performance. However, when the NE of both
games are different, one cannot easily compare the util-
ities achieved by each player since they depend on the
exact channel realizations. Fortunately, the analysis largely
simplifies by considering either a low SNR regime or a
high SNR regime and more general conclusions can be
stated. The performance comparison between games G(a)
and G(b) for the low SNR regime is presented in the
following proposition.
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Proposition 4. In the low SNR regime, both games G(a)
and G(b), with K = 2 and S = 2, possess a unique NE,
denoted by p∗. Here, for all k ∈ K and s ∈ S ,

p∗
k,s = pmax1{s=argmax	∈S gk,	} (19)

p∗
k,−s = pmax − pk,s. (20)

The proof of Proposition 4 is given in Appendix. From,
Proposition 4, it can be stated that at the low SINR regime,
players achieve the NE by simply choosing the channel
with the highest channel gain independently of the other
player’s action. The performance comparison between
games G(a) and G(b) for the high SNR regime is presented
in the following proposition.

Proposition 5. In the high SNR regime, with K = 2 and
S = 2, the game G(a) has a unique pure NE denoted by p†
and the game G(b) has two pure NE denoted by p(∗,1) and
p(∗,4), respectively. Then, at least for one n ∈ {1, 4}, there
exists an SNR value 0 < SNR0 < ∞, such that ∀SNR �
SNR0,

2∑
k=1

uk
(
p(∗,n)

)
−

2∑
k=1

uk(p†) � δ, (21)

and δ � 0.

The proof of Proposition 5 is given in Appendix. From
the proof of Proposition 5, it can be stated that in none of
the games, players transmit simultaneously on the same
channels. Now, from Propositions 4 and 5, it can be con-
cluded that at low SNR both games G(a) and G(b) induce
the same NSE. On the contrary, the game G(b) always
induces a higher or equal NSE than the game G(a) in the
high SNR regime. This counter-intuitive result implies a
Braess-type paradox, as suggested in the beginning of this
section.

4.3 The case of large systems
In this section, we deal with the games G(b) for the case
of large networks, i.e., networks with a large number of
transmitters. Within this scenario, the dominant parame-
ter to analyze these games is the fraction of transmitters
using a particular channel. As we shall see, contrary to
the case of small number of transmitters and channels
analyzed in the previous section, in the case of large
networks, each player becomes indifferent to the action
adopted by each of the other players. Here, each player is
rather concerned with the fractions of players simultane-
ously playing the same action, i.e., using the same channel.
Hence, one of the interesting issues to be solved is the

determination of the repartition of the users between the
different channels at the NE.
As a first step towards identifying the fractions of

transmitters per channel at the NE, we first re-write
the potential (9) as a function of the vector x(p) =
(x1(p), . . . , xS(p)), where xs(p), with s ∈ S , denotes the
fraction of players transmitting over channel s given the
action profile p ∈ P(b). Hence,

∀s ∈ S , xs(p) = |Ks(p)|
K∑S

i=1 xi(p) = 1,
(22)

whereKs(p) ⊆ K is the set of players using channel s given
the action profile p ∈ P(b), i.e., Ks(p) = {k ∈ K : pk,s �=
0}. Let bs = Bs

B denote the fraction of bandwidth associ-
ated with channel s, such that

∑S
s=1 bs = 1. Then, one can

write the potential as follows

φ(p) =
S∑

s=1
bs log2

⎛
⎝N0Bs + pmax

∑
k∈Ks(p)

gk,s

⎞
⎠

= S log2(K) +
S∑

s=1
bs log2

(
NoBs
K

+ xs(p) pmax

×
⎛
⎝ 1

|Ks(p)|
∑

k∈Ks(p)

gk,s

⎞
⎠
⎞
⎠ . (23)

Note that the term S log2(K) in (23) does not depend on
the actions of the players. Thus, in the following, we drop
it for the sake of simplicity. We assume that the number of
players K and the available bandwidth B grows to infinite
at a constant rate μ > 0, while the fractions bs, for all
s ∈ S are kept invariant. That is, the average bandwidth
per transmitters is asymptotically constant,

lim
K ,B→∞

B
K

= μ. (24)

Thus, under the assumption of large number of trans-
mitters and for any action profile p∈P(b), it follows that,

∀s ∈ S , 1
|Ks(p)|

∑
k∈Ks(p)

gk,s
K→∞−→

∫ ∞

0
λF. gs(λ) = �s,

where Fgs is the cumulative probability function associated
with the channel gains over dimension s. Hence, for all
action profile p ∈ P(b) adopted by the players, maximiz-
ing the function φ (p) in the asymptotic regime reduces to
maximize the function φ̃ (x(p)),

φ̃ (x(p)) =
S∑

s=1
bs log2 (μNobs + xs(p) pmax �s) .

That is, solving the OP,{
maxx=(x1,...,xS)∈RS+

∑S
s=1 bs log2 (μN0 bs + xspmax�s) ,

s.t.
∑S

i=1 xi = 1 and ∀i ∈ S , xi � 0,
.
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The optimization problem above has a unique solution
of the form,

∀s ∈ S , xs = bs
[
1
βk

− μN0
pmax�s

]+
, (25)

where βk is Lagrangian multiplier to satisfy the optimiza-
tion constraints. Interestingly, in the case when all the
channels are described with the same statistics, that is,
∀s ∈ S , Fgs(λ) = Fg(λ), (∀s ∈ S , �s = �) it holds that,

∀s ∈ S , xs = Bs
B
. (26)

The above provides a very simple relation between the
repartition of the users among the available channels in
the asymptotic regime. Indeed, it can be implied that the
number of transmitters using a given channel s is pro-
portional to the bandwidth allocated to the corresponding
channel. In particular, note that this result generalizes the
work in [36].
To conclude on the usefulness of the large system anal-

ysis, let us consider the upper bound on the number of
NE which is given by Proposition 1. Let us normalize the
upper bound on the number of pure NE L in (13) by the
total number of pure (CS) strategy profiles, and let us
write,

L
SK < 1

SK
(
1 + (S − 1) 2K

)
. (27)

Now, for a sufficiently large number K, the following
approximation holds,

1
SK
(
1 + (S − 1) 2K

) ≈ (S − 1)
( 2
S
)K . (28)

Although the number of pure NE in the CS game might
be conjectured to be large, it is in fact relatively small in
the asymptotic regime. Indeed, (28) indicates that when
the number of users is large, the fraction of pure NE
goes to zero whenever the number of channels is greater
or equal to 3. This result shows the difficulty of using
methodologies such as the one proposed in Section 3.3.3
to study the set of NE or the difficulty of achieving equi-
libria using decentralized learning algorithms as proposed
in [7,8].

4.4 PoA and PoS
The PoA [37] and the PoSa [38] are both measures of
the efficiency of the set of equilibria of a game. Basically,
the PoA measures the loss of global performance due to
decentralization by comparing the maximum sum utility
achieved under the global control of a central author-
ity with the minimum sum utility achieved at the Nash
equilibrium. The PoS measures also the loss of global
performance due to decentralization by comparing the
maximum sum utility achieved under the global control
of an authority with the maximum sum utility achieved at

the Nash equilibrium. For the PA game G(a) and the CS
game G(b), the PoA and the PoS can be written as follows,

PoA
(
G(i)

) =
max
p∈P(i)

U(i)(p)

min
p∈P(i)

NE

U(i)(p)
, (29)

and

PoS
(
G(i)

) =
max
p∈P(i)

U(i)(p)

max
p∈P(i)

NE

U(i)(p)
, (30)

respectively. Here, i ∈ {a, b}, U(i) is defined in (15) and
P(i)
NE is the set of NE of the game G(i). Regarding the opti-

mization problem in the numerator of (29) and (30), we
have that the following holds from the information theo-
retical upper bound of the sum of individual rates of the
MAC [1]:

K∑
k=1

uk(p)
(a)
�

∑
s∈S

Bs
B

log2

⎛
⎜⎜⎜⎝1 +

K∑
k=1

pk,sgk,s

σ 2
s

⎞
⎟⎟⎟⎠ (31)

=
∑
s∈S

Bs
B

log2

(
σ 2
s +

∑
k∈K

pk,sgk,s

)

−
∑
s∈S

Bs
B

log2
(
σ 2
s
)
, (32)

= φ(p) −
∑
s∈S

Bs
B

log2
(
σ 2
s
)
, (33)

(b)
� φ(p‡) −

∑
s∈S

Bs
B

log2
(
σ 2
s
)
. (34)

Here, (a) holds with strict equality, for any given PA
vector p, when the receiver implements (perfect) SIC.
Moreover, (b) holds with strict equality when (perfect) SIC
is used at the receiver and p‡ is the PA vector at the NE
with the highest NSE. That is,

p(‡,i) ∈ arg max
p∈P(i)

φ(p) = arg max
p∈P(i)

NE

φ(p), (35)

where the equality in (35) holds since the maximizers of
the function φ are the set of NE as shown in Section 3.
Regarding the optimization problem in the denominator

of (29) and (30), we use the following notation

p(,i) ∈ arg max
p∈P(i)

NE

U(i)(p) and (36)

p(⊥,i) ∈ arg min
p∈P(i)

NE

U(i)(p). (37)
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and we write (29) and (30) as follows,

PoA
(
G(i)

)

=

∑
s∈S

Bs
B log2

(
σ 2
s +

K∑
k=1

p(‡,i)
k,s gk,s

)
− ∑

s∈S
Bs
B log2

(
σ 2
s
)

K∑
k=1

uk(p(⊥,i))

,

(38)

and

PoS
(
G(i)

)

=

∑
s∈S

Bs
B log2

(
σ 2
s +

K∑
k=1

p(†,i)
k,s gk,s

)
− ∑

s∈S
Bs
B log2

(
σ 2
s
)

K∑
k=1

uk(p(,i))

,

(39)

respectively.
Now, using the fact that, for all p ∈ P(a),

∑
s∈S

Bs
B

log2

(
σ 2
s +

K∑
k=1

pk,sgk,s

)
−
∑
s∈S

Bs
B

log2
(
σ 2
s
)

=
K∑

k=1

S∑
s=1

Bs
B

log2

⎛
⎜⎝1 + pk,sgk,s

σ 2
s + ∑

j∈K\{1,...,k}
pj,sgj,s

⎞
⎟⎠ ,

we write (29) and (30) as follows,

PoA
(
G(i)

) =

K∑
k=1

S∑
s=1

Bs
B log2

⎛
⎝1 + p(‡,i)

k,s gk,s
σ 2
s + ∑

j∈K\{1,...,k}
p(‡,i)
j,s gj,s

⎞
⎠

K∑
k=1

S∑
s=1

Bs
B log2

⎛
⎝1 + p(⊥,i)

k,s gk,s
σ 2
s + ∑

j∈K\{k}
p(⊥,i)
j,s gj,s

⎞
⎠
(40)

and

PoS
(
G(i)

) =

K∑
k=1

S∑
s=1

Bs
B log2

⎛
⎝1 + p(‡,i)

k,s gk,s
σ 2
s + ∑

j∈K\{1,...,k}
p(‡,i)
j,s gj,s

⎞
⎠

K∑
k=1

S∑
s=1

Bs
B log2

⎛
⎝1 + p(,i)

k,s gk,s
σ 2
s + ∑

j∈K\{k}
p(,i)
j,s gj,s

⎞
⎠

.

(41)

Finally, we highlight that, for all k ∈ K and for all p ∈
P(a) (and thus, for all p ∈ P(b)), we have that,

∑
s∈S

Bs
B

log2

⎛
⎜⎝1 + pk,sgk,s

σ 2
s + ∑

j∈K\{1,...,k}
pj,sgj,s

⎞
⎟⎠

�
∑
s∈S

Bs
B

log2

⎛
⎜⎝1 + pk,sgk,s

σ 2
s + ∑

j∈K\{k}
pj,sgj,s

⎞
⎟⎠ . (42)

Here, strict equality holds for all k ∈ K, only when
transmitters do not share the same channels with other
transmitters. In the following, we use this reasoning to
study the PoA and the PoS of both games G(a) and G(b).

4.4.1 PoA and PoS inG(a)

As shown in Theorem1, the set of NE of the game G(a) is
unitary. Thus, we have that,

p(‡,a) = p(,a) = p(⊥,a), (43)

and thus,

PoA
(
G(a)

) = PoS
(
G(a)

)
. (44)

Following Proposition 2, it becomes clear that strict
equality in (42) is observed at the equilibrium of the game
G(a), if and only if, transmitters use different channels to
communicate with the receiver. In the case in whichK = 2
and S = 2, according to Proposition 2, such condition is
fulfilled when g = (

g11, g12, g21, g22
)
satisfies either g ∈ A1

or g ∈ A4. This observation leads us to the following
lemma.
Lemma 5 (PoA and PoS ofG(a)). Let K = 2, S = 2 and

g = (
g11, g12, g21, g22

)
satisfy at least one of the following

conditions:

g ∈
{
g ∈ R4+ :

g11
g12

� 1 + SNRg11
1 + SNRg22

,
g21
g22

� 1 + SNRg11
1 + SNRg22

}
or

(45)

g ∈
{
g ∈ R4+ :

g11
g12

� 1 + SNRg21
1 + SNRg12

,
g21
g22

� 1 + SNRg21
1 + SNRg12

}
.

(46)

Then,

PoA
(
G(a)

) = PoS
(
G(a)

) = 1. (47)

Otherwise,

PoA
(
G(a)

) = PoS
(
G(a)

)
> 1, (48)

with strict inequality.

From Lemma 5, the following corollaries follow by tak-
ing the limits SNR → 0 and SNR → ∞, respectively.
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Corollary 1 (PoA in the low SNR regime). Let K = 2,
S = 2 and g = (

g11, g12, g21, g22
)
satisfy at least one of the

following conditions:

g11 � g12 and g21 � g22 or (49)
g11 � g12 and g21 � g22. (50)

Then, in the low SNR regime (SNR → 0),

PoA
(
G(a)

) = PoS
(
G(a)

) = 1, (51)

otherwise,

PoA
(
G(a)

) = PoS
(
G(a)

)
< 1 + ε, (52)

with ε > 0 arbitrarily small.

Corollary 2 (PoA in the high SNR regime). Let K = 2,
S = 2 and g = (

g11, g12, g21, g22
)
satisfy at least one of the

following conditions:

g22 � g12 and g21 � g11or (53)
g11 � g21 and g12 � g22. (54)

Then, in the high SNR regime, we have that (SNR → ∞),

PoA
(
G(a)

) = PoS
(
G(a)

) = 1, (55)

otherwise,

PoA
(
G(a)

) = PoS
(
G(a)

) → ∞. (56)

In a more general case, for instance K > 2 and S > 2,
we state the following result:

Proposition 6 (PoA of the G(a)). Let p∗ ∈ P(a) be the
equilibrium of the game G(a) and consider the following
condition:

If ∃(k, s) ∈ K×S : p∗
k,s > 0, then ∀j ∈ K \ {k}, p∗

j,s = 0.
(57)

Then, if the condition above holds, we have that:

PoA
(
G(a)

) = PoS
(
G(a)

) = 1, (58)

otherwise, we have that:

PoA
(
G(a)

) = PoS
(
G(a)

)
> 1 and (59)

lim
SNR→∞

PoA
(
G(a)

) = lim
SNR→∞

PoS
(
G(a)

) = ∞. (60)

Note that from Proposition 6, it can be concluded that
in the case in which K > S, the PoA is strictly bigger
than one, since the condition (57) does not hold. Thus, as
long as K > S there always exists a loss in performance
due to the decentralization of the network. Nonethe-
less, depending on the channel realizations, in the case

in which K � S, global optimal performance can be
achieved at the equilibrium.

4.4.2 PoA and PoS inG(b)

As shown in Theorem 1, the set of NE of the game G(a) is
not necessarily unitary. Thus, we have that if the equilib-
rium of the game G(a) is not unique, then p(,a) �= p(⊥,a)

and the following holds:

PoA
(
G(b)

)
> 1and (61)

PoS
(
G(b)

)
� 1, (62)

with strict inequality for any channel realization in (61).
This is basically because two different NE action pro-
files generate the same sum utility with probability zero,
when the channel gains are generated following a con-
tinuous distribution. Thus, the numerator is monotoni-
cally increasing while the denominator is monotonically
decreasing in (40). On the contrary, in the case of the
PoS (62), equality can be observed whenever p(‡,b) =
p(,b) and (33) holds with equality, which is the case when
there exists an equilibrium where every transmitter uses a
different channel from all the other transmitters.
Following the same arguments as in the case of the game

G(a), we state that a unitary PoA (PoA = 1) is observed
only when the set of NE is unitary and transmitters do
not share the same channels to transmit. This condition
according with Proposition 3 is observed in the game G(b),
with K = 2 and S = 2, when g = (

g11, g12, g21, g22
)
satis-

fies that g ∈ {B1 ∪ B4} \ B5. This observation leads us to
the following lemma.

Lemma 6 (PoA of the game G(b)). Let K = 2, S = 2 and
g = (

g11, g12, g21, g22
)
satisfy at least one of the following

conditions:

g ∈
{
g ∈ R4+ :

g11
g12

� 1 + SNRg21,
g21
g22

� 1 + SNRg11
}
,

(63)

g ∈
{
g ∈ R4+ :

1
1 + SNRg22

� g11
g12

� 1 + SNRg21,
g21
g22

� 1
1 + SNRg12

}
, (64)

g ∈
{
g ∈ R4+ :

g11
g12

� 1
1 + SNRg22

,
1

1 + SNRg12

� g21
g22

� 1 + SNRg11
}
or (65)

g ∈
{
g ∈ R4+ :

g11
g12

� 1 + SNRg21,
g21
g22

� 1 + SNRg11
}
.

(66)

Then,

PoA
(
G(b)

) = 1. (67)
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Otherwise,

PoA
(
G(b)

)
> 1, (68)

with strict inequality.

In the case of the PoS, we highlight that strict equality
holds in (42) when transmitters use different channels to
communicate with the receiver at the equilibrium. This
condition is satisfied in the game G(b), with K = 2 and
S = 2, when g = (

g11, g12, g21, g22
)
satisfies either g ∈ B1

or g ∈ B4. Thus, we write the following lemma.

Lemma 7 (PoS of the gameG(b)). Let K = 2, S = 2 and
g = (

g11, g12, g21, g22
)
satisfy at least one of the following

conditions:

g ∈
{
g ∈ R4+ :

g11
g12

� 1
1 + SNRg22

,
g21
g22

� 1 + SNRg11
}
, or

(69)

g ∈
{
g ∈ R4+ :

g11
g12

� 1 + SNRg21,
g21
g22

� 1
1 + SNRg12

}
.

(70)

Then,

PoS
(
G(b)

) = 1. (71)

Otherwise,

PoS
(
G(b)

)
> 1, (72)

with strict inequality.

From Lemmas 6 and 7, the following corollaries fol-
low by taking the limits SNR → 0 and SNR → ∞,
respectively.

Corollary 3 (PoA and PoS in the low SNR regime). Let
K = 2, S = 2 and g = (

g11, g12, g21, g22
)
satisfy at least one

of the following conditions:

g11 � g12 and g21 � g22 or (73)
g11 � g12 and g21 � g22. (74)

Then, in the low SNR regime (SNR → 0),

PoA
(
G(b)

) = PoS
(
G(b)

) = 1, (75)

otherwise,

1 < PoA
(
G(b)

) = PoS
(
G(b)

)
< 1 + ε, (76)

with ε > 0 arbitrarily small.

Corollary 4 (PoA and PoS in the high SNR regime).
Let K = 2, S = 2. Then, in the high SNR regime
(SNR → ∞), we have that

PoA
(
G(b)

) → ∞ (77)

PoS
(
G(b)

) → 1. (78)

In Corollary 4, (77) follows from the fact that at high
SNR, the game G(b), with K = 2 and S = 2, always pos-
sesses two equilibria in pure strategies (Lemma 8). Thus,
at the high SNR regime, the numerator of (29) arbitrar-
ily increases while its denominator arbitrarily decreases.
Similarly, at the high SNR regime both equilibria consist
in action profiles where transmitters use different chan-
nels to communicate with the receiver. Thus, (42) holds
with strict equality for the case of the NE with the highest
NSE p, which justifies (78). In a more general case, for
instance K > 2 and S > 2, we state the following result:

Proposition 7 (PoA of the G(b)). Let p∗ ∈ P(b) be an
equilibrium of the game G(b) and consider the following
conditions:

(i)p∗ isunique (79)

(ii)If ∃(k, s) ∈ K×S : p∗
k,s > 0, then ∀j ∈ K\{k}, p∗

j,s = 0.
(80)

Then, if both conditions simultaneously hold, we have
that:

PoA
(
G(b)

) = 1, (81)

otherwise, we have that:

PoA
(
G(b)

)
> 1 and (82)

lim
SNR→∞

PoA
(
G(b)

) = ∞. (83)

Proposition 8 (PoS of the G(b)). Let p∗ ∈ P(b) be the
equilibrium with the highest NSE of the game G(b) and
consider the following condition:

(i) If ∃(k, s) ∈ K × S : p∗
k,s > 0,

then ∀j ∈ K \ {k}, p∗
j,s = 0. (84)

Then, if the condition above holds, we have that:

PoS
(
G(b)

) = 1, (85)

otherwise, we have that:

PoS
(
G(b)

)
> 1 and (86)

lim
SNR→∞

PoS
(
G(b)

) → ∞. (87)

Note that from Proposition 7, it can be concluded that
in the case in which K > S, the PoA and the PoS are
both strictly bigger than one, since the condition (84) does
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not hold. Thus, as in the previous case, as long as K > S
there always exists a loss in performance due to the decen-
tralization of the network. Nonetheless, depending on the
channel realizations, in the case in which K � S, global
optimal performance can be achieved at the equilibrium.

5 Numerical examples
In the previous sections, a mathematical argument has
been provided to show that at the low and high SNR
regimes, using a CS policy yields a higher or equal NSE
than using a water-filling PA policy. A formal proof has
been provided for the case of K = 2 transmitters and
S = 2 channels. Moreover, we highlight that a CS pol-
icy is evidently simpler than a PA policy in terms of
implementation. Unfortunately, providing a formal proof
for an arbitrary number of transmitters K and chan-
nels S at a finite SNR becomes a hard task since it will
require to calculate all the types of NE depending on
the exact channel realizations. Hence, for the case of
arbitrary parameters K, S, and SNR, we provide only
numerical examples to give an insight of the general
behavior. First, we evaluate the impact of the SNR for a
network with a fixed number of transmitters and chan-
nels. Second, we evaluate the impact of the network load,
i.e., the number of transmitters per channel for a given
fixed SNR.

5.1 Impact of the SNR pmax
σ2

In Figure 4, we plot the NSE as a function of the aver-
age SNR of the transmitters. Here, it is shown that in fully
loaded and over-loaded networks, i.e., η = K

S � 1, the gain
in NSE obtained by using a discrete action set (game G(a))
increases with the SNR. Conversely, for weakly loaded net-
works η < 1, limiting the transmitters to use a single

channel appears to be suboptimal as the SNR increases.
This is basically because using only one channel, necessar-
ily implies letting some interference-free channels unused.
Interestingly, at low SNR, the NSE observed in both games
is the same, independently of the load of the system. In
both cases, high SNR and low SNR regimes, the observed
results are in line with Propositions 4 and 5.
In Figure 5, we plot the probability of observing a spe-

cific number of NE in the game G(b) for different values
of SNR. This probability is calculated as the empirical fre-
quency of the number of NE observed in 106 realizations
of the game G(a) and G(b). At each game realization, a
new channel matrix realization H is considered. In the
first case (Figure 5a), we consider S = 2 and K = 3,
whereas in the second case (Figure 5b), K = 3 and
S = 3. Note that from Proposition 1, the maximum num-
ber of NE is 4 and 7, respectively. However, only 3 and
6 NE are, respectively, observed in the simulations. This
observation joints the discussion on the tightness of the
bound presented in Section 3.3.2. Note that Proposition 1
relies only on the number of transmitters and available
channels. A tighter bound can be obtained if the actual
channel realizations are considered. However, this might
be significantly tedious for networks with large number
of transmitters.Moreover, note also that low SNR levels
are associated with a unique NE (with high probability),
whereas, high SNR levels are associated with multiple
NE (with high probability). Note that this observation, at
least for the case of K = 2 and S = 2, is inline with
Propositions 4 and 5.

5.2 Impact of the number of transmitters (K)
In Figure 6, we plot the NSE as a function of the number
of transmitters per channel, i.e., the system load η = K

S .

Figure 4 NSE as a function of the SNR = pmax
σ 2 in dBs for the case of η = K

S ∈ { 12 , 1, 2}, withK = 10.
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Figure 5 Probability of observing a specific number of NE in the gameG(b) calculated using Monte-Carlo simulations.

Therein, one can observe that for weakly loaded systems
η < 1, playing G(a) always leads to higher NSE than
playing G(b). This is natural since restricting the trans-
mitters to use only one channel implies not using other
channels which are interference-free, as S > K . On the
contrary, for fully loaded and over-loaded systems, the
NSE of the game G(a) is at least equal or better than
that of the game G(b). Indeed, the fact that for high sys-
tem loads η > 2, the NSE obtained by playing the game
G(a) and G(b) become identical stems from the fact that
under this condition the system becomes dominated by
the interference.

In Figure 7, we plot the PoA (29) of both games
G(a) and G(b) as a function of the number of trans-
mitters for several SNR values. First, we highlight
the fact that as shown in our theoretical analysis,
optimal performance (PoA(G(b)) = 1) is achieved
in the case of low density networks η � 1 using
CS. Note also that in the case of the PA game
PoA(G(a)) > 1 independently of the network load,
which implies that there always exists a loss of per-
formance when the network is decentralized and
the transmitters are allowed to use several channels
simultaneously.

Figure 6 NSE as a function of the system load η = K
S for different SNR = pmax

σ 2 levels in dB.
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Figure 7 PoA calculated using Monte Carlo simulations and using Equation (29) for a network withK = 10 players, Bs
B = 1

S , for all s ∈ S
and SNR = 10 log10

(
pmax
N0B

)
∈ {0, 15} dB.

Finally, in Figure 8, we show the fractions xs of trans-
mitters using channel s, with s ∈ S , obtained by Monte
Carlo simulations and using (26) for a large network with
an asymptotic ratio of players per channel equivalent to
η = 10. Therein, it becomes clear that (26) is a precise
estimation of the outcome of the games G(a) and G(b) in
the regime of large number of players.

6 Conclusions
In this article, it is shown to what extent the equilibrium
analysis of the decentralized parallel MAC differs from

those conducted for other channels like Gaussian MIMO
interference channels and fast fading MIMO MAC. In
particular, the special structure of parallel MAC and the
assumption of SUD at the receiver leads to the potential
game property. The CS gamewasmerely introduced in the
literature but not investigated in details as it is in this arti-
cle. In particular, a graph-theoretic interpretation is used
to characterize the number of NE. In the case where the
number of transmitters is large, the fraction between pure
NE and the total number of action profiles is relatively
small, which makes both the analysis and the achievability

Figure 8 Fraction of players transmitting over channel s, with s ∈ S, calculated using Monte Carlo simulations and using Equation (26) for
a network with S = 6 channels,K = 60 players, with b = (bs)∀s∈S = (0.25, 0.11, 0.20, 0.05, 0.25, 0.14), and
SNR = 10 log10

(
pmax
N0B

)
= 10dB.
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of the NE a challenging task. Now, from a design point
of view, we provide theoretical results and numerical
examples to show that a fully loaded network, when trans-
mitters use only one channel, can be more efficient than
its counterpart when all the channels can be exploited by
the transmitters. Although all of these results are encour-
aging about the relevance of game-theoretic analyses of
PA problems, important practical issues have deliberately
been ignored. For example, the impact of channel estima-
tion is not assessed at all. Also, it is important to conduct
a detailed analysis on the signaling cost involved by all
the PA algorithms arising from this game formulations to
learn NE.

Appendix
Proof of Proposition 1
In this appendix, we provide a proof of Proposition 1,
which establishes an upper bound for the number of NE
of the game G(b). Here, we exploit some basic tools from
graph theory. Let us index the elements of the action
set P(b) in any given order using the index n ∈ I ={
1, . . . , SK

}
. Denote by p(n) the nth element of the action

set P(b). We write each vector p(n) with n ∈ I , as p(n) =(
p(n)
1 , . . . ,p(n)

K

)
, where for all j ∈ K, p(n)

j ∈ P(b)
j . Consider

that each action profile p(n) is associated with a vertex vn
in a given non-directed graphG. Each vertex vn is adjacent
to the K(S− 1) vertices associated with the action profiles
resulting when only one player deviates from the action
profile p(n), i.e., if two vertices vn and vm, with (n,m) ∈ I2

and n �= m, are adjacent, then there exists one and only
one k ∈ K, such that

∀j ∈ K \ {k}, p(n)
j = p(m)

j , and p(n)

k �= p(m)

k .

More precisely, the graph G can be defined by the pair
G = (V ,A), where the set V = {

v1, . . . , vSK
}
(nodes) rep-

resents the SK possible actions profiles of the game and
A (edges) is a symmetric matrix (adjacency matrix of G)
with dimensions SK × SK and entries defined as follows
∀(n,m) ∈ I2 and n �= m,

an,m = am,n =
{
1 if n ∈ Vm
0 otherwise, (88)

and an,n = 0 for all n ∈ I , where the set Vn is the set of
indices of the adjacent vertices of vertex vn. In the follow-
ing, we use the concept of distance between two vertices
of the graphG. We define this concept using our notation:

Definition 4 (Shortest Path). The distance (shortest
path) between vertices vn and vm, with (n,m) ∈ I2

in a given non-directed graph G = (V ,A), denoted by
dn,m(G) ∈ N is:

dn,m(G) = dm,n(G) =
K∑

k=1
1{p(n)

k �=p(m)

k

}. (89)

Here, for any pair of action profiles p(n) and p(m), with
(n,m) ∈ I2 and n �= m, we have that φ(p(n)) �= φ(p(m))

with probability one. This is because channel gains are
random variables drawn from continuous probability dis-
tributions and thus, Pr

(
φ(p(n)) = φ(p(m)) | n �= m

) = 0.
Hence, following Definition 1, one can state that if the
action profile p(n), with n ∈ I , is an NE of the game G(b),
then, it follows that

∀m ∈ V(n), φ(p(n)) > φ(p(m)), (90)

and thus, with probability one, none on the action profiles
in V(n) are NE. By iteratively following this procedure over
the remaining set of action profiles I \ {n ∪ V(n)}, some
action profiles can be eliminated and only those that are
potentially NE are left over.
Thus, given that the action profile p(n) is an NE, the

action profile p(m), with n �= m, can be an NE candidate, if
it is (at least) at distance two of p(n) and any other NE can-
didate, i.e., dn,m(G) = dm,n(G) ∈ {2, 4, . . . , K̂}. An action
profile at distance 	 ∈ {2, 4, . . . , K̂} from p(n), is a vector
where 	 players have simultaneously deviated from p(n).
Hence, for each 	-tuple of players, there always exists S−1
action profiles at distance 	 from p(n) and at distance 2
from each other. Thus, considering the initial NE action
profile p(n), there might exist at most

L � 1 +
∑

i∈{2,4,...,K̂}

(
K
i

)
(S − 1) (91)

NE candidates. This establishes an upper bound for L
and completes the proof.

Proof of Proposition 2
In this appendix, we provide a proof for the Proposition 2.
The proof is separated in two steps. First, we show that a
PA vector p = (

p1,p2
) ∈ P(a) of the form

p1 = (p11, pmax − p11) andp2 = (pmax − p22, p22) ,

is not an NE of the game G(a), when p11 ∈ ]
0, pmax

[
and

p22 ∈ ]
0, pmax

[
. Second, we show that if p is an NE, then,

p is unique and satisfies that, p ∈ P†, where

P† = P(a) \ {p = (p11, pmax − p11, pmax − p22, p22)
∈ R4+ : p11 ∈ ]

0, pmax
[
andp22 ∈ ]

0, pmax
[ }.

In the following, we use the notation −c to denote the
element other than c in the binary set C.
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First step: Assume that the action profile p = (
p1,p2

)
,

with p1 = (p11, p12) and p2 = (p21, p22) is an NE of the
game G(a), and assume that for all (k, s) ∈ K × S , pk,s >

0, with strict inequality. Then, from the best response
correspondence, it holds that ∀(k, s) ∈ K × S ,

p†k,s =
[
1
βk

− σ 2 + g−k,sp†−k,s
gk,s

]+
, (92)

with βk a Lagrangian multiplier chosen to satisfy (2).
Then, from (92), it can be implied that ∀k ∈ K,

pk,s = 1
βk

− σ 2 + p−k,sg−k,s
gk,s

> 0 and (93)

pk,−s = 1
βk

− σ 2 + p−k,−sg−k,−s
gk,−s

> 0. (94)

Then, from the fact that ∀k ∈ K, pk,s + pk,−s = pmax, we
have that,

pk,k = 1
2

(
pmax − σ 2+g−k,k(pmax−p−k,−k)

gk,k
σ 2+g−k,−kp−k,−k

gk,−k

)
pk,−k = pmax − pk,k .

(95)

Using a matrix notation, the system of equations (95)
can be written in terms of p11 and p22 as follows:

C
(
p11
p22

)
= A, (96)

where the matrix C is

C =
(

2g11g12 − (
g22g11 + g21g12

)
− (

g22g11 + g21g12
)

2g22g21

)
and, the vector A is

A =
(
pmaxg12

(
g11 − g21

)+ σ 2 (g11 − g12
)

pmaxg21
(
g22 − g12

)+ σ 2 (g22 − g21
) ) . (97)

Note that the system of equations (96) has a unique solu-
tion as long as the set of channels {g11, g12, g21, g22} satisfies
the condition g12g21−g11g22 �= 0. Let us continue the anal-
ysis under the assumption that, g12g21 − g11g22 �= 0 (the
case where g12g21 − g11g22 = 0 is treated later). Then, the
unique solution of (96) is ∀k ∈ K,

pk,k = pmaxg−k,k
(
gk,−k + g−k,−k

)
g12g21 − g11g22

+ σ 2 (g−k,k + g−k,−k
)

g12g21 − g11g22
,

pk,−k = pmax − pk,k .

Note that if g12g21 − g11g22 < 0, then ∀k ∈ K, pk,k < 0,
and, if g12g21 − g11g22 > 0, then ∀k ∈ K, pk,k > pmax,
which contradicts the initial power constraints (2). Hence,
any vector p = (

p1,p2
)
, with p1 = (p11, pmax − p11) and

p2 = (pmax − p22, p22), such that ∀(k, s) ∈ K × S , 0 <

pk,s < pmax is not an NE for the game G(a) when g12g21 −
g11g22 �= 0. Assume now that g12g21 − g11g22 = 0, and let

α = g21
g11 = g22

g12 . Then, the PA vector in (95) can be written
as follows, for k = 1{

p11 = αp22 + 1
2

(
pmax (1 − α) + σ 2

(
1
g12 − 1

g11

))
p12 = pmax − p11.

(98)

and, for k = 2,{
p22 = 1

2

(
pmax

(
1 + 1

α

)+ σ 2
(

1
g21 − 1

g22

))
+ 1

α
p11

p21 = pmax − p22,
(99)

Note that the first equations in both (98) and (99) are
identical. Thus, we focus only on the first equation in (98).
This implies that any PA vector, p = (

p1,p2
)
, with p1 =

(p11, pmax − p11) ∈ P(a)
1 and p2 = (pmax − p22, p22) ∈

P(a)
2 satisfying the condition

p11 = 1
2

(
pmax (1 − α) + σ 2

(
1
g12

− 1
g11

))
+ αp22

(100)

is an NE of the game G(a) when g12g21 − g11g22 = 0 as long
as ∀(k, s) ∈ K × S , 0 < pk,s < pmax. For satisfying the
latter conditions, it suffices to ensure that: 0 < p11 < pmax
when p22 = 0 and p22 = pmax. Solving these inequalities
leads to the following conditions over the channels:

(i) p11 > 0, when p22 = 0, if

1 + pmax
σ 2 g21

1 + pmax
σ 2 g12

<
g11
g12

(101)

(ii) p11 > 0, when p22 = pmax, if

1
1 + pmax

σ 2
(
g12 + g22

) <
g11
g12

. (102)

(iii) p11 < pmax, when p22 = 0, if
g11
g12

< 1 + pmax
σ 2

(
g11 + g21

)
(103)

(iv) p11 < pmax, when p22 = pmax, if
g11
g12

< 1 + pmax
σ 2

(
g11 + g21

)
(104)

Finally, we obtain that if the vector of channels g =(
g11, g12, g21, g22

)
satisfies that

min
(

1
1 + pmax

σ 2 (g12 + g22)
,
1 + pmax

σ 2 g21
1 + pmax

σ 2 g12

)
< α and

max
(
1 + pmax

σ 2
(
g11 + g21

)
,
1 + pmax

σ 2 g11
1 + pmax

σ 2 g22

)
> α,
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that is,

1
1 + pmax

σ 2 (g12 + g22)
< α < 1 + pmax

σ 2
(
g11 + g21

)
,

then any vector p = (
p1,p2

)
, with p1 = (p11, pmax−

p11) ∈ P(a)
1 and p2 = (pmax − p22, p22) ∈ P(a)

2 sat-
isfying the condition (100) is an NE of the game G(a).
Note that infinitely many PA vectors might satisfy (100),
which implies infinitely many NE. However, since the
channels are realizations of random variables drawn from
a continuous distribution, the probability of observing a
realization such that g12g21 − g11g22 = 0 is zero. Thus,
with probability one, any vector p = (

p1,p2
)
, with p1 =

(p11, pmax − p11) and p2 = (pmax − p22, p22), such that
∀(k, s) ∈ K×S , 0 < pk,s < pmax is not an NE for the game
G(a).

Second step: Consider that p† =
(
p†1,p

†
2

)
∈ P(a) is an

NE. Then, it must follow that p† ∈ P†, where,

P† =P \ {p = (p11, pmax − p11, pmax − p22, p22)

× ∈ R4+ : p11 ∈ ]
0, pmax

[
andp22 ∈ ]

0, pmax
[ }

=
8⋃

n=1
P†
i ,

(105)

where the sets P†
n ⊂ P(a), for all n ∈ {1, . . . , 8}

are described as follows. The singletons P†
1 = {p =

(pmax, 0, 0, pmax)}, P†
2 = {p = (pmax, 0, pmax, 0)}, P†

3 =
{p = (0, pmax, 0, pmax)}, P†

4 = {p = (0, pmax, pmax, 0)} and
the convex non-closed sets,

P†
5 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4+ :

p11 = pmax, andp22 ∈ ]
0, pmax

[},
P†
6 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4+ :

p11 ∈ ]
0, pmax

[
andp22 = pmax},

P†
7 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4+ :

p11 ∈ ]
0, pmax

[
andp22 = 0},

P†
8 = {p = (p11, pmax − p11, pmax − p22, p22) ∈ R4+ :

p11 = 0, andp22 ∈ ]
0, pmax

[}.
In the following, we identify the conditions over the

channel vector g = (
g11, g12, g21, g22

)
such that each p† ∈

P†
n , with n ∈ {1, . . . , 8} is an NE.

Assume that p† ∈ P†
8 , i.e., p

†
1 = (0, pmax) and p†2 =(

pmax − p†22, p
†
22

)
, with p†22 ∈ ]

0, pmax
[
. Then, from (92)

with k = 2, we have that:

p†21 = 1
β2

− σ 2

g21
> 0 and (106)

p†22 = 1
β2

− σ 2 + g12pmax
g22

> 0. (107)

Then, since p†21 + p†22 = pmax, we have that 1
β2

=
1
2

(
pmax + σ 2+pmaxg12

g22 + σ 2

g21

)
, and thus,

p†22 = 1
2

(
pmax − σ 2 + g12pmax

g22
+ σ 2

g21

)
, (108)

where, it must satisfy that 0 < p†22 < pmax. The inequal-

ity p†22 > 0, holds only if g21
g22 <

1+ pmaxg21
σ2

1+ pmaxg12
σ2

, whereas the

inequality p†22 < pmax holds only if g21
g22 > 1

1+SNR(g12+g22)
.

Similarly, from (92) with k = 1, we have that given p†22, in
order to obtain p†11 = 0 and p†12 = pmax, it must hold that

p11 = 1
β1

−
σ 2 + g21

(
pmax − p†22

)
g11

� 0 and

p12 = 1
β1

− σ 2 + g22p†22
g12

� pmax. (109)

Hence, by doing p12 − p11 in (109), we obtain that:

σ 2 + g21
(
pmax − p†22

)
g11

− σ 2 + g22p†22
g12

� pmax. (110)

Then, by replacing (108) in (110), we obtain that the
condition (109) are satisfied only if the channels satisfy
that:

g11
g12

� g21
g22

. (111)

Hence, we can conclude that whenever the vector
g = (

g11, g12, g21, g22
) ∈ A8, the NE is of the form

(p11, pmax − p11, pmax − p22, p22), with p11 = 0 and p22 =
1
2

(
pmax − σ 2+g12pmax

g22 + σ 2

g21

)
. Now, assuming that p† ∈

P†
n , with n ∈ {1, . . . , 7}, leads to the conditions of the other

types of NE, i.e., the corresponding sets An, such that
whenever g ∈ An then p† ∈ P†

n . It is important to note
that, for any particular vector g = (

g11, g12, g21, g22
) ∈ R4,

there exists, with probability one, only one set An which
satisfies that g ∈ An. This is basically because for all
(n,m) ∈ {1, . . . , 4}2, with n �= m, it follows thatAn∩Am =
∅. Now, for all (n,m) ∈ {5, . . . , 8}2, with n �= m, it fol-
lows that An ∩ Am ⊂ {g = (

g11, g12, g21, g22
) ∈ R4 :

g11g22 = g12g21} and observing a channel realization g,
such that, g11g22 = g12g21 is a zero probability event, since
all channel gains are drawn from continuous probability
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distributions. Thus, with probability one, the game G(a)
has unique NE. This completes the proof.

Proof of Proposition 4
In this appendix, we provide a proof of the Proposition 4.
The Proposition 4 basically states that at low SNR regime
if an action profile p is a NE of the game G(a), then it is
also an NE of the game G(b) and it is unique. The proof
follows from the fact that in the asymptotic regime, i.e.,
SNR → 0, the set An and the set Bn become identical,
when n ∈ {1, . . . , 4}. Moreover, the sets Am, with m ∈
{5, . . . 8} become empty. The sets A1, . . . ,A4 and the sets
B1, . . . ,B8 are given by Propositions 2 and 3, respectively.
Then,

lim
SNR→0

A1 = lim
SNR→0

B1 = {g ∈ R4+ :
g11
g12

� 1 and

g21
g22

� 1}

lim
SNR→0

A2 = lim
SNR→0

B2 = {g ∈ R4+ :
g11
g12

� 1and

g21
g22

� 1}

lim
SNR→0

A3 = lim
SNR→0

B3 = {g ∈ R4+ :
g11
g12

� 1and

g21
g22

� 1}

lim
SNR→0

A4 = lim
SNR→0

B4 = {g ∈ R4+ :
g11
g12

� 1and

g21
g22

� 1}

and moreover,

lim
SNR→0

A5 = {g ∈ R4+ :
g11
g12

= 1 and
g21
g22

= 1},

and

∀n ∈ {6, . . . , 8}, lim
SNR→0

An = ∅. (112)

Now, since the sets A1, . . . ,A4 or the sets B1, . . . ,B4
cover, in the asymptotic regime, all the space of vectors g
and both An and Bn determine a unique NE in the game
G(b) and G(a), respectively, it follows that the NE of both
games is identical in the asymptotic regime. The unique-
ness of the NE in the game G(a) holds with probability
one, independently of the SNR level (Proposition 2). In the
game G(b), the NE is not unique if and only if g ∈ A5.
Nonetheless, since for all (k, s) ∈ K×S , gk,s is a realization
of a random variable drawn from a continuous probability
distribution, we have that

Pr
(
g ∈ A5

) = 0. (113)

Thus, with probability one, the NE of the game G(b) is
unique in the low SNR regime, which completes the proof.

Proof of Proposition 5
In this appendix, we provide the proof of Proposition 5,
which states that at the high SNR regime there always
exists an NE action profile in the game G(b), which leads
to an equal or better global performance than the unique
NE of the game G(a). Before we start, we introduce two
lemmas which are used in the proof.

Lemma 8. In the high SNR regime, the game G(a) pos-
sesses a unique NE, which can be of six different types
depending on the channel realizations

{
gij
}
∀(i,j)∈K×S :

• Equilibrium 1: if
g ∈ A′1 = {g ∈ R4+ : g22 � g12, andg21 � g11}, then,
p†11 = pmax and p†22 = pmax.

• Equilibrium 4: if
g ∈ A′4{g ∈ R4+ : g11 � g21, andg12 � g22}, then,
p†11 = 0 and p†22 = 0.

• Equilibrium 5: if
g ∈ A′5 = {g ∈ R4+ : g11

g12 � g21
g22 , andg21 > g11}, then,

p†11 = pmax and p†22 = 1
2

(
pmax − σ 2

g22 + σ 2+g11pmax
g21

)
.

• Equilibrium 6: if
g ∈ A′6 = {g ∈ R4+ : g11

g12 � g21
g22 , andg22 < g12}, then,

p†11 = 1
2

(
pmax − σ 2

g11 + σ 2+pmaxg22
g12

)
and p†22 = pmax.

• Equilibrium 7: if
g ∈ A′7 = {g ∈ R4+ : g11

g12 � g21
g22 , andg11 > g21}, then,

p†11 = 1
2

(
pmax − σ 2+pmaxg21

g11 + σ 2

g12

)
and p†22 = 0.

• Equilibrium 8: if
g ∈ A′8 = {g ∈ R4+ : g11

g12 � g21
g22 , andg12 < g21}, then,

p†11 = 0 and p†22 = 1
2

(
pmax − σ 2+g12pmax

g22 + σ 2

g21

)
.

The proof of Lemma 8 follows the same reasoning of
the proof of Proposition 2. Here, ∀n ∈ {1, . . . , 8}, A′

n =
limSNR→∞ An, where the sets A1, . . . ,A8 are given by
Proposition 2.
In the following lemma, we describe the set of NE of the

game G(b) in the high SNR regime.

Lemma 9. In the high SNR regime, the game G(b) always
possesses two NE action profiles:

p∗,1
1 = (0, pmax)andp∗,1

2 = (pmax, 0) (114)

and

p∗,4
1 = (pmax, 0)andp∗,4

2 = (0, pmax), (115)

independently of the channel realizations.
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In the high SNR, i.e., SNR → ∞, the sets B1, . . . ,B4,
given by Proposition 3, become the following sets,

lim
SNR→+∞

B1 = lim
SNR→+∞

B4 = R4+ (116)

lim
SNR→+∞

B2 = lim
SNR→+∞

B3 = ∅. (117)

Thus, one can immediately imply that

Pr
(
g ∈ lim

SNR→+∞
B2

)
= Pr

(
g ∈ lim

SNR→+∞
B3

)
= 0,

and,

Pr
(
g ∈ lim

SNR→+∞
B1

)
= Pr

(
g ∈ lim

SNR→+∞
B4

)
= 1.

Hence, from Proposition 3, we imply that both p(∗,1) and
p(∗,4) are NE action profiles of the game G(b) in the high
SNR regime regardless of the exact channel realizations{
gij
}
∀(i,j)∈K×S , which completes the proof.

From Lemmas 8 and 9, it is easy to see that if g =(
g11, g12, g21, g22

) ∈ A′n, with n ∈ {1, 4}, then (21) holds
since p† and at least one of the NE action profiles p∗,n,
with n ∈ {1, 4} are identical. In the cases where g =(
g11, g12, g21, g22

) ∈ A′n, with n ∈ {5, . . . , 8}, we prove by
inspection that in all the cases condition (21) always holds
for both NE action profiles p(∗,1) and p(∗,4). For instance,
assume that g ∈ A′5. Then, we have that the unique NE
of the game G(a) is p† = (p†11, pmax − p†11, pmax − p†22, p

†
22),

with p†11 = pmax and p†22 = 1
2

(
pmax + σ 2+pmaxg11

g21 − σ 2

g22

)
(see Lemma 8). Define the function ψ : R+ → R+ as fol-
lows: ψ(x) = 1 + SNRx, with SNR = pmax

σ 2 , and denote
by �1 (SNR), the difference between the NSE achieved by
playing G(a) and G(b), with respect to the NE p∗,1 at SNR
level SNR, i.e.,

�1 (SNR) = u1
(
p∗,1)+ u2

(
p∗,1)−(

u1
(
p†
)

+ u2
(
p†
))

= 2 log2(2) − 2 log2
(
1 + g21

g22
ψ(g22)
ψ(g11)

)
−

log2
(
1 + g22

g21
ψ(g11)
ψ(g22)

)
+

log2
(
g21
g22

+ ψ(g21 − g11)
)
.

Note that if g ∈ A′5, then g21 > g11. Hence,

lim
SNR→∞

�1 (SNR) = ∞,

which justifies (21). Similarly, denote�4 (SNR), the differ-
ence between the NSE achieved by playing G(a) and G(b),
with respect to the NE p∗,4, i.e.,

�4 (SNR) = u1
(
p∗,4)+ u2

(
p∗,4)−(

u1
(
p†
)

+ u2
(
p†
))

= 2 log2(2) − 2 log2
(
1 + g22

g21
ψ(g21)
ψ(g12)

)

− log2
(
1 + g21

g22
ψ(g12)
ψ(g21)

)
(118)

+ log2
(
g22
g21

+ ψ(g22 − g12)
)
. (119)

Note that if g ∈ A′5, then g22 > g12. Hence,

lim
SNR→∞

�4 (SNR) = ∞,

which justifies (21). Hence, one can imply that in the high
SNR regime both NE action profiles p∗,1 and p∗,2, satisfy
(21) when g ∈ A′5. The same result as the one obtained
when g ∈ A′5, is also obtained when g ∈ A′n, with n ∈
{6, . . . , 8}, which completes the proof.

Endnote
a Note that the PoS as defined in (29) is the multiplicative

inverse of the one defined in [38].
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