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1 Introduction

After a quest lasting nearly half a century, the discovery of the Higgs boson [1–3] was

supposed to shed light on the mechanism triggering the electroweak symmetry breaking

(EWSB) [4, 5]. However — as it often happens — new discoveries prompt further and

deeper questions. A light Higgs boson is unnatural in the Standard Model (SM), unless
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its mass is shielded from large quantum corrections. This longstanding issue of the SM

is elegantly solved if the Higgs boson is protected by a new symmetry, and the most

popular realization of this idea is the introduction of supersymmetry [6, 7]. Moreover,

some supersymmetric extensions of the SM predict the existence of a stable particle, often

identified with the lightest neutralino, that can play the role of Dark Matter (DM) in the

Universe [8]. The lack of signals of new physics first at the LEP and now at the LHC,

however, has pushed these models towards a corner of their natural validity [9, 10].

Composite Higgs models [11–16] offer an alternative solution to supersymmetry based

on the possibility that the Higgs boson arises as the pseudo Nambu-Goldstone boson

(pNGB) of a spontaneously broken global symmetry of a new, unspecified, strongly coupled

sector at the TeV scale. The minimal, phenomenologically viable, realization of this idea

relies on the breaking pattern SO(5) → SO(4). Despite their undeniable theoretical com-

plexity, Composite Higgs models provide robust and falsifiable predictions like deviations

of the Higgs couplings and the presence of light (sub-TeV) top partners as a consequence

of the measured value of the Higgs mass [17–21]. In ref. [22] it has been shown that a

Composite Higgs model based on the breaking pattern SO(6) → SO(5) predicts also the

existence of an extra pNGB, singlet under the SM gauge group, that features all the pre-

rogatives needed to be a realistic DM candidate. In this theoretical setup both DM and

collider phenomenology are therefore tightly linked.

In this paper we realize concretely this connection making use of the Minimal Higgs

Potential hypothesis proposed in ref. [19]. The key point is that the assumptions underlying

this hypothesis allow to write explicitly the effective potential that involves both the Higgs

and the DM particle. This effective potential, in turn, provides the possibility to compute

observable quantities that can be either matched with observations — as with top and

Higgs masses — or compared with the experimental bounds — as with DM properties and

the mass of the top partners. Equipped by this result, we will be able to subject the model

to a careful analysis exploring both collider phenomenology and astrophysical implications.

The structure of this paper is as follows. In section 2 we present our Composite

DM model. In section 3 we analyze the effective potential, while sections 4 and 5 are

devoted to the phenomenological analysis of the model. We present our result in section 6.

Finally, we conclude in section 7. In the appendices, we provide further details about the

theoretical structure of the model. In appendix A, we study different parametrization of the

SO(6)/SO(5) coset. In appendix B, we describe in detail the effective potential analyzed

in section 3.

2 Composite Higgs and dark matter model

In this section we present a Composite DM model in which both the Higgs doublet H

and the scalar singlet DM particle η arise as composite pNGBs, characterized by the NGB

decay constant f (analogous to the fπ constant for pions in QCD), from a spontaneous

symmetry breaking due to the dynamics of a new strongly coupled sector, lying at a high
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scale Λ ∼ 4πf .1 The minimal scenario, considered here, is based on the SO(6) → SO(5)

symmetry breaking pattern. The singlet η is stable thanks to a parity under which

η → −η . (2.1)

The main difference between this case and models in which η is an elementary scalar

(see, e.g., refs. [24–26]) comes from derivative interactions between η and H. As we show

explicitly in the next subsection, these interactions depend only on the symmetry breaking

pattern and on the scale f . Expanding up to dimension-6 terms in (|H|2, η2)/f2, the chiral

Lagrangian can be written as [22]

Lkin ' |DµH|2 +
1

2
(∂µη)2 +

1

2f2

(
∂µ|H|2 +

1

2
∂µη

2

)2

, (2.2)

where DµH is the usual SM covariant derivative of the Higgs doublet.2

In order to provide a mass to the SM fermions, in particular to the top quark, we

assume the partial compositeness mechanism: each SM fermion mixes with one (or more)

composite vector-like fermions with the same quantum numbers [12, 14]. Upon integrating

out the heavy fermions, the SM Yukawa interactions are generated, along with higher order

interaction terms. Considering, for example, the bottom quark, up to dimension-6 terms

the effective Yukawa Lagrangian can be written as

LY uk,b ' −ybq̄LHbR
(

1− κhb
|H|2

f2
− κηb

1

2

η2

f2
+ . . .

)
+ h.c. , (2.3)

and similarly for the other SM fermions. In our explicit model all the coefficients κhf =

κηf = 1 where in general they depend on the choice of embedding of the SM fermions in

(incomplete) SO(6) representations and of the parametrization of the SO(6)/SO(5) coset,

as discussed in detail in appendix A.

These mixing terms break explicitly the global symmetry and therefore induce, at one-

loop, an effective potential for the pNGBs, V (H, η)eff. This potential presents a minimum

for H, away from the origin, which breaks the EW symmetry to U(1)em. Since SM fermion

masses arise via the mixing terms, the more massive the fermion, the bigger the mixing

has to be. The main contribution to the potential is thus due to the top quark mixing

terms. Another important source of explicit symmetry breaking is due to the SM EW

gauge interactions. Assuming invariance under the parity in eq. (2.1), the most general

scalar potential, up to dimension 4 terms, is

V (H, η)eff = µ2
h|H|2 +

µ2
η

2
η2 + λh|H|4 +

λη
4
η4 + λ|H|2η2 , (2.4)

1In the context of Composite Higgs models an alternative DM candidate might be represented by topo-

logical defects like Skyrmions, see ref. [23].
2In our analysis we use the complete chiral Lagrangian keeping into account all the non-linearity of the

NGB dynamics. As we will show, phenomenological constraints, both from collider physics (fit of the Higgs

couplings and bounds on composite resonances) and astrophysics (direct and indirect detection of dark

matter), suggest that in our models the scale f should be bigger than ∼ 0.8 − 1 TeV, which justifies the

expansion performed in eq. (2.2).
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where λ is often dubbed Higgs portal coupling [27]. Assuming that 0 < −µ2
h < λhf

2 and

µ2
η − λ

µ2
h
λh
> 0, this potential has a minimum for

〈H〉 =

(
0,

v√
2

)t
, 〈η〉 = 0, where v2 = −

µ2
h

λh
≡ ξf2 ' (246 GeV)2 . (2.5)

The masses of the physical fields h and η, being h the Higgs boson, are given by

m2
h = 2λhv

2(1− ξ) , m2
η = µ2

η + λv2 , (2.6)

where the (1− ξ) factor in the Higgs mass is a correction due to a wave function normal-

ization effect, see eq. (2.12) in the next subsection.

Following ref. [19], in order to render the scalar potential calculable (to be able to

compute the Higgs and scalar DM masses and couplings), we assume the Minimal Higgs

Potential hypothesis, that is we assume the potential to be dominated by the contributions

due to SM fields and the lighter resonances, and we impose generalized Weinberg sum rules

in order to remove the quadratic and logarithmic sensitivity to the cutoff. At one loop, the

only composite states which contribute to the scalar potential are those that mix with the

elementary SM particles, breaking the global SO(6) symmetry with such mixings. Such

states are the spin-1/2 top partners and composite spin-1 resonances, with masses of the

order m2
ρ � Λ2, which mix with the SM EW gauge bosons.

The main aim of the rest of this section is to build explicit models in order to study

the allowed range of the DM mass and Higgs portal coupling in realistic cases which, in

particular, correctly describe both the top and Higgs mass and which still evade the bounds

from direct searches of top partners at the LHC.

2.1 Structure and symmetries of the SO(6)/SO(5) coset

Let us review here the basic structure of next-to-minimal Composite Higgs models where

the strong sector enjoys a global symmetry SO(6) ⊗ U(1)X
3 spontaneously broken to the

subgroup SO(5) ⊗ U(1)X at a scale f [18, 22, 28]. Due to this spontaneous symmetry

breaking, the low energy theory has 5 NGBs, which transform in the fundamental, 5,

of SO(5). The custodial symmetry group is contained in the unbroken group, SO(4) ∼
SU(2)L ⊗ SU(2)R ⊂ SO(5), and the NGBs transform as a 4 ⊕ 1 ∼ (2,2) ⊕ (1,1) of

the custodial group. Here and in the following we describe the five broken SO(6)/SO(5)

generators as T â, with â = 1, . . . , 5. The 10 unbroken generators of SO(5), T a, can be

divided in the 6 generators of the SO(4) custodial subgroup, T aL,R with aL,R = 1, 2, 3,

and the 4 generators of the SO(5)/SO(4) coset, Tα with α = 1, . . . , 4 (see eq. (A.1) in

appendix A for the explicit definition of the generators). The SM EW gauge symmetry is

identified as the subgroup GEW = SU(2)L⊗U(1)Y ⊂ SU(2)L⊗SU(2)R⊗U(1)X , where the

hypercharge is defined as Y = T 3R +X.

The NGBs can be described by the Σ field

Σ =
1

f

(
h1, h2, h3, h4, η,

√
f2 − h2 − η2

)
, (2.7)

3The U(1)X factor is needed in order to correctly reproduce the SM fermion hypercharges.
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where h2 =
∑4

i=1 h
2
i and where hi and η live in the region

√
h2 + η2 ≤ f .4 The usual

Higgs doublet can can be constructed as H = 1√
2
(h1 + ih2, h3 + ih4)t. In the unitary gauge

h1(x) = h2(x) = h4(x) = 0 and h(x) ≡ h3(x). See appendix A for more details.

The chiral Lagrangian can be written in an expansion in derivatives over the cutoff.

The leading term, with two derivatives, is

Lkin =
f2

2
(DµΣ)tDµΣ , (2.8)

where Dµ = ∂µ − i
(
g0W

aL
µ T aL + g′0BµY

)
and f > v is the symmetry breaking scale, that

is the only parameter of the leading order chiral Lagrangian. To eq. (2.8) one should add

the kinetic term for the elementary SM EW gauge bosons (we neglect QCD here since it

does not play an important role in our discussion)5

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν , (2.9)

In the unitary gauge, the chiral Lagrangian in eq. (2.8) reads

f2

2
(DµΣ)tDµΣ =

1

2

[
(∂µh)2 + (∂µη)2 +

(h∂µh+ η∂µη)2

f2 − h2 − η2

]
+
h2

8

{
g2

0

[
(W 1

µ)2 + (W 2
µ)2
]

+ (g′0Bµ − g0W
3
µ)2

}
.

(2.10)

The SM gauge boson masses are given by

m2
W =

g2
0

4
〈h〉2 , m2

Z =
(g2

0 + g′20 )

4
〈h〉2 . (2.11)

This fixes the EW scale v = 〈h〉 ≡ f
√
ξ ' 246 GeV. Given that in the vacuum 〈η〉 = 0, it

is immediate to see that the canonically normalized fields, in this parametrization, are

h→ v +
√

1− ξ hphys , η → ηphys . (2.12)

The parity η → −η, which keeps this scalar stable, corresponds to the operator

Pη = diag(1, 1, 1, 1,−1, 1) ∈ O(6) , (2.13)

and is a symmetry of the leading order chiral Lagrangian, eq. (2.10). Higher derivative

terms (such as the Wess-Zumino-Witten term), in general break this symmetry. As we

want this scalar to be a viable DM candidate, we assume that this is a symmetry of the

whole strong sector, that is we take the symmetry breaking pattern to be O(6)→ O(5) [22].

Another symmetry of eq. (2.10), very relevant for the η phenomenology, is a SO(2)η '
U(1)η generated by T 5̂ which rotates the fifth and sixth components of Σ and under which

η shifts. If the fermion mixings also respect this symmetry then η remains an exact NGB,

thus its mass and couplings from the potential vanish.

4The effect of this constraint is negligible at any order in perturbation theory and therefore does not

have any effect in any of the computation we perform in this work. In appendix A we will explicitly show

the relations to other parametrizations used in the literature.
5Our convention for the field strength is Wµν = ∂µWν − ∂νWµ − ig0[Wµ,Wν ] and Bµν = ∂µBν − ∂νBµ,

where Wµ ≡W aL
µ T aL .
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2.2 Composite resonances Lagrangian

Here we introduce our models, that is the Lagrangian of the spin-1 and spin-1/2 resonances

which mix with the SM gauge bosons and fermions.

2.2.1 Vector Lagrangian

We introduce composite resonances in representations of the unbroken group SO(5) using

the hidden local symmetry formalism, following ref. [29]. In particular, let us consider

spin-1 fields in the adjoint, ρµ = ρaµT
a ∈ 10, and in the fundamental, aµ = aâµT

â ∈ 5. At

leading order in the number of derivatives, the Lagrangian for these fields, assumed to be

lighter than the cutoff, is

Lspin−1 = −1

4
Tr
(
ρ2
µν

)
+
f2
ρ

2
Tr
[
(gρρµ − Eµ)2

]
− 1

4
Tr
(
a2
µν

)
+

f2
a

2∆2
Tr
[
(gaaµ −∆dµ)2

]
,

(2.14)

where dµ and Eµ are the CCWZ structures [30, 31] defined in eq. (A.3) and the field

strengths are defined as ρµν = ∂µρν − ∂νρµ − igρ[ρµ, ρν ] and aµν = ∇µaν −∇νaµ. Let us

also define the masses

mρ = fρgρ , ma = fa
ga
∆

. (2.15)

The generalization to an arbitrary number of copies is straightforward, see e.g. ref. [19].

For simplicity we consider only the minimal case with one adjoint and one fundamental,

which already allows to obtain a finite one-loop potential.

The mixing term in eq. (2.14) between ρµ and Eµ
6 induces a mixing between the SM

gauge fields and the spin-1 resonances ρaLµ and ρ3R
µ . The mass eigenvalues, before EWSB,

are given by a simple rotation W aL
µ → cos θgW

aL
µ + sin θgρ

aL
µ , Bµ → cos θg′Bµ + sin θg′ρ

3R
µ

and similarly for ρaLL and ρ3R
µ , where tan θg = g0/gρ and tan θg′ = g′0/gρ. The massless

combinations are the physical SM EW gauge bosons while the massive ones are the spin-1

resonances. Their mass shifts, due to this mixing, at the order O(g2
0/g

2
ρ). The physical SM

gauge couplings are given by g = g0 cos θg, g
′ = g′0 cos θg′ .

2.2.2 Fermion Lagrangian

In order to give mass to the SM fermions we adopt the partial compositeness scenario: the

SM fields mix linearly with some fermonic operators of the composite dynamics with same

quantum numbers. Assuming that such mixing terms arise from some flavor dynamics at a

scale much higher than the strong dynamics scale Λ, it is reasonable to write mixing terms

which transform linearly under SO(6)

Lmix ∼ εψ ψ̄SMOΨ + h.c. , (2.16)

where OΨ belongs to some representation of SO(6). Since the SM fields are not in complete

representations of SO(6), such mixings will necessarily break explicitly the global symmetry.

It is however useful to embed ψSM in the same representation of OΨ. At lower energies,

where the symmetry is spontaneously broken, we render explicit the NGB dependence of

6Expanding Eµ in the number of fields one obtains Eaµ = g0W
aL
µ δa,aL + g′0Bµδ

a,3R +O(h2/f2) .

– 6 –
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these terms as OΨ = U(x) Ψ(x), where U(x) is the NGB matrix, see eq. (A.2), and Ψ(x)

belongs to some irreducible representation of SO(5).

The choice of the representation of SO(6) in which to embed the SM fields is a source

of model dependence, in particular the characteristics of the scalar one-loop potential and

the preservation of Pη and of U(1)η depend on the choice of the embedding of the third

generation of quarks. It has been shown in ref. [22] that, since [Pη, T
5̂] 6= 0, the only way

in which both symmetries can be respected by the mixing terms is if the SM fermions are

embedded in representations of SO(6) with vanishing U(1)η charge.

In the following we focus on the embedding of the SM doublets qL, `L in the bi-doublet

inside the 6, with Pη = +1 and which preserves U(1)η, and the right-handed fermions

uR, dR, eR in the parity even singlet inside the 6, that is its sixth component with non-zero

U(1)η charge. The charge under U(1)X is fixed by requiring the correct hypercharge. The

embedding of the SM doublets has to be different for the mixing terms responsible for the

up-type or down-type quark masses:

ξuL =
1√
2



bL
−ibL
tL
itL
0

0


2/3

, ξuR =



0

0

0

0

0

tR


2/3

, ξdL =
1√
2



tL
itL
−bL
ibL
0

0


−1/3

, ξdR =



0

0

0

0

0

bR


−1/3

,

(2.17)

where the subscript indicate the X charge.7 We embed the SM lepton doublets and singlets

in the same way as ξdL and ξdR but with U(1)X charges X`L = XeR = −1.

Let us briefly comment on the case in which the right handed top quark is embedded

in a 15 of SO(6), in order to preserve the U(1)η symmetry. In this case the breaking of this

symmetry, and therefore the contribution to the η potential, comes only from the bottom

quark, assuming its right chirality is embedded in the 6. Since the bottom mixings to the

composite sector are much smaller than those of the top, we expect that in this case the

singlet is much lighter, mη . O(10) GeV. From the expression of the DM mass in eq. (2.6),

assuming µ2
η > 0, this implies that also the coupling λ is generically small: λ . 10−3. In

this case the bound from the Higgs invisible width is able to exclude such a framework for

any value of ξ & 0.05. For this reason, we will not further consider this possibility in the

rest of this paper.

Let us now focus on the fermion partners responsible to give mass to the top quark,

since the mixing terms with these fermions provide the leading contributions to the effective

potential. We assume that the right-handed top is an elementary state, as all the other SM

fermions. Following the logic of ref. [19], we introduce NF vector-like composite fermions

in the fundamental, F ∈ 5 with X = 2
3 (each contains two doublets F1/6 ∈ (2, 1

6), F7/6 ∈
(2, 7

6) and one singlet F5 ∈ (1, 2
3) under SU(2)L × U(1)Y ), and NS vector-like singlets,

7In section 5.2 the couplings between DM and the first two generations of quarks will be extremely

important for our phenomenological analysis in the context of DM direct detection. In order to be as

general as possible, therefore, we will consider also different embedding w.r.t. eq. (2.17).

– 7 –
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S ∈ 1, of SO(5), with X = Y = 2
3 . We embed the SM fermions in the 6 of SO(6). The

leading Lagrangian for the top sector, relevant for the computation of the one-loop effective

potential, is given by

Lf = q̄Li /DqL + t̄Ri /DtR +

NS∑
i=1

S̄i(i /∇−miS)Si +

NF∑
j=1

F̄j(i /∇−mjF )Fj (2.18)

+

NS∑
i=1

(
εitS ξ̄RPLUSi + εiqS ξ̄LPRUSi

)
+

NF∑
j=1

(
εjtF ξ̄RPLUFj + εjqF ξ̄LPRUFj

)
+ h.c. ,

where PL,R = 1∓γ5

2 are chirality projectors and

∇µ = ∂µ − iEµ − iqXg′0Bµ . (2.19)

In general, with our field content, at the same order in the expansion in derivatives it

is possible to write other invariants which do not involve the elementary fields. For this

reason they do not contribute at one loop to the effective potential. The most general

couplings at leading order are (see ref. [19])

Lint =
∑
η=L,R

[
kV,ηij F̄iγ

µ(gρρµ − Eµ)PηFj

+kA,ηij S̄iγ
µaµPηFj + kd,ηij S̄iγ

µdµPηFj + h.c.
]
.

(2.20)

The last term in eq. (2.20), in particular, can play an important role in the phenomenology

of single production processes of top partners [32, 33] and in the fermion contributions

to EW precision tests [34]. However, since they do not influence the scalar potential at

one-loop, we neglect the terms in eq. (2.20) in the following.

3 Analysis of the potential and parameter scans

The mixing terms between the elementary SM states and the heavy composite resonances,

introduced in the previous section, break explicitly the SO(6) symmetry. At one loop

they generate a Coleman-Weinberg effective potential for the pNGBs h and η. In general,

after renormalization, the field-dependent terms of the one-loop effective potential are scale

dependent which would imply the need of fixing some boundary conditions and therefore

a lack of predictability. Using the cutoff regularization, this issue can be seen as quadratic

and logarithmic divergences in the computation of the one-loop potential (see appedix B

for more details).

In order to cure the UV behavior of the potential and cancel this UV sensitivity (i.e. the

scale and scheme dependence), some generalized Weinberg sum rules are imposed [19, 20]

in both the gauge and fermion sectors. Once these Weinberg sum rules are enforced, it is

possible to expand the potential in powers of h and η, in order to extract the coefficients

– 8 –
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of eq. (2.4).8 In this section we present the main results of this approach, focusing the

discussion on the analysis of the effective potential. Further technical details are collected

in appendix B. Analytical approximations and full numerical results are explicitly computed

using two benchmark values for the parameter ξ = v2/f2, namely ξ = 0.1, corresponding

to f ' 800 GeV, and ξ = 0.05, corresponding to f ' 1.1 TeV.

3.1 Vector contribution

The gauge sector, described by the Lagrangian of eq. (2.14), contributes to the potential

only via the h2 dependence, therefore only to the µ2
h and λh coefficients of eq. (2.4). In

general, this contribution is quadratically divergent, see appendix B.1 for the details. We

require the cancellation of this quadratic divergence by imposing the sum rule

(WSR 1)gauge :
f2

2
+ f2

a − f2
ρ = 0 , (3.1)

while the logarithmic divergence is removed requiring

(WSR 2)gauge : f2
am

2
a = f2

ρm
2
ρ . (3.2)

We use these two sum rules to express fa and ma in terms of the other parameters; note

that this fixes all the parameters of the aµ fields relevant for the effective potential, since

only the combination g2
a/∆ enters in the potential. The sum rule of eq. (3.1) requires a

bound fρ > f/
√

2, that is compatible with the partial UV completion (PUVC) criterion

introduced in ref. [29] which predicts fρ ∼ f .

In order to obtain a simple analytic expression for the gauge contribution to the po-

tential let us take g′ = 0, fρ = f and expand for g2 � 1. We obtain

(µ2
h)g '

9g2f2m2
ρ

32π2
log 2 , (λh)g ' −9g4f4

256π2

(
log

32m2
ρ

m2
W

− 5

)
. (3.3)

3.2 Fermion contribution

In general, the fermion sector contributes to all the coefficients of the potential in eq. (2.4).

As in the gauge sector, also in this case the potential is generically quadratically sensitive

to the cutoff, see appendix B.2 for the derivation of the potential. To cure this divergence

we impose the sum rules

(WSR 1)ferm :



NF∑
j=1

|εjqF |
2 =

NS∑
i=1

|εiqS |2 ,

NF∑
j=1

|εjtF |
2 =

NS∑
i=1

|εitS |2 .

(3.4)

8A well known fact is that the quartic terms in this expansion suffer from a spurious infrared divergence

which is due to the fact that the SM particles are massless in the 〈h〉 → 0 limit, therefore the potential

contains terms proportional to h4 log h2/f2, which do not allow a Taylor expansion around h = 0. In the

following analytic studies we simply cutoff this divergence with the W or top mass (depending on the sector

we are considering), however in the numerical analysis we always consider the full potential in which case

there is no infrared divergence. For a more complete discussion on this issue, in the context of SO(5)/SO(4)

models, we refer to appendix A of ref. [35].
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In order to cancel the residual logarithmic divergence we further require

(WSR 2)ferm :



NF∑
j=1

m2
jF |ε

j
qF |

2 =

NS∑
i=1

m2
iS |εiqS |2 ,

NF∑
j=1

m2
jF |ε

j
tF |

2 =

NS∑
i=1

m2
iS |εitS |2 .

(3.5)

The rest of the section is devoted to analyze in more detail two specific models. First

we consider the minimal scenario which allows to enforce both sum rules and to reproduce

the top mass, that is with only one fundamental F and one singlet S. Then we study the

next-to-minimal scenario, in which we add a second singlet, since it allows more freedom

in exploring the parameter space of these composite Higgs models.

3.2.1 Minimal case: NF = NS = 1

In this minimal model it is straightforward to obtain the mass spectrum of the top partners

before EWSB from the Lagrangian of eq. (2.18). The SM top is massless at this level, the

singlet S gets a mass M2
S = m2

S + |εtS |2, the doublet F1/6 has a mass M2
F1/6

= m2
F + |εqF |2

while the other doublet, F7/6, and the other singlet, F5, are degenerate with a mass MF7/6
=

MF5 = mF . After EWSB the fermions with same electric charge mix and these masses

shift by an amount of the order O(vε/m). From eq. (B.15) we obtain the top mass, at

leading order for small ξ, [19]

Mtop '
|εqF εtS |√
2MF1/6

MS

∣∣∣∣mS
εtF
εtS

+mF
εqS
εqF

∣∣∣∣√ξ . (3.6)

In this minimal setup, the first sum rule is solved by imposing

|εqF |2 = |εqS |2 ≡ ε2Q and |εtF |2 = |εtS |2 ≡ ε2T . (3.7)

The second sum rule further fixes

mF = mS = m, (3.8)

where we used the field basis where the masses are real and positive. Assuming for sim-

plicity that the mixing parameters are real, the only solution (up to field redefinition) for

which the potential does not vanish is

εqF = εqS = εQ , εtF = εtS = εT . (3.9)

In this case, it turns out that

(µ2
η)
f

f2
= λfη = 0 , λf = λ = −

(µ2
h)f

f2
. (3.10)

Since µ2
η does not receive any contribution neither from the gauge sector nor from the

fermion sector, it vanishes and therefore the singlet will be light (its mass is ξ-suppressed,

as the Higgs mass, eq. (2.6)).
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In this simple model it is straightforward to obtain exact analytic formulae for these

coefficients, however in order to get an understanding of the behavior of this model it is

useful to make some approximations. For example assuming big mixings, that is m2 �
M2
F1/6

,M2
S , we get M2

top ' 2m2ξ and

λ = λf = −
(µ2
h)f

f2
' 1

2
λfh '

NcM
2
top

4π2v2

M2
F1/6

M2
S

f2(M2
F1/6
−M2

S)
log

M2
F1/6

M2
S

, (3.11)

which is evidently always positive. The top mass fixes m = MF7/6
∼ 350 GeV which, as we

show in section 4.2, is experimentally excluded, therefore this region is disfavored. In the

opposite limit, that is ε2Q, ε
2
T � m2, we obtain M2

top ' 2ξε2Qε
2
T /m

2 and

λ = λf = −
(µ2
h)f

f2
' 1

2
λfh '

NcM
2
top

4π2v2

m2

f2
. (3.12)

In this case, the scale of the top partner masses m has to be smaller than ∼ 1.5f '
1.2 (1.6) TeV for ξ = 0.1 (0.05), in order to reproduce the correct Higgs mass. We have

checked numerically that, indeed, the relation λf ' 1
2λ

f
h holds, up to O(20%) corrections, in

all the parameter space. This fact, using eq. (2.6) and the fact that the gauge contribution

to λh is always negligible, allows us to conclude that in this model, for a given ξ, the Higgs

mass fixes both the DM mass and portal coupling

mη '
1

2
mh ' 63 GeV , and λ =

m2
η

v2
' 1

4

m2
h

v2
' 0.065 . (3.13)

Let us finally discuss how ξ can be tuned to realistic values, in particular our benchmark

values ξ = 0.1, 0.05. From the relation − (µ2
h)f

f2 ' 1
2λ

f
h and eq. (2.6) we get

ξ ' 1

2
−

(µ2
h)g

m2
h

2ξ , (3.14)

where we neglected the gauge contribution to λh since it is always negligible with respect

to the fermionic one. The gauge contribution to µ2
h is therefore necessary in order to reduce

ξ. Eq. (3.3) allows to fix the composite vector mass as a function of the Higgs mass (for a

given value of fρ/f , which has been set to 1 in this example)

mρ ∼
√

2

log 2

π

3

mh

mW

v√
ξ
' 2 TeV (for ξ = 0.1) . (3.15)

From eq. (3.14) we see that, in absence of the gauge contribution, the natural value of ξ

would be ∼ 0.5. Therefore, we can estimate the amount of tuning needed to get a smaller

value with the simple relation

∆ ∼ 1

2ξ
, (3.16)

that is, a ∼ 20% tuning for ξ = 0.1. Such a low amount of tuning in this model is due to the

fact that the extreme simplicity of the model after imposing the Weinberg sum rules fixes

− (µ2
h)f

f2 to be of the same order (actually, a factor of 2 smaller) of λh, see eqs. (3.11), (3.12).
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Figure 1. Here we show the distribution of the fine-tuning ∆, computed summing in quadrature

the logarithmic derivatives of ξ with respect to all the free parameters of the model after imposing

the Weinberg sum rules, versus mη. The left plot is for ξ = 0.1 while the right one is for ξ = 0.05.

All the points here reproduce the correct top and Higgs masses. The blue points pass the direct

searches bounds described in section 4.2, the orange ones do not.

This and the relations in eq. (3.10) are non-generic features of these kind of models: in

general the mass term in the potential is expected to be generated at quadratic order in the

mixings while the self-coupling term only at quartic order, so that

∣∣∣∣ (µ2
h)f

f2λfh

∣∣∣∣ would be naturally

much bigger than 1 and therefore the needed amount of tuning much larger. For this reason,

in order to assess with more generality the viability of these DM model, in the next section

we study also a non-minimal model, in which this more generic feature is indeed present.

To verify the conclusions obtained by our analytic study, we performed a numerical

parameter scan of the model, extracting randomly the parameters fρ ∈ [ 1√
2
f, 2f ], εT ∈

[0.2f, 6f ], m ∈ [0, 6f ] and obtaining εQ by requiring the correct top mass at the TeV

scale Mtop(1 TeV) ' 155 GeV. The vector mass mρ finally has been fixed by requiring the

desired value of ξ (we took as benchmark points ξ = 0.1 and ξ = 0.05). After computing

the full potential with the chosen parameters, we selected only the points with a Higgs

mass between 120 GeV and 130 GeV.9 As can be seen from figure 1, our scan confirms the

analytical estimations presented above, in particular the relation in eq. (3.13), within a few

percent deviation. For each point of the scan we computed the fine tuning in ξ adding in

quadrature the logarithmic derivatives of ξ with respect to all the free parameters of the

9This loose interval has been chosen in order to obtain a sufficient number of points from the scan and

because aO(5) GeV deviation inmh does not have a significant relevance in our models. Moreover, we expect

some small correction to m2
h to arise from the bottom quark mixing, which we didn’t include in the scan.
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model after fixing the Weinberg sum rules (that is ci ∈ {fρ/f,mρ,m, εT , εQ}),

∆ =

√√√√∑
i

(
∂ log ξ

∂ log ci

)2

, (3.17)

and found that ∆−1 ' 10% for ξ = 0.1 and ∆−1 ' 5% for ξ = 0.05, confirming the estimate

of eq. (3.16).

3.2.2 Next-to-minimal case: NF = 1, NS = 2

Let us now move to discuss the next-to-minimal scenario with one fundamental and two

fermionic singlets. Also in this model, the mass spectrum before EWSB can be easily

obtained from eq. (2.18). The mass of the fields in the fundamental is the same as in the

previous model, while the two singlets now have a mass

M2
S1,2

=
1

2

{
m̃2 ∓

√
m̃2 − 4

[
m2

1Sm
2
2S + (ε1tS)2m2

2S + (ε2tS)2m2
1S

]}
, (3.18)

where we defined m̃2 ≡ m2
1S +m2

2S + (ε1tS)2 + (ε2tS)2. In the limit where m2S is much bigger

than the other masses, these two expressions reduce to M2
SX=1,2

' m2
XS + (εXtS)2. From

eq. (B.15) we get the top mass, at leading order in ξ � 1

Mtop '

√
ξε1qF ε

1
tSε

2
tS

∣∣∣∣m1Sm2Sε
1
tF

ε1tSε
2
tS

+ mF
εqF

(
m1Sε

2
qS

ε1tS
+

m2Sε
1
qS

ε2tS

)∣∣∣∣
√

2MF1/6

√
(M2

S2
+M2

S2
)2 − (M2

S2
−M2

S2
)2

. (3.19)

In this case the most general solution to the first sum rule is (assuming real mixings)

(WSR 1)ferm :

{
εqF = εQ , ε1qS = εQ cos θ , ε2qS = εQ sin θ ,

εtF = εT , ε1tS = εT cosφ , ε2tS = εT sinφ .
(3.20)

After imposing this, the second sum rule becomes

(WSR 2)ferm :

{
m2
F = m2

1S cos2 θ +m2
2S sin2 θ ,

m2
F = m2

1S cos2 φ+m2
2S sin2 φ .

(3.21)

Solving these two conditions in terms of m2S and φ, up to arbitrary signs, we get

(WSR 2)ferm :

 m2S =
1

sin θ

√
m2
F −m2

1S cos2 θ ,

sinφ = sin θ .
(3.22)

Without loss of generality we take m2S > m1S . This and eq. (3.22) imply that the relation

m2
F > m2

1S has to be satisfied.

In this model, from our numerical parameter scans, we find two characteristic regions

depending on the values of mF and sin θ. In the limit of small mF , that is of big mixing

terms, the DM quadratic term µ2
η goes to zero, so the DM mass is expected to be of the
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order of the Higgs mass, and, like in the minimal model, the other coefficients are related

by O(1) factors:

λ = λf = −
(µ2
h)f

f2
' 1

2
λfh '

Ncm
2
F

8π2f4
(9 + 7| sin θ|)

ε2Qε
2
T

ε2Q − ε2T
log

ε2Q
ε2T

, (3.23)

where we fixed m1S = mF /2 in order to respect the bound from the second sum rule

and to simplify the expression. In this region this model behaves like the minimal model

discussed in the previous section, in particular we expect the DM mass to be mη ∼ 63 GeV

and the coupling λ ∼ 6 × 10−2, eq. (3.13). A similar result is obtained by expanding for

small mixings εQ and εT (in order to obtain simple analytic expressions) and going in the

sin θ → 1 limit, due to a term proportional to log sin2 θ in the leading term in µ2
h and µ2

η,

as in eq. (3.24). In this case we exactly reproduce the relations of eq. (3.12), and therefore

the same conclusions apply.

A different region is reached (always in an expansion for small mixings) in the limit of

big mF � f and small sin θ � 1, that is with a hierarchy m2S � mF � m1S ∼ f . In this

case we obtain

(µ2
h)f ' − Nc

8π2

m2
F (ε2Q − 2ε2T )

f2
log

1

sin2 θ
,

µ2
η '

Nc

4π2

m2
F ε

2
T

f2
log

1

sin2 θ
,

λfh '
Nc

16π2f4

[
−2(ε2Q − 2ε2T )2 + (ε4Q + 4ε4T ) log

m2
F

m2
S

]
,

λ ' Nc

4π2

ε2T
f4

(
ε2Q − 2ε2T + ε2T log

m2
F

m2
S

)
.

(3.24)

In this case the DM mass can be arbitrarily high (for big mF and small sin θ), while in

order to obtain the correct EW scale, that is to suppress (µ2
h)f , it is necessary to tune

ε2Q ∼ 2ε2T . If this tuning is avoided here, then the gauge contribution to µ2
h has to provide

the necessary cancellation, which will imply higher values of the vector mass mρ than the

case in eq. (3.15). In both cases, we expect the tuning in this region to be higher than in

the cases examined previously, for which the expected tuning is as in eq. (3.16). Taking

ε2Q ∼ 2ε2T , from the expression for λh in eq. (3.24) we can fix εT by requiring the correct

Higgs mass and then substitute this in the formula for λ. We obtain

λ '
m2
h

4v2
' 0.065 , (3.25)

which is the same value we obtained in the minimal model.

Also in this case we performed a numerical parameter scan of the model, extracting

randomly fρ ∈ [ 1√
2
f, 2f ], εT ∈ [0.2f, 6f ], mS ∈ [0, 8f ], mF ∈ [mS , 8f ], θ ∈ [0, π2 ] and

obtaining εQ by requiring the correct top mass at the TeV scale Mtop(1 TeV) ' 155 GeV.

As in the minimal model, the vector mass mρ has been fixed by requiring ξ = 0.1 (or

0.05) and we selected only the points with a Higgs mass between 120 GeV and 130 GeV.

From these scans we observe that, even when relaxing the tuning condition ε2Q ∼ 2ε2T ,

– 14 –



J
H
E
P
0
7
(
2
0
1
4
)
1
0
7

NF = 1, NS = 2, ξ = 0.1

0 100 200 300 400 500 600 700

0.03

0.04

0.05

0.06

0.07

mΗ !GeV"

Λ

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

mΗ !GeV"
"
#
1
!$"

NF = 1, NS = 2, ξ = 0.05

0 100 200 300 400 500 600 700

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

mΗ !GeV"

Λ

0 100 200 300 400 500 600 700
0

1

2

3

4

5

mΗ !GeV"

"
#
1
!$"

Figure 2. In the left column we show the distribution of the points obtained from the scan of the

next-to-minimal model in the (mη, λ) plane, while in the right column we show the distribution of

the fine-tuning ∆, computed summing in quadrature the logarithmic derivatives of ξ with respect

to all the parameters of the model, versus mη. The upper row is for ξ = 0.1 while the lower one

for ξ = 0.05. All the points here reproduce the correct top and Higgs masses. The blue points pass

the direct searches bounds described in section 4.2, the orange ones do not.
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Figure 3. In the left plot we show the points obtained from the parameter scan in the model with

NS = 2, NF = 1 relaxing the second Weinberg sum rules, in the (mh, λ) plane. In the right one we

show the lightest top partner masses, the green line is a reference line for MF7/6
= MS1

. The blue

points pass the direct searches bounds described in section 4.2, the orange ones do not.

the value of the coupling λ remains always of the same order of magnitude, that is in the

range 3 × 10−2 . λ . 7 × 10−2, while the DM mass can vary from mη ∼ mh/2 up to

mη ∼ O(700) GeV, see figure 2.

Computing the fine-tuning as presented in the minimal model, we find that for mη .
200 GeV most of the points present ∆−1 ∼ ξ with a tail of points with ∆−1 . 0.5%, as

can be seen in the right panels of figure 2. Increasing mη the fine-tuning increases: for

mη ' 600 GeV we have 0.5% . ∆−1 . 1%.

Relaxing the second Weinberg sum rules. In order to assess the generality of our

prediction for λ ∼ 6×10−2, which we obtain both in the minimal and in the next-to-minimal

models presented above, we also consider a generalization of the next-to-minimal model

in which we impose only eq. (3.20), relaxing the second Weinberg sum rules of eq. (3.22).

As discussed before, and in more detail in appendix B, this renders the effective potential

incalculable. In particular, relaxing the second sum rules leaves a logarithmic divergence

(i.e. a scale dependence) in µ2
h and µ2

η. On the other hand, the quartic couplings λ, λh and

λη are still scale-independent and therefore calculable. As a consequence, both ξ and m2
η

can not be explicitly computed in this case but need to be fixed as boundary conditions.

Since we are mostly interested in the range of λ given the measured Higgs mass,

we performed a parameter scan of this model fixing ξ = 0.1 and extracting randomly

εT ∈ [0.2f, 6f ], m1S ,mF ∈ [0, 8f ], m2S ∈ [m1S , 8f ], θ ∈ [0, π2 ], φ ∈ [0, π2 ] and obtaining εQ
by requiring the correct Mtop.

10 For each point we computed λ and mh and selected only

10We took into consideration only the fermion sector, since the gauge contribution to the Higgs mass is

always negligible due to the g4 factor as well as a numerical suppression, see eq. (3.3).
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the points with mh between 120 GeV and 130 GeV. As shown in the left panel of figure 3,

we obtain that λ ranges from ∼ 3 × 10−2 and ∼ 8 × 10−2, with the distribution of the

points peaked near λ ∼ 6 × 10−2, thus confirming the range obtained in the cases where

both Weinberg sum rules were being imposed. The DM mass mη, not being calculable, is

in this case a free parameter.

4 Phenomenological analysis — part I: LHC

In this section we analyze the constraints placed on the parameter space of our Composite

DM model by the LHC. In section 4.1 we discuss the bound on the invisible Higgs decay

width, while in section 4.2 we consider direct searches of composite resonances.

4.1 Invisible Higgs decay width

If mη < mh/2, the Higgs boson can decay invisibly into two DM particles. The invisible

decay width corresponding to this process is given by [22]

Γinv(h→ ηη) =
v2

32πmh

(
m2
hξ

v2
√

1− ξ
− 2λ

√
1− ξ

)2
√

1−
4m2

η

m2
h

θ(mh − 2mη) . (4.1)

In addition to the invisible Higgs decay width in eq. (4.1), composite Higgs models also

predict O(ξ) deviations of the tree level Higgs couplings to gauge bosons and fermions

w.r.t. their SM values [36, 37]. In particular in our model we have

ghV V = gSM
hV V

√
1− ξ , ghff̄ = gSM

hff̄

1− 2ξ√
1− ξ

, (4.2)

with V = W,Z, see table 1. It should be noted here that the ξ-dependence in the modified

coupling of the Higgs with EW gauge bosons is model-independent,11 whereas the coupling

with fermions is modified according to the representation of SO(6) in which the SM fermions

are embedded. Following the discussion in section 2.2.2, the result in eq. (4.2) refers to

the embedding of SM fermions in the fundamental 6 of SO(6).12 Loop-induced couplings

— i.e. Higgs couplings to gluons, photons and Zγ — are also modified as an indirect

consequence of eq. (4.2). For instance the Higgs coupling to gluons, whose value sets the

Higgs production cross-section via gluon fusion, is dominated by the top triangle loop and

modified according to ghgg ≈ gSM
hgg (1− 2ξ)/

√
1− ξ.

The proprieties of the Higgs boson, and in particular its couplings to each of the SM

gauge bosons and fermions, are currently under investigation at the LHC. The couplings are

measured by the ATLAS [39] and CMS [40] experiments considering the channels h→ γγ,

h→ ZZ∗ (with ZZ∗ → 4l, 2l2ν, 2l2q, 2l2τ), h→ WW ∗ (with WW ∗ → lνlν, lνqq), h→ bb̄

and h → τ+τ− (with both leptonic and hadronic τ -decays). The invisible decay width of

11In general the couplings depend on the chosen parametrization of the coset, only when computing

physical observables this parametrization-dependence is removed. See appendix A for a detailed discussion

of this issue.
12See ref. [38] for a special case, based on the non-compact global symmetry SO(4, 1), in which

ghV V = gSM
hV V

√
1 + ξ.
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Figure 4. Results of the χ-square fit obtained considering all the Higgs searches under investigation

at the LHC and the TeVatron (see ref. [43] for details). In the left panel we show the 1σ, 2σ and

3σ confidence regions obtained considering a two-dimensional fit of the data as a function of the

invisible branching ratio and the parameter ξ. In the right panel we show the ∆χ2 = χ2 − χ2
min

distribution together with the corresponding 1σ, 2σ and 3σ confidence contours as a function of

the invisible branching ratio for a fixed value of ξ, where χ2
min = 52 (51) for ξ = 0.1 (0.05).

the Higgs boson is strongly constrained by the fact that the rates associated to the channels

listed above are compatible with the predictions of the SM [41, 42]. In our analysis we

perform a combined fit of all the data related to the Higgs searches under investigation

at the LHC and the TeVatron taking into account both the modified Higgs couplings in

eq. (4.2) and the invisible decay width in eq. (4.1). The latter is rephrased in terms of the

following invisible branching ratio

BRinv ≡
Γinv(h→ ηη)

Γ ξ
SM + Γinv(h→ ηη)

, (4.3)

where Γ ξ
SM is the decay width of the Higgs boson into SM particles obtained including the

deviations of the Higgs couplings in eq. (4.2). We perform a χ-square fit following ref. [43]

(see also refs. [44–49] for similar analysis) and we present our results in figure 4. In the left

panel of figure 4 we show the result of a two-dimensional fit considering as free parameters

both BRinv and ξ. Notice that larger values of BRinv are allowed only if combined with

small values of ξ. The reason is that a high value of ξ suppresses the Higgs production

cross-section via gluon fusion, as immediately follows from the modified coupling ghgg
previously discussed. This suppression, in turn, gives a tighter bound on the invisible

branching fraction since, intuitively, less Higgses than expected are produced [43]. In the

right panel of figure 4 we restrict our analysis to a one-dimensional fit obtained considering

as free parameter only the invisible branching ratio, while we fix the parameter ξ to the two

benchmark values ξ = 0.1 and ξ = 0.05. For ξ = 0.1 (ξ = 0.05) we find that BRinv > 0.24

(BRinv > 0.275) is excluded at 3σ level. Writing explicitly BRinv as a function of the DM

– 18 –



J
H
E
P
0
7
(
2
0
1
4
)
1
0
7

mass and the Higgs portal coupling — using eqs. (4.1), (4.3) — it is possible to draw an

exclusion curve in the plane (mη, λ). We will show this bound in section 6, together with

all the other phenomenological constraints that we will derive in the following sections.

4.2 Direct searches of composite resonances

In this section we focus on constraints from the LHC on the composite resonances present

in our models, discussed in sections 3.2.1, 3.2.2. It is already well established that, in the

context of composite pseudo-Nambu Goldstone Higgs models with partial compositeness,

the measured value of the Higgs mass requires the presence of top-partners with a mass

below the TeV scale [17–20]. The parameter scans we performed for our models and which

we presented in the previous section confirm this fact, as can be seen from figure 5 (see

also the right panel of figure 3). Moreover, in the minimal model and in some regions of

the second model, the spin-1 resonances are expected to be near the ∼ 2 TeV scale (3.15).

The present experimental bounds on spin-1 resonances and, more importantly, on spin-

1/2 top partners are already able to rule out a relevant part of the parameter space of our

models.13

Ref. [50] recently studied the bounds from direct searches at the LHC of spin-1 reso-

nances introducing a simplified model with a triplet of SU(2)L and presenting the bound in

the (gρ,mρ) plane. Our model presents a more complicated spectrum of vector resonances:

the adjoint of SO(5) (ρaµ), with masses of the order mρ, contains a (3,1)⊕ (1,3)⊕ (2,2) of

SU(2)L⊗SU(2)R and the fundamental of SO(5) (aâµ), with mass ma, contains (2,2)⊕(1,1).

In order to obtain experimental bounds on these states it would be necessary to perform a

complete collider study of the model, including also possible chain decays involving compos-

ite fermions through the interactions of eq. (2.20), see ref. [51] for a recent phenomenological

analysis of this issue. Since this is well beyond the purpose of this work we take at face

value, as an approximate reference value of the experimental bound on these states, the re-

sult of ref. [50]. Fixing the two benchmark values of ξ = 0.1, 0.05 and taking for simplicity

fρ = f , so that mρ ' gρf = gρ
v√
ξ
, we get that the allowed region is approximately

mρ & 1.8 (2.2) TeV for ξ = 0.1 (0.05) . (4.4)

This is comparable with the bound one can extract from the tree-level contribution of

the spin-1 resonances to the Ŝ parameter [52, 53] of eq. (B.9), assuming no correlation

with other contributions. From the constraint Ŝ . 2 × 10−3 [54] one obtains a bound of

mρ & 1.8 (2.4) TeV for fρ = f/
√

2 (= 2f).

13In this work we decided to focus on bounds from direct searches and not consider constraints from EW

precision tests. Even though the latter, in particular those from the oblique S and T parameters and from

Zbb̄ coupling deviations, can in principle provide similar bounds as direct searches, they suffer from a larger

model dependence and, in the case of strongly coupled models, some lack of predictability. For example,

even though vector resonances contribute to S at tree level, the IR one-loop contribution to the oblique

parameters due to the deviation in the Higgs couplings to the SM gauge bosons and the loop contribution

from composite fermions are both very important and all have to be taken into account. In particular it has

been shown [34] that some of the couplings in eq. (2.20), which do not contribute to the effective potential,

can instead give important contributions to S and T . In addition, the bounds from direct searches have

already reached a similar sensitivity to those from indirect constraints.
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Figure 5. In the upper (lower) row we show the lightest top partner masses (before EWSB) in

the minimal (next-to-minimal) model with for ξ = 0.1 [0.05] in the left [right] plot. The points

reproduce the correct top and Higgs masses, up to a ∼ 5 GeV tolerance on mh. The blue points

pass the selection while the orange ones are excluded by direct searches of top partners and vector

resonances, eqs. (4.4), (4.5). The green line is a reference for MF7/6
= MS1 .
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Both ATLAS and CMS collaborations are providing bounds on pair produced top

partners, studying different decay modes. The relevant searches for our models are those

for colored vector-like fermions, X, with electric charge Q = 5/3 decaying in W+t with

BR(X →W+t) = 100% [55, 56] and for vector-like top partners T ′ with Q = 2/3 decaying

into bW+, tZ and th [57–59]. The Q = 5/3 fermion decays with unity probability to

tW+ when it is the lightest and masses MX < 800 GeV are excluded at 95% C.L. by

CMS [55]. The branching ratios of the T ′ in the three channels listed before are instead

model-dependent and the 95% C.L. bound given in ref. [57] varies from ∼ 680 GeV up

to ∼ 780 GeV. Applying the Equivalence Theorem gives a reference value, for the singlet

branching ratios, of BR(T ′ → W+b) ' 2BR(T ′ → Zt) ' 2BR(T ′ → ht) ' 50% [32],

in which case the bound is ∼ 700 GeV. These analysis are always performed under the

assumption that only one new state is present at low energy while the others are much

heavier. This assumption is very strong and seldom realized in concrete models, including

our case. For these reasons a complete analysis of the experimental results in order to adapt

them to the realistic case would be needed, but is beyond the purpose of the present work.

Let us classify the parameter space of our models in three broad regions depending on

the mass of the doublet which includes the exotic Q = 5/3 fermion, M7/6, and the mass

of the lightest of the two SO(5) singlets, MS1 . The first region is defined as MS1 � M7/6

(light singlet) in which case we expect that the bound on the singlet T ′ to be approximately

valid since all other states are heavier. In the opposite case, M7/6 � MS1 , the Y = 7/6

doublet is the lightest but, as we described in the previous section, up to EWSB effects

it is degenerate with the singlet in the fifth component of the fundamental of SO(5), F5,

and all these three states have an equal mass mF . Mixing effects after EWSB will slightly

lift this degeneracy, leaving only the Q = 5/3 state exactly with the mass mF . Since

the experimental bound on this state is the strongest, we still expect that it will put the

strongest constraint on this region. Even though the precise value of the bound may differ

from the one in the simplified model with only one resonance, for our purposes we take that

as a reference value. The same argument applies also in the region where M7/6 ∼ MS1 .

Therefore, as a first approximation we adopt the following constraints:

MF7/6
& 800 GeV , MS1 & 700 GeV . (4.5)

In figure 5 we present the results of the parameter scans we performed for the two models

(the minimal in the upper row, the next-to-minimal in the lower one) showing the points

which reproduce the correct top and Higgs masses, as well as the desired value of ξ, in

the plane (MS1 ,MF7/6
). The blue (orange) points are those which pass (do not pass) the

bounds of eqs. (4.4), (4.5) while the green is a reference for the two regions specified before.

We see that the models with lower tuning, ξ = 0.1, are already on the verge to be excluded

by direct searches and also for ξ = 0.05 the bounds cut a sizable part of the parameter

space of the models.
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5 Phenomenological analysis — part II: astrophysics

In this section we analyze all the relevant bounds placed on the parameter space of our

Composite DM model by the most constraining DM searches currently ongoing in high-

energy astrophysics. In section 5.1 we discuss the DM relic abundance, while in section 5.2

we analyze the result of the LUX experiment in the context of direct detection of DM

particles. In section 5.3 we study indirect detection experiments, focusing in particular on

the measurement of the antiproton energy spectrum.

5.1 Relic density

In this paper we assume a standard cosmological scenario in which DM is a weakly-

interacting cold thermal relic. According to this paradigm, in the early Universe DM

particles are kept in thermal equilibrium through their interactions with other species pop-

ulating the thermal bath. In full generality this means that processes converting heavy

particles into lighter ones and vice-versa occur at the same rate. As the Universe expands

and cools, however, the conditions to support this delicate equilibrium no longer exist be-

cause of two main reasons: on the one hand the thermal kinetic energy of lighter particles

is no longer sufficient to produce heavier particles, on the other one the expansion of the

Universe dilutes the number density of the latter in such a way that their annihilation pro-

cesses become less and less frequent. Eventually, heavier particles “freeze-out” and their

number density, no longer affected by interaction processes, remains constant. Consider-

ing the freeze-out of DM particles, the evolution of their number density n(x) during the

expansion of the Universe, being x ≡ mη/T where T is the temperature, is quantitatively

described using a Boltzmann equation. In terms of the yield Y(x) = n(x)/s(x), where s(x)

is the entropy density, this equation reads

dY

dx
= −Z(x)

[
Y2(x)−Y2

eq(x)
]
, (5.1)

where

Z(x) ≡
√

π

45

mηMPL

x2

√
g∗(T )〈σvrel〉(x) , (5.2)

MPL = 1.22× 1019 GeV is the Planck mass and g∗(T ) is the number of relativistic degrees

of freedom. The thermally averaged annihilation cross-section is given by

〈σvrel〉(x) =

∫ ∞
4m2

η

ds
s
√
s− 4m2

ηK1(
√
s/T )

16Tm4
ηK

2
2 (mη/T )

σvrel(s) , (5.3)

where s is the center of mass energy squared, Kα=1,2 are the modified Bessel functions of

second kind and σvrel(s) is the total annihilation cross-section times relative velocity of

two DM particles. At the equilibrium

Yeq(x) =
45

4π4

x2

heff(T )
K2(x) , (5.4)
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Figure 6. Left panel: thermally averaged annihilation cross-section 〈σvrel〉(x) evaluated at the

typical freeze-out temperature for a weakly-interacting DM particle, namely Tf = mη/xf with

xf = 20. Right panel: DM relic density Ωηh
2 in eq. (5.5) compared with the 3σ interval measured

by the Planck collaboration (green band). We show two different values ξ = 0.1 (solid line) and

ξ = 0.05 (dashed line) while we fix λ = 0.065 as suggested by eqs. (3.13), (3.25).

where heff(T ) is the effective entropy.14 The integration of the Boltzmann equation gives

the yield today, Y0, which is related to the DM relic density through

Ωηh
2 =

2.74× 108mηY0

GeV
, (5.5)

where Ωη ≡ ρη/ρc is the ratio between the energy density of DM and the critical energy

density of the Universe and h ≡ H0/(100 km/s/Mpc) is the reduced value of the present

Hubble parameter. We solved numerically the Boltzmann equation in eq. (5.1), requiring

to reproduce the value observed by the Planck collaboration, ΩDMh
2 = 0.1199 ± 0.0027

(68% C.L.) [61].

In our analysis we included the annihilation processes ηη → f̄f , ηη → W+W−, ηη →
ZZ, ηη → hh. The relevant SM fermions entering in the computation are the bottom and

the top quark. Moreover, below the kinematical threshold for the annihilation into two on-

shell gauge bosons, we also include the three-body processes ηη →WW ∗, ηη → ZZ∗. Given

the great precision reached by the measurement of the relic abundance, in fact, the inclusion

of these radiative effects is mandatory in order to obtain an accurate matching [62].15 Let

us now discuss the results of our analysis from a more quantitative point of view.

In the left panel of figure 6 we plot, as a function of the DM mass mη, the ther-

mally averaged annihilation cross-section at the freeze-out epoch, i.e. assuming xf = 20,

14Solving numerically the Boltzmann equation, we keep the temperature dependence both in g∗(T ) and

heff(T ) (see ref. [60]).
15See refs. [63, 64] for a more general discussion about the role of radiative corrections for the computation

of the relic abundance.
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for the benchmark values ξ = 0.1 and ξ = 0.05. We take λ = 0.065, as suggested by

eqs. (3.13), (3.25). Going from small to large values for the DM mass mη it is possible

to recognize the Higgs resonance (mη ≈ 63 GeV), the two-body threshold for annihilation

into two on-shell W bosons (mη ≈ 80 GeV) and the effect of the momentum-dependent

interactions of the chiral Lagrangian in eq. (2.2). The latter, growing proportionally to

the square of the total energy in the c.o.m., become important for large values of the DM

mass enhancing the annihilation cross-section. Finally, notice that the dip around 130 GeV

for ξ = 0.1 (180 GeV for ξ = 0.05) corresponds to the value of mη that solves the equa-

tion s − 2λξ(1 − ξ)/v2 = 0, with s = 4m2
η/(1 − v2

rel/4) and vrel ≈ 1/2 at the freeze-out.

This condition corresponds to an accidental cancellation between the derivative and the λ

contribution to the η-η-h vertex (see appendix A and ref. [22]).

In the right panel of figure 6 we plot, as a function of the DM mass mη, the value

of the relic density in eq. (5.5) compared with the 3σ interval measured by the Planck

collaboration. As before, we take ξ = 0.1 and ξ = 0.05, with λ = 0.065. At the qualitative

level the result can be understood bearing in mind that a näıve but useful approximated

solution of the Boltzmann equation is given by

Ωηh
2

0.1199
' 3× 10−26 cm3s−1

〈σvrel〉(xf )
. (5.6)

As a consequence the relic abundance retraces, upside down, the same contour of the

thermally averaged annihilation cross-section.

In section 6 we will present our numerical results for the computation of the relic

density from a more general viewpoint as contour plot in the plane (mη, λ). In this way we

will be able to compare the region of the parameter space in which the model can reproduce

the observed value of the relic abundance with the other constraints analyzed in the rest

of this paper.

5.2 Direct detection

Direct detection of DM can occur through elastic scattering between an incident DM par-

ticle and a nucleus at rest inside a detector beneath the surface of the Earth. Direct

detection experiments aim to measure, as fingerprints of these interactions, the nuclear

recoil energy. The LUX experiment [65] has recently reported the most stringent limit on

the spin-independent DM-nucleon elastic cross-section σSI [66].

In our model the spin-independent DM-nucleon elastic cross-section is generated by

two types of diagrams. On the one hand, the η-η-h vertex in the chiral Lagrangian in

eq. (2.2) generates a tree-level contribution via the exchange in the t-channel of the Higgs

boson which, in turn, couples to quarks and gluons inside the nucleon. On the other

one, the Yukawa Lagrangian in eq. (2.3) generates an effective operator proportional to

(mq/f
2)η2q̄q, thus leading to a contact interaction between DM and quarks. Note that

in both cases we have a scalar-mediated interaction with quarks, i.e. the interactions in-

volving quarks are always proportional to the scalar operator mq q̄q. In full generality, the

spin-independent DM-nucleon elastic cross-section mediated by scalar interactions can be
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Figure 7. Left panel: comparison between the spin-independent elastic cross-section σSI in eq. (5.7)

and the bound extracted by the LUX experiment (the region above the red line is excluded). We

plot the value of σSI corresponding to λ = 0.065 limited to case 1 in eq. (5.9), with ξ = 0.1 (green

solid line) and ξ = 0.05 (green dashed line). Right panel: region of the parameter space (mη, λ)

excluded by the LUX experiment. We show the corresponding bound for ξ = 0.1 (red solid line)

and ξ = 0.05 (red dashed line), considering both case 1 in eq. (5.9) (lighter red) and case 2 in

eq. (5.10) (darker red).

parametrized as follows

σSI =
1

π

(
mN

mη +mN

)2 [Zfp + (A− Z)fn]2

A2
, (5.7)

where mN = (mn + mp)/2 = 938.95 MeV is the nucleon mass while Z and A − Z are the

number of protons and neutrons inside the nucleus, with Z = 54 and A = 130 for a nucleus

of Xenon. In eq. (5.7) fp and fn describe the coupling between DM and, respectively,

protons and neutrons. They are given by

fn,p =
∑

q=u,d,s

f
(n,p)
Tq

aqmn,p +
2

27
fTG

∑
q=c,b,t

aqmn,p , (5.8)

where for the nuclear matrix elements we take [67, 68] f
(n)
Tu

= 0.026, f
(n)
Td

= 0.020, f
(p)
Tu

=

0.020, f
(p)
Td

= 0.026, f
(n,p)
Ts

= 0.043, and fTG = 1 − f (n,p)
Tu

− f (n,p)
Td

− f (n,p)
Ts

= 0.911.16 The

coefficients aq describe the effective interactions between DM and quarks, normalized as

LDD
η ⊃

∑
q aqmqη

2q̄q. In order to write down explicitly these coefficients in our model,

we need to specify the contact interactions between DM and the first two generations of

quarks. Since the computation of the spin-independent elastic cross-section is the only

16See ref. [69] for a recent discussion about the hadronic uncertainties in spin-independent WIMP-nucleon

scattering.
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place in which these interactions play an important phenomenological role, we decided to

distinguish between two cases

Case 1 : aq=u,d,c,s =
λ(1− 2ξ)

m2
h

, aq=t,b =
λ(1− 2ξ)

m2
h

+
ξ

2(1− ξ)v2
, (5.9)

Case 2 : aq=u,d,c,s,t,b =
λ(1− 2ξ)

m2
h

+
ξ

2(1− ξ)v2
. (5.10)

In the first case — eq. (5.9) — we set to zero the contact interaction between η and all the

quarks belonging to the first two generations. This setup can be easily realized, for instance,

considering the embedding of the right handed quarks of the first two generations into the

15 of SO(6). The only non-zero contribution to aq=u,d,c,s, as a consequence, arises from the

t-channel exchange of the Higgs boson. This contribution has been computed neglecting

the square of the momentum transferred, q2, both in the t-channel Higgs propagator and in

the derivative interaction arising from the chiral Lagrangian in eq. (2.2). This approxima-

tion is justified by the fact that in the elastic scattering we have −q2/m2
h, −q2/f2 � 1, with

q2 = −2mXeEre where the mass of a nucleus of Xenon is mXe = 121 GeV while for the typ-

ical kinetic recoil energy one has Ere ∼ few keV. The coefficients aq=t,b receive, in addition

to the term generated by the t-channel exchange of the Higgs, an extra contact interaction

from the Yukawa Lagrangian in eq. (2.3); according to the discussion in section 2.2.2, this

contribution has been computed assuming the embedding of the bottom and top quark into

the fundamental representation 6 of SO(6). In the second case — eq. (5.10) — we assumed

non-zero contact interactions also for the quarks belonging to the first two generations,

adopting the same embedding into the 6 of SO(6) characterizing the top-bottom sector.

We show our results in figure 7. In the left panel we compare the spin-independent elastic

cross-section computed in our model with the bound set by the LUX experiment. Follow-

ing our choice of benchmark values, we plot σSI for λ = 0.065 and for ξ = 0.1, ξ = 0.05.

Moreover, for definiteness, we show only the setup corresponding to eq. (5.9). The bound

of LUX turns out to be very stringent, and only values of DM mass larger than 200 GeV are

allowed. The two lines for ξ = 0.1 and ξ = 0.05 are almost indistinguishable. The difference

between these two values, in fact, starts to be significant when λ(1−2ξ)/m2
h < ξ/2(1−ξ)v2,

i.e. for λ . 10−2. In the right panel of figure 7 we illustrate the difference between case 1

and case 2 in eqs. (5.9), (5.10) showing the bound of the LUX experiment in the parameter

space (mη, λ), both for ξ = 0.1 and ξ = 0.05. For small values of λ, i.e. λ . 10−2, the role

of the additional contact interactions in case 2 starts to be significant, pushing the excluded

region towards larger values of DM mass if compared with those allowed in case 1. For mη &
150 GeV, where the LUX bound can exclude only large values of λ & 10−2 in order to com-

pensate the m−2
η suppression in σSI, the difference between case 1 and case 2 is less relevant.

In section 6 we will use the result in the right panel of figure 7 in order to combine the

bound of LUX with all the other phenomenological constraints under investigation in our

analysis.
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5.3 Indirect detection

DM annihilation into lighter SM particles in the halo of the Milky Way galaxy copiously pro-

duces stable particles — e.g. photons, positrons, antiprotons and neutrinos — giving rise, in

principle, to detectable signals on Earth [70, 71]. The major task that has to be addressed in

order to detect such signal is to understand, for each of the stable species mentioned above,

the contribution of the astrophysical background, mostly originated from the interactions

of ultra high-energy cosmic rays of extragalactic origin with the interstellar medium in the

Galaxy. In this context, the measurement of the antiproton flux plays a central role for three

main reasons: i) among all stable particles that may be produced from DM annihilation,

the ratio between the DM signal and the astrophysical background is largest in the antipro-

ton channel, ii) the theoretical prediction for the astrophysical background — i.e. secondary

production of antiprotons from primary cosmic rays protons interacting with gas and dust

in the Galaxy — is moderately under control, relying on a strict analogy with the analy-

sis carried for heavier nuclei, like the measurement of the boron-to-carbon ratio [72, 73],

iii) simple arguments, based on kinematics, show that background and signal should have

completely different spectral features — i.e. a spectrum suppressed at small energies and

peaked around few GeV for the background versus a broader spectrum for the DM sig-

nal [74]. The balloon-borne experiment BESS [75–77] and the space-based experiment

PAMELA [78] have measured with good precision the antiproton energy spectrum in the

energy range from 0.1 GeV up to about 180 GeV. A further improvement is expected when

the antiproton data collected by the AMS-02 experiment will be released [79]. The mea-

sured rate agrees well with standard background estimate; this result, as a consequence, can

be used to set limits on the yield of antiprotons from exotic sources like DM annihilation.

In our analysis we closely followed the approach outlined in ref. [80] and further re-

examined in ref. [81] in the context of scalar Higgs portal models (see also refs. [82, 83]

for related analysis). In a nutshell this approach is based on a careful scrutiny of the

uncertainties associated with the astrophysical background. Five different models for the

propagation of charged cosmic rays in the Galaxy have been constructed by using different

assumptions — i.e. different rigidities for the diffusion coefficient, different thickness for

the Galactic halo and the possibility to have strong convection — and requiring to fit the

recently updated boron-to-carbon and proton data [84]. Once one of these propagation

models is chosen, it can be used to compute the antiproton flux, testing the background

plus DM hypothesis versus the background prediction. Strong bounds on the DM ther-

mally averaged annihilation cross-section times relative velocity can be extracted using this

strategy. Let us now describe in more detail our approach. First we computed the antipro-

ton energy spectrum produced by DM annihilation — i.e. the number of antiprotons per

each annihilation process — according to

dN

dE

∣∣∣∣
p

=
∑
f

BRf ×
dN

dE

∣∣∣∣f
p

, (5.11)

where the sum runs over all the possible final states ηη → f that are kinematically allowed

for a given value of DM mass mη. In addition to two-body final states, we included the
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three-body annihilation processes ηη → WW ∗, ZZ∗ below the kinematical threshold for

the annihilation into two on-shell gauge bosons. In eq. (5.11) dN/dE|fp is the number of

antiprotons per each annihilation into the finale state ηη → f whose branching ratio is

given by BRf . We obtained these energy spectra using the Monte Carlo event generator

PYTHIA 8.1 [85] including the effects of three-body final states as described in refs. [86, 87].

The number of antiproton per unit energy, time and volume produced by DM annihilation

is therefore given by the following source term

Qp̄ =
1

2

[
ρDM(r)

mη

]2

〈σvrel〉0
dN

dE

∣∣∣∣
p

, (5.12)

where 〈σvrel〉0 is the thermally averaged annihilation cross-section times relative velocity

describing DM annihilation today. Concerning the DM halo profile ρDM(r) we adopted

three different possibilities, namely the Einasto [88, 89], NFW [90] and Isothermal [91]

profiles. Using the public code DRAGON [92, 93], we then propagated the antiprotons

produced by DM annihilation considering for definiteness two different propagation models

among those described in refs. [80], i.e. the KOL and CON propagation models. The

former — more constraining — assumes Kolmogorov turbulence, while the latter — less

constraining — includes convective effects (see ref. [80] for a more detailed discussion). The

comparison between these two different choices should give an idea of the uncertainties

affecting the propagation of charged particles in the Galaxy.17 Finally, comparing the

DM antiproton signal with the background generated using the same propagation models,

we were able to extract exclusion curves for 〈σvrel〉0. In particular, we required that the

total (background + signal) antiproton flux does not exceed the measured flux [78] at any

energy by more than 3σ.18 In figure 8 we show the bounds on 〈σvrel〉0 obtained using

this procedure, considering both the KOL (left panel) and CON (right panel) propagation

models. For comparison, we also plot the value of 〈σvrel〉0 using the two benchmark values

ξ = 0.1 and ξ = 0.05, with λ = 0.065. In both cases it is clear that the antiproton bound

provides a stringent constraint on the annihilation cross-section. Moreover, we repeat our

analysis using the three different DM density profiles mentioned above. As expected, we

find that the DM antiproton flux is larger for profile models in which the DM density is

enhanced towards the Galactic center while is smaller for density distribution described

by an isothermal sphere; as a consequence the bound in figure 8 is more (less) stringent

for the Einasto (Isothermal) profile. Finally, notice that the difference between different

17It is worth noticing that models based on a thin diffusion zone (i.e. the THN model in ref. [80]) give

bounds that in general are less constraining if compared with those obtained using the CON model. These

models, however, are disfavored by recent studies on synchrotron emission, radio maps and low energy

positron spectrum [94]. For this reason we do not consider in our analysis this possibility.
18In addition to the measurement of the absolute antiproton flux, the PAMELA collaboration has reported

in ref. [95] the measurement of the antiproton-to-proton flux ratio. However, we do not use these data in

our analysis. The reason is that ref. [80] already used proton data in the definition of the propagation

models. If we use the antiproton-to-proton ratio in order to extract our bound, then we will inconsistently

use the same proton data twice: one for the definition of the propagation model (thus without the inclusion

of any exotic component in addition to the background contribution), the other one for the fit of the DM

signal (thus including an exotic component in addition to the background contribution).
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Figure 8. Bounds on the thermally averaged annihilation cross-section times relative velocity

〈σvrel〉0 obtained using the antiproton flux measured by the PAMELA experiment. The region

above the blue lines is excluded at 3σ level. We show the bounds obtained using two different

models for the propagation of charged cosmic rays in the Galaxy, namely the KOL (left panel) and

CON (right panel) propagation models [80, 81]. In both cases we plot three lines corresponding

to different DM density profiles, namely — from bottom to top — Einasto (darker blue), NFW

(blue), Isothermal (lighter blue). We also show the value of 〈σvrel〉0 for ξ = 0.1 (pink solid line)

and ξ = 0.05 (pink dashed line), with λ = 0.065.

DM density profiles is less evident considering the CON propagation model; as already

noticed in ref. [80], in the convective model the antiproton flux from DM annihilations

is dominated by local contribution (i.e. from regions close to the Earth) where the three

profiles are almost equivalent. For the KOL model the contribution from regions close

to the Galactic center is more important, and therefore the three profiles — more or less

peaked in this region — give different bounds.

In section 6 we will present the antiproton bound as contour plot in the plane (mη, λ)

considering both the KOL and CON propagation models. For definiteness, we will focus

only on the NFW profile.

6 Results

Here we combine all the constraints obtained in our phenomenological analysis for the

Composite DM model studied in this paper. We present our results in figure 9 in the plane

(mη, λ). The green strip reproduces the correct amount of relic abundance as measured

by the Planck collaboration [61] (section 5.1). In the same plot we also show the bounds

placed by the LUX experiment [66] in the context of direct detection of DM (section 5.2),

the PAMELA experiment [78] in the context of indirect detection of DM (section 5.3) and

the LHC experiment [41, 42] considering the invisible decay width of the Higgs (section 4.1).

On top of this, we superimpose the results of the scans performed in section 3 analyzing
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ξ = 0.1

ξ = 0.05

Figure 9. Green line: 3σ contour reproducing the correct DM relic abundance. Red region

(vertical meshes): region excluded by the LUX experiment at 95% C.L. assuming case 1 in eq. (5.9)

while the red dot-dashed line represents the bound assuming case 2 in eq. (5.10). Purple region

(horizontal meshes): region excluded by the LHC at 3σ considering the bound on the invisible Higgs

branching ratio. Blue region (no meshes): region excluded at 3σ by the PAMELA measurement of

the antiproton flux (solid line: KOL propagation model; dashed line: CON propagation models).

In the upper (lower) plot we use ξ = 0.1 (0.05). In the right panel we zoom on a specific window

of values for λ, and we superimpose the result of the scan performed in section 4.2. All the points

reproduce the correct top and Higgs masses; the orange points are excluded by direct searches of

top partners and vector resonances, while the blue points pass the selection.
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the effective potential, dividing the points among those which pass or not the bounds from

direct searches of top partners and vector resonances at the LHC described in section 4.2.

We consider the two benchmark values ξ = 0.1 and ξ = 0.05.

Let us now describe in detail the features present in figure 9. The region of the

parameter space reproducing at 3σ the correct value of the relic density is covered by the

green strip. Considering DM annihilation, the interactions between η and the Higgs boson

described by the chiral Lagrangian in eq. (2.2) grow with the DM mass and decrease with

the scale f . For ξ = 0.1 (0.05) and mη & 180 (250) GeV these annihilations become too

efficient, thus leading to a value of relic density that is too small to match the observed

one.19 The funnel-shaped region that stretches towards this limit valuemη ≈ 180 (250) GeV

corresponds to the condition s−2λξ(1−ξ)/v2 = 0 with s = 4m2
η/(1−v2

rel/4) and vrel ≈ 1/2,

where an accidental cancellation between the derivative and the λ contribution to the η-η-h

vertex partially counterbalances the growth of the cross-section discussed before. On the

basis of this observation, and in order to keep our discussion as clear as possible, let us

divide the plane (mη, λ) in three parts: the low-mass region mη . mh/2, the resonant

region mη ≈ mh/2 and the funnel-shaped region defined above.

For ξ = 0.1, the region mη . mh/2 is ruled out by a combination of LHC and LUX

bounds. On the one hand, as soon as the invisible decay channel h → ηη is kinemati-

cally allowed, Γinv(h → ηη) easily dominates over the SM contribution Γ ξ=0.1
SM ≈ 3 MeV

(eqs. (4.1), (4.3)); on the other one, the LUX experiment reaches in this region its best

sensitivity. Decreasing ξ, however, reduces the strength of the η-η-h interaction for low

values of λ. Therefore, for ξ = 0.05 a combination of LHC and LUX bound rules out only

values of λ & 7×10−3 in the mη . mh/2 region; this bound can be further pushed towards

lower values λ ' 10−3 considering non-zero contact interactions between η and light quarks

(see section 5.2 and eq. (5.10)).

The resonant region mη ' mh/2 cannot be ruled out by constraints on the invisible

branching ratio or the spin-independent elastic DM-nucleon cross-section since in the first

case BRinv → 0 if mη → mh/2 while in the second one −q2 � m2
h. Around the Higgs reso-

nance, however, DM particles mostly annihilate into bb̄ pairs, producing a large antiproton

signal that is ruled out by the bound extracted from the local antiproton flux measured by

the PAMELA experiment. This conclusion is still valid regardless the astrophysical uncer-

tainties plaguing the propagation of charged particles in the Galaxy and the DM density

profile and for both values of ξ considered here. Note that for ξ = 0.1 the antiproton

bound, at least adopting the KOL propagation models, can also rule out the right bound-

ary of the funnel-shaped region (i.e. the vertical line corresponding to mη ' 80 GeV); this

confirms the expected result that DM annihilation into bb̄ with a cross-section of the order

of the thermal value 〈σvrel〉 ' 3× 10−26 cm3s−1 is in tension with the limit extracted from

the antiproton spectrum measured by the PAMELA experiment considering values of DM

mass up to ∼ 100 GeV [96].20

19It is worth noting that this is a distinctive feature of the composite model. In the singlet scalar extension

of the SM, in which the derivative interactions are absent, it is always possible to increase the value of λ in

order to reproduce the correct relic density for large DM masses.
20The reader should keep in mind that, since in our model we combine different final states with different
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As far as the bottleneck of the funnel-shaped region is concerned, the bound from

antiproton cannot be applied since the accidental cancellation that characterizes this region

also suppresses DM annihilations today (vrel ≈ 0). On the contrary the spin-independent

DM-nucleon elastic cross-section, relying on a different kinematic w.r.t. the annihilation

process, does not suffer from the same cancellation and, as a consequence, the funnel-

shaped region turns out to be ruled out by the LUX experiment for ξ = 0.1 and strongly

constrained for ξ = 0.05, in particular the upper half part of the region. For ξ = 0.05 a

viable candidate of DM, therefore, sits on the strip of the analyzed parameter space (mη, λ)

that spans values from mη ' 100 GeV, λ ' 3× 10−4 up to mη ' 200 GeV, λ ' 6× 10−2.

Finally, we also show in the right panels of figure 9 the result of the numerical parameter

scans performed in the next-to-minimal scenario discussed in section 3.2.2. We do not show

here the result for the minimal case since it predicts a very narrow region in this plane which

is also contained in the next-to-minimal one. Both for ξ = 0.1 and ξ = 0.05, the points

reproducing the correct top and Higgs masses, as expected from eq. (3.25), lie around the

value λ ' 0.065 and vary between mη ∼ mh/2 and mη ∼ 700 GeV; moreover the points

with mη . 200 GeV, shown in the plot, have the smaller amount of tuning, see figure 2.

For ξ = 0.1 all the points which provide the correct DM abundance lie in the region

excluded by LUX or by the antiproton flux measurements. Moreover, most of the points

are also disfavored by direct searches of top partners and vector resonances at the LHC. In

conclusion we find that — remarkably — the entire region of the (mη, λ) plane in which the

model can accommodate a realistic DM candidate is ruled out by our phenomenological

analysis.

For the smaller value of ξ considered here, ξ = 0.05, the constraints from direct searches

at LHC are substantially alleviated. The favored region of the parameter space lies close to

the bound imposed by DM direct detection experiments, mη ' 200 GeV and λ ' 6× 10−2.

In this regard it should be noted that if we assume non-zero contact interactions between η

and light quarks the bound becomes even more stringent (red dot-dashed line in figure 9).

In any case — including or not this theoretical uncertainty — we expect that this region

will be definitely covered in the near future by direct detection experiments.

7 Conclusions

In this paper we have analyzed the Composite DM model proposed in ref. [22]. The model

assumes the existence of a composite sector described by some new fundamental strongly-

coupled theory and characterized by a global symmetry SO(6) spontaneously broken to the

subgroup SO(5) by a condensate of the strong dynamics, at a scale f . The NGBs arising

from this breaking are the Higgs doublet H and a real, gauge singlet, pseudo-scalar η. The

former contains the physical Higgs boson h while the latter plays the role of DM. The global

SO(6) symmetry is also explicitly broken by the linear mixing between the composite states

and the elementary SM particles. These terms induce, at one-loop, an effective potential

branching ratios, our result cannot be immediately linked to more general analyses that assume 100% DM

annihilation into one single channel. In particular if mη ' 80 GeV we have, in addition to bb̄, a sizable

branching ratio into three-body WW ∗ final states.
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for h and η which is assumed to be dominated by the contributions of SM fields, spin-1/2

top partners and composite spin-1 resonances (i.e. the Minimal Higgs Potential hypothesis

proposed in ref. [19]) and made calculable by imposing generalized Weinberg sum rules.

From a phenomenological viewpoint, the most important consequence of this theoreti-

cal construction is that the Higgs boson, the DM particle, the top quark and the composite

resonances are inextricably linked by the effective potential. This fact allowed us to study

the constraints imposed on the model considering both DM and collider searches. Combin-

ing the results from direct and indirect detection of DM, invisible Higgs decay width and

direct searches of top partners and vector resonances at the LHC, we were able to show

that the model can reproduce the observed value of relic density only if ξ = 0.05 (or lower),

corresponding to the value f ' 1.1 TeV. As far as the DM mass and the Higgs portal

coupling are concerned, for ξ = 0.05 our phenomenological analysis predicts mη ' 200 GeV

and λ ' 6 × 10−2. Most importantly, we have shown that this prediction lies well within

the reach of future DM direct detection experiments. We argue that the model presented

in this paper, therefore, will be definitely ruled out — or discovered — in the near future.
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A Parametrizing the SO(6)/SO(5) coset and physical couplings

In this appendix, after providing some definitions useful for our work, we present three

different parametrizations of the physical h and η fields, used in previous literature, and

the relations among them. In particular, we show how the couplings among the physical

fields differ between the parametrizations: only physical observables are parametrization-

independent.

Let us first define the broken and unbroken generators of SO(6)/SO(5) in the funda-

mental representation of SO(6). We classify them in the five broken ones of SO(6)/SO(5)

and the ten unbroken generators of the SO(5) subgroup, which can be further divided into

the six of the SU(2)L⊗SU(2)R ∼ SO(4) ⊂ SO(5) subgroup and the four of the SO(5)/SO(4)

coset

T âij = − i√
2

(
δâiδ6j − δâjδ6i

)
,

T
aL,R
ij = − i

2

[
1

2
εabc(δbiδcj − δbjδci)± (δaiδ4j − δajδ4i)

]
,

Tαij = − i√
2

(
δαiδ5j − δαjδ5i

)
,

(A.1)

where â = 1, . . . , 5, aL,R = 1, 2, 3 and α = 1, . . . , 4.
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The five NGBs can be parametrized, using the standard CCWZ formalism [30, 31], by a

6×6 unitary matrix obtained exponentiating a linear combination of the broken generators,

U(x) = exp

[
i
√

2
θâ(x)

f
T â
]
, (A.2)

which transforms under a global SO(6) transformation g as U(x) → g U(x) k†(g, θâ(x)),

where k is a local transformation of the unbroken group SO(5), which depends on g and

on the position via the NGB dependence. From the NGB matrix U one can define the

standard CCWZ structures dµ and Eµ as

dâµT
â + EaµT

a = −i(U †DµU) . (A.3)

Defining Σ(x) ≡ U(x)Σ0, with Σ0 = (0, 0, 0, 0, 0, 1)t, one gets

Σ = sin
θ

f

(
θ1̂

θ
,
θ2̂

θ
,
θ3̂

θ
,
θ4̂

θ
,
θ5̂

θ
, cot

θ

f

)
=

1

f

(
h1, h2, h3, h4, η,

√
f2 − h2 − η2

)
,

(A.4)

where θ2 ≡
∑5

â=1(θâ)2
and h2 ≡

∑4
i=1 h

2
i . The usual Higgs doublet can can be constructed

as H = 1√
2
(h1 + ih2, h3 + ih4)t. The fields hi(x) and η(x) live in the region

√
h2 + η2 ≤ f .

In the unitary gauge h1(x) = h2(x) = h4(x) = 0 and h(x) ≡ h3(x)

Σunitary = sin
θ

f

(
0, 0,

θ3̂

θ
, 0,

θ5̂

θ
, cot

θ

f

)
=

1

f

(
0, 0, h, 0, η,

√
f2 − h2 − η2

)
=

(
0, 0, sin

φ

f
cos

ψ

f
, 0, sin

φ

f
sin

ψ

f
, cos

φ

f

)
,

(A.5)

where in the third line we introduced another parametrization [18], in terms of two angles,

which is related to the previous two as

φ =

√
(θ3̂)2 + (θ5̂)2 , tan

ψ

f
=
θ5̂

θ3̂
,

sin
φ

f
=

1

f

√
h2 + η2 , tan

ψ

f
=
η

h
.

(A.6)

Let us call the first parametrization, in terms of the θâ variables, Cartesian, the one we

use throughout the paper, in terms of h and η, constrained and the third one, in terms of

the angles φ and ψ, polar. In the rest of this appendix we will show how the physical fields

in the three parametrization have qualitatively different couplings, both from the chiral

Lagrangian and from the effective potential. In the computation of physical quantities

such as cross-sections or decay widths, these differences conspire and give the exact same

result, as expected.
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The leading-order chiral Lagrangian, eq. (2.8), can be written in a compact form in

both the constrained and in the polar parametrization, it reads

Lchiral =
f2

4
Tr [dµd

µ] =
f2

2
(DµΣ)tDµΣ =

=
1

2

[
sin2 φ

f
(∂µψ)2 + (∂µφ)2

]
+
f2

8
sin2 φ

f
cos2 ψ

f
(g̃2AµA

µ)

=
1

2

[
(∂µh)2 + (∂µη)2 +

(h∂µh+ η∂µη)2

f2 − h2 − η2

]
+
h2

8
(g̃2AµA

µ) ,

(A.7)

where, for convenience, we defined g̃2AµA
µ ≡ g2

0[(W 1
µ)2 + (W 2

µ)2] + (g′0Bµ − g0W
3
µ)2. In

the three parametrizations, the EWSB vacuum can be identified as (〈θ3̂〉 = f sin−1
√
ξ,

〈θ5̂〉 = 0), (sin〈φ〉 =
√
ξ, 〈ψ〉 = 0) or (〈h〉 = v = f

√
ξ, 〈η〉 = 0), where ξ = v2/f2. It is then

straightforward to identify the physical Higgs and DM fields in the three parametrizations

θ3̂ = f sin−1
√
ξ + hCart , θ5̂ = f

sin−1
√
ξ√

ξ
+ ηCart ;

φ = f sin−1
√
ξ + hpol , ψ =

1√
ξ
ηpol ;

h = v +
√

1− ξ hcon , η = ηcon .

(A.8)

Let us now look at the effective potential. With a simple spurionic analysis it is possible

to obtain the possible functional dependence of the potential on the pNGBs. The gauge

contribution to the potential depends only on h2 = f2 sin2 φ
f cos2 ψ

f , instead the functional

dependence of the fermion contribution depend on the particular embedding of the SM

fermions in SO(6) representations. In our models, that is embedding the third generation

quarks in fundamentals as in eq. (2.17), the functional dependences are h2 = f2 sin2 φ
f cos2 ψ

f

and (h2 + η2) = f2 sin2 φ
f . Expanding for small values of h2, η2 and keeping terms up to

quartic order, the effective potential can thus be parametrized as

Veff =
µ2
h

2
h2 +

λh
4
h4 +

µ2
η

2
η2 +

λ

2
h2η2 +

λη
4
η4 + . . . (A.9)

= −γ sin2 φ

f
cos2 ψ

f
+ β sin4 φ

f
cos4 ψ

f
+ δ sin2 φ

f
+ σ sin4 φ

f
cos2 ψ

f
+ χ sin4 φ

f
+ . . . .

The relation between the coefficients in the two formalisms, at this order, is

µ2
hf

2 = −2(γ − δ) , µ2
ηf

2 = 2δ ,

λhf
4 = 4(β + σ + χ) , λf4 = 2(σ + 2χ) , ληf

4 = 4χ .
(A.10)

The EWSB minimum is given by

ξ =
v2

f2
= −

µ2
h

λh f2
=

γ − δ
2(β + σ + χ)

. (A.11)

The mass matrix for physical fields defined in eq. (A.8), in all three parametrizations, is

the same

m2
h =

∂2V (hphys, ηphys)

∂h2
phys

∣∣∣∣∣
min

= 2λhv
2(1− ξ) =

8(β + σ + χ)

f2
ξ(1− ξ) , (A.12)
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m2
η =

∂2V (hphys, ηphys)

∂η2
phys

∣∣∣∣∣
min

= µ2
η + λv2 =

2δ

f2
+

2(σ + 2χ)

f2
ξ , (A.13)

m2
hη =

∂2V (hphys, ηphys)

∂hphys∂ηphys

∣∣∣∣
min

= 0 . (A.14)

Which confirms that the physical fields defined above are indeed mass eigenstates.

Let us now move to study the couplings of the physical fields in the three parametriza-

tions arising from the Lagrangian of eq. (A.7) and the potential in eq. (A.10). We

parametrize the generic couplings of the physical fields following, and adapting, the for-

malism of ref. [97]. Up to four-particle interaction terms and assuming custodial invariance

and parity under η → −η, (from now on we neglect the subscript “phys”), we write the

phenomenological Lagrangian

Lpheno =
1

2
(∂µh)2

(
1 + 2ahh

h

v
+ bhh

h2

v2
+ bhη

η2

v2
+ . . .

)
+

1

2
(∂µη)2

(
1 + 2aηh

h

v
+ bηh

h2

v2
+ bηη

η2

v2
+ . . .

)
+ (∂µη∂

µh)

(
cη
η

v
+ dηh

ηh

v2
+ . . .

)
− Veff(h, η)

+

[
M2
WW

+
µ W

−µ +
M2
Z

2
ZµZ

µ

](
1 + 2aV h

h

v
+ bV h

h2

v2
+ bV η

η2

v2
+ . . .

)
−mf ψ̄fψ

(
1 + cfh

h

v
+ bfh

h2

v2
+ bfη

η2

v2
+ . . .

)
,

(A.15)

where f = ui, di, ei represents any SM fermion and

Veff(h, η) =
m2
h

2
h2 +

m2
η

2
η2 +

λh3

2
h3v +

λh4

4
h4 +

λη2h

2
η2h+

λη2h2

4
η2h2 +

λη4

4
η4 . (A.16)

We report the expression of the couplings in the three parametrizations, as functions of

ξ, in table 1. It can be noticed that the constrained parametrization offers the cleanest

expressions for the physical couplings. For this reason, and for its intuitive relation with the

physical Higgs and DM fields, we decided to use this parametrization throughout the work.

In table 1 it can be noted that the couplings of the physical fields differ also qualitatively

among the three parametrizations. It can be checked that, however, when computing

physical observables (for example cross-sections) they all give the same result. As an

example it can be easily checked that the NGB scattering amplitudes for high energies,

E2 � m2
h,m

2
η,M

2
W,Z , go like |A|2 ∼ E4/f4 in all three parametrizations. In order to check

that also the couplings from the potential provide the same physical results (which can not

be tested from the previous check), we explicitly computed the unpolarized cross-section∑
pol σ(ηη → W+W−) in all parametrizations and for all energies above threshold and

confirmed that the result is indeed the same in all three cases.
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B Details on the effective potential

The mixing terms between the elementary SM states and the heavy composite resonances,

introduced in section 2.2.2, break explicitly the SO(6) symmetry. At one loop they

generate a Coleman-Weinberg effective potential for the NGBs h and η. This potential

can be easily obtained from the mass matrix in each sector (gauge and fermionic), keeping

h and η as background fields. Let us parametrize the field-dependent mass terms for the

spin-1 and spin-1/2 fields as

Lmass =
1

2
V i
µM

2
V,ij(h, η)V jµ −

(
ψ̄iLMF,ij(h, η)ψjR + h.c.

)
, (B.1)

where i, j run over all the fields in each sector and M2
V is a real symmetric matrix while

MF is a generic complex matrix. From these matrices one can obtain the singular values

with a h, η background: mn(h, η)2 > 0, where n runs over all the states with a spin

sn = 1, 1
2 . These singular values can finally be used to obtain the one-loop effective

potential. Regularizing the integral with dimensional regularization one has

V (1)(h, η) =
1

16π2

∑
n

(−1)2sn(2sn + 1)

4
mn(h, η)4

(
log

mn(h, η)2

Q2
− ksn

)
=

3

64π2
Tr

[
M4
V (h, η)

(
log

M2
V (h, η)

Q2
− k1

)]
− 2Nc

64π2
Tr

[
(M †FMF )2(h, η)

(
log

(M †FMF )(h, η)

Q2
− k1/2

)]
,

(B.2)

where Q is the sliding scale and ksn are numerical factors which depend on the subtraction

scheme used. We see that, in general, the potential is scale-dependent as well as scheme-

dependent, which would imply the necessity to fix some boundary conditions at some

scale, for example by matching with the measured Higgs mass and vacuum expectation

value. This, however, would imply our impossibility to predict those values from our

explicit models. To avoid this, we impose a set of generalized Weinberg sum rules by

asking that Tr[M4
V ] and Tr[(M †FMF )2] are independent on h and η

WSR: Tr
[
M4
V (h, η)

]
≡ const and Tr

[(
M †F (h, η)MF (h, η)

)2
]
≡ const . (B.3)

Another, independent, method to obtain the one-loop effective potential is by inte-

grating out the heavy resonances with h and η acting as background fields and writing an

effective Lagrangian for the elementary SM fields with non-trivial form factors. Finally, by

integrating out also the elementary fields one obtains the effective potential as an integral

in momentum of these form factors, which can be performed, for example, with a cutoff

regularization. In general, the field-dependent terms of this potential are quadratically

divergent in the UV, which would imply the need of fixing some boundary conditions

and therefore a lack of predictability. In this formalism, the Weinberg sum rules are

conditions imposed in order to cancel the quadratic and logarithmic divergencies, that is

conditions on the UV behavior of the form factors. In our numerical analysis we used both

methods to derive the effective potential and checked that the results agree. To obtain

the analytical results presented in this work we use the approach with the form factors,

described in detail in the rest of this appendix.
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B.1 Vector contribution

Integrating out the heavy spin-1 fields one obtains a low-energy effective theory. The

quadratic terms in the SM gauge bosons will be the relevant ones for deriving the one-

loop Coleman-Weinberg potential. In order to obtain the possible field-dependence of the

gauge contributions to the scalar potential it is useful to embed the SM gauge fields in

a spurionic complete representation of SO(6)⊗ U(1)X , introducing spurionic gauge fields:

Aµ = AAµT
A and Xµ, where the only physical components are AaLµ = W a

µ , A3R
µ = cXBµ

and Xµ = sXBµ, with cX = g′0/g0 and s2
X = 1− c2

X . The effective Lagrangian for the SM

gauge fields and NGBs can be parametrized, in momentum space, as

Lg,eff =
PµνT

2

[
Π0(q2)Tr [AµAν ] + Π1(q2)ΣtAµAνΣ + ΠX

0 (q2)XµXν

]
. (B.4)

Turning off the unphysical gauge fields we obtain

Lg,eff =
Pµνt

2

[
Π0W

a
µW

a
ν + Π1

h2

4f2

(
W 1
µW

1
ν +W 2

µW
2
ν

)
+ ΠBBµBν + Π1

h2

4f2

(
g′0
g0
Bµ −W 3

µ

)(
g′0
g0
Bν −W 3

ν

)]
,

(B.5)

where ΠB = (s2
XΠX

0 + c2
XΠ0) and where the form factors from the UV Lagrangian of

eq. (2.14) are

Π0 = −p2 + g2
0p

2
f2
ρ

p2 −m2
ρ

,

Π1 = g2
0f

2 + 2g2
0p

2

[
f2
a

p2 −m2
a

−
f2
ρ

p2 −m2
ρ

]
,

ΠX
0 = −p2 .

(B.6)

From eq. (B.5) we observe that the gauge sector contributes to the potential in eq. (2.4)

only via the Higgs terms µ2
h, at the g2 order, and to λh, at the g4 order. The gauge

contribution to the Coleman-Weinberg potential for the NGBs is

Vg(h, η) =
3

2

∫
d4pE
(2π)4

{
2 log ΠWW (−p2

E) + log
[
ΠBB(−p2

E)ΠWW (−p2
E)−Π2

W3B(−p2
E)
] }

,

(B.7)

where

ΠWW = Π0 +
h2

4f2
Π1 , ΠBB = ΠB + c2

X

h2

4f2
Π1 , ΠW3B = −cX

h2

4f2
Π1 . (B.8)

The tree-level contribution from our models to the oblique Ŝ parameter [52, 53] can be

extracted from the last form factor in eq. (B.8) as [19]

Ŝ = − g
g′

Π′W3B(0) ' 〈h
2〉

4f2
Π′1(0) =

2m2
W

f2

(
f2
ρ

m2
ρ

− f2
a

m2
a

)
WSRs

=
2m2

W

m2
ρ

(
1− f2

4f2
ρ

)
, (B.9)

where the prime indicates a derivative with respect to p2. In the second step we approx-

imated g ' g0 and g′ ' g′0 and in the last step we applied both Weinberg sum rules of

eqs. (3.1), (3.2).
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B.2 Fermion contribution

After integrating out the composite resonances from eq. (2.18), the top quark effective

Lagrangian in momentum space, up to quadratic order in the fermions and to any order

in the scalar fields, can be written as

Lf,eff = t̄L/p tL ΠtL(p2, h, η) + t̄R/p tR ΠtR(p2, h, η)− (t̄L tRΠtLtR(p2, h, η) + h.c.) , (B.10)

resulting in the following contribution to the pNGB potential

Vf (h, η) = −2Nc

∫
d4pE
(2π)4

log
[
p2
EΠtL(−p2

E)ΠtR(−p2
E) +

∣∣ΠtLtR(−p2
E)
∣∣2] . (B.11)

With the embedding of the top in eq. (2.17), the pNGB dependence of these form factors

can be made explicit as

ΠtL = ΠF +
h2

f2
Π1F , ΠtR = ΠS +

(
1− h2

f2
− η2

f2

)
Π1S ,

ΠtLtR =
h

f

√
1− h2

f2
− η2

f2
ΠFS .

(B.12)

Integrating out the fermion resonances S and F from the Lagrangian of eq. (2.18), we get

the following expression for the form factors

ΠF (p2) = 1−
NF∑
j=1

|εjqF |2

p2 −m2
jF

, Π1F (p2) =
1

2

NF∑
j=1

|εjqF |2

p2 −m2
jF

−
NS∑
i=1

|εiqS |2

p2 −m2
iS

 ,

ΠS(p2) = 1−
NF∑
j=1

|εjtF |2

p2 −m2
jF

, Π1S(p2) =

NF∑
j=1

|εjtF |2

p2 −m2
jF

−
NS∑
i=1

|εitS |2

p2 −m2
iS

,

ΠFS(p2) =
1√
2

NF∑
j=1

εj∗tF ε
j
qF

mjF

p2 −m2
jF

+

NS∑
i=1

εi∗tSε
i
qS

miS

p2 −m2
iS

 . (B.13)

The top mass can be obtained either as the lightest singular value of the mass matrix of

the Q = 2/3 fields in eq. (2.18), or from eq. (B.10) by finding the pole of the propagator:

M2
top −

|ΠtLtR(M2
top)|2

ΠtL(M2
top)ΠtR(M2

top)

∣∣∣∣∣
h=v,η=0

= 0 , (B.14)

which, if the top is much lighter than the top partners, can be approximated as

Mtop '
|ΠtLtR(0)|√
ΠtL(0)ΠtR(0)

∣∣∣∣∣
h=v,η=0

. (B.15)
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