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Three-dimensional inversion of static-shifted magnetotelluric data
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A practical method for inverting static-shifted magnetotelluric (MT) data to produce a 3-D resistivity model is
presented. Static-shift parameters are incorporated into an iterative, linearized inversion method, with a constraint
added on the assumption that static shifts are due to a zero-mean, Gaussian process. A staggered finite-difference
scheme is used to evaluate both the forward problem and the ‘pseudo-forward’ problem needed to construct the
full sensitivity matrix. The linear system of equations is efficiently solved by alternating the incomplete Cholesky
biconjugate gradient (ICBCG) solver with the static divergence correction procedure. Even with this efficiency in
the forward modeling, generating the full sensitivity matrix at every iteration is still impractical on modern PCs. To
reduce the computer time to a reasonable level, an efficient procedure for updating the sensitivities is implemented:
(1) in the first few iterations, the sensitivities for the starting homogeneous half-space are used, (2) the full sensitivity
matrix is computed only once (e.g. at the third iteration), and (3) for the subsequent iterations it is updated using
Broyden’s algorithm. The synthetic and real data examples show that the method is robust in the presence of static
shifts and can be used for 3-D problems of realistic size.
Key words: Magnetotellurics, 3-D inversion, static shift, Gauss-Newton method.

1. Introduction
Considerable advances have been made over the last

decade in the 3-D inversion of magnetotelluric (MT) data.
Mackie and Madden (1993) present an efficient algorithm
that solves the least-squares inverse problem using the con-
jugate gradient method. Newman and Alumbaugh (2000)
implement a non-linear conjugate gradient method to avoid
excessive evaluations of the forward problem. Zhdanov et
al. (2000) develop a rapid 3-D inversion algorithm based on
their quasi-linear approximation of the forward modeling.
Yamane et al. (2000) extend their ‘generalized rapid relax-
ation inversion’ (GRRI) scheme to the 3-D problem, which
originated from the RRI of Smith and Booker (1991). All
these methods share a common strategy in the sense that the
calculation of the full sensitivity matrix is avoided. In the
context of this issue, Rodi and Mackie (2001) predict, based
on comparisons of 2-D inversion algorithms, that the stan-
dard Gauss-Newton algorithms will not be practical for real-
istic 3-D problems in favour of the conjugate gradient-based
algorithms, while Siripunvaraporn and Egbert (2000) argue
that their data-subspace inversion method, which belongs to
the Gauss-Newton type approach, can be practically efficient
for 3D problems.
One important issue that has not been addressed in the pre-

vious work is the removal of static shift. The effect of static
shift is due to the presence of small-scale near-surface inho-
mogeneities, and manifests itself as a vertical shifting of the
apparent resistivity curve by a frequency-independent factor,
without any corresponding change in the phase curve. The
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amount of static shift varies from site to site, and differs de-
pending on the source polarization. Thus, the interpretation
of static-shifted MT data will obviously lead to erroneous re-
sults unless static shifts are correctly taken into account. One
possible approach to counter static shifts in 3-D inversion
might be to make the model parameterization fine enough to
let the inversion compensate for static shifts by incorporat-
ing near-surface structure. However, this increases consid-
erably the computation required for the forward modeling.
Besides, there remains a question on how the near-surface
structure obtained, which is highly likely to be erroneous,
affects the reconstruction of larger-scale structure of interest.
The model parameterization should be produced in view of
the data collection parameters, such as the site spacing and
the frequency range.
This paper describes a 3-D inversion method that solves

simultaneously for both resistivities and static shift parame-
ters, as is done in 2-D inversions by deGroot-Hedlin (1991)
and Ogawa and Uchida (1996). The method uses a typi-
cal Gauss-Newton approach that requires the generation of
the sensitivity matrix, with modifications made to reduce
the number of forward-modeling applications to a reason-
able level. The forward modeling is based on an efficient
staggered-grid finite-difference technique. The inversion
method is tested on a synthetic data set and a real data set
from a geothermal field.

2. Inversion Method
Static shifts are manifested as vertical displacements of

apparent resistivity curves when plotted on a log-coordinate
scale; i.e.

ln ρd
a = ln ρu

a + s, (1)
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Fig. 1. 3-D model used to compare the finite-difference modelling results
with the sampling schemes of types 1 and 2.

where ρd
a is the distorted apparent resistivity, ρu

a is the undis-
torted apparent resistivity, and s is a static shift value. Thus,
the MT inverse problem can be written in matrix form as

d ∼= F(m) + Gs, (2)

where d is a vector of the observed data that are composed
of the natural logarithms of apparent resistivities and the
phases, F(m) is the forward modeling function that generates
the (undistorted) responses for the discretized model m, and
G is a matrix that relates the unknown static shift parameters
s to the data d. Note that s is linearly related to d. The rows
of G corresponding to the phases, which are independent of
s, are zeroes, and the rows corresponding to the apparent
resistivities have one at the appropriate locations.
Because the inverse problem is non-linear inm, it is itera-

tively solved for updated values ofm (e.g., Tarantola, 1987).
Let m(k) be the model at the k-th iteration. Equation (2) can
be linearized about m(k) as

�d ∼= A�m(k) + Gs, (3)

where A is the sensitivity matrix (or the matrix of first-
order derivatives of F with respect to the model parameters),
�m(k) is the perturbation from the current model, and

�d = d − F(m(k)) (4)

is the vector of differences between the observed and pre-
dicted data. The least-squares solution of Eq. (3) is numer-
ically unstable in the presence of noise. Therefore the solu-

Fig. 2. Comparisons of the apparent resistivities and phases for the xy mode
at a period of 1000 s, calculated from the staggered-grid finite-difference
solutions with the sampling schemes of types 1 (circle) and 2 (cross).

tion should be restricted based upon available a priori infor-
mation. This can be accomplished by defining an objective
function,

U = ∥∥W
[
�d − A�m(k) − Gs

]∥∥2 + λ2

·
(∥∥C (m(k) + �m(k))

∥∥2 + α2
∥∥�m(k)

∥∥2
)

+ β2 ‖s‖2 ,

(5)

where W is a diagonal matrix assigning weights to each
datum according to its standard deviation, C is a second-
difference (Laplacian) operator used to quantify the model
roughness, and ‖·‖2 represents the l2 norm. The first term
on the right-hand side of Eq. (5) represents data misfit. The
second term is the constraint term acting on the model that
includes the smoothness constraint and the one that limits the
‘size’ of �m(k) (Marquardt, 1963). The last term is added to
impose a constraint on the static shifts on the assumption that
they are Gaussian distributed with a mean of zero (Ogawa
and Uchida, 1996). The parameter λ is a Lagrange multi-
plier or regularization parameter, and α and β are adjustable
constants.
The minimization of U is equivalent to solving the aug-



Y. SASAKI: THREE-DIMENSIONAL INVERSION OF STATIC-SHIFTED MAGNETOTELLURIC DATA 241

Fig. 3. Plot of the squared residual versus iteration number for the cal-
culation of Fig. 2 using the ICBCG method with and without the static
divergence corrections.
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where I is the identity matrix. In this study, the modified
Gram-Schmidt method is used to solve Eq. (6). The vector
�m(k) is added to the current model m(k) to give the new
model. The iteration is continued until the data misfit mea-
sure is reduced to an acceptable level. The rms data error
used in this study is given by

R =

√√√√√
N/2∑

i=1

{[
ln
(
ρo
ai/ρ

p
ai

)]2 + w2
(
φo
i − φ

p
i

)2}

N
, (7)

where ρai is the apparent resistivity, φi is the phase in de-
grees, the superscripts o and p refer to observed and pre-
dicted, respectively, and N is the number of data points. The
value of w represents the weight assigned to the phase rela-
tive to the apparent resistivity and is set to 0.1. Equation (7)
can be used as a misfit measure if the data are assumed to
have the same standard deviations.
In solving Eq. (6), the value of λ must be determined so

that an acceptable data misfit is achieved. This requires some
form of trial and error. At each iteration, Equation (6) is
solved using several trial values of λ, and for each updated
model, forward modeling is carried out to calculate the data
misfit R. By approximating the relationship between R and
λ by a polynomial, a new value of λ that will minimize the
misfit is estimated. In this study, four forward modelings are
performed at each iteration to find λ. The value of α is fixed
at 0.2. The choice of β that relates to the size of static shifts
will be discussed later.

3. Forward Modeling
The forward solution for the 3-D electromagnetic fields

can be formulated with Maxwell’s differential equation for
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Fig. 4. 3-D model used to generate the synthetic data set. The 100 site
locations are indicated by the closed circles. The block discretization is
also shown.

the electric field in the frequency domain. If displacement
currents are negligible and an eiωt time-dependence is as-
sumed, then for plane-wave excitation the electric field, E,
satisfies the second-order differential equation

∇ × ∇ × E + iωμ0σE = 0, (8)

where σ is the conductivity, μ0 is the magnetic permeability
of free space, ω is the angular frequency, and i = √−1.

As will be mentioned later, constructing the sensitivity
matrix requires the forward solution of the electric fields due
to finite sources such as an electric dipole. For excitation by
a finite source, to avoid the singularity at the source, the total
field is separated into the primary part Ep and the secondary
part Es ; i.e.

E = Ep + Es . (9)

Then, the equation to be solved can be written as

∇ × ∇ × Es + iωμ0σEs = −iωμ0(σ − σp)Ep, (10)

where σp is the background conductivity (either a uniform
or layered half-space). Once the electric field is determined,
the magnetic field can be obtained through

H = − 1

iωμ0
∇ × E. (11)
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Fig. 5. Different horizontal and vertical sections for the true model and corresponding inversion models. The true model is shown in the first column, and
the inversion models obtained with and without the update procedure are shown in the second and third columns, respectively. The top and second rows
show the horizontal sections for depths of 150 and 700 m, respectively. The bottom row shows the vertical section for y = 1000 m. The position of the
true 3-D body is outlined by the white dashed lines in the inversion models.

For a finite difference scheme on a staggered grid, the
electric fields can be sampled at the centre of either the cell
edges (Newman and Alumbaugh, 1995) or cell faces (Smith,
1996a). Hereafter, the two types of sampling schemes are re-
ferred to as ’type 1’ and ’type 2’, and both will be examined
for accuracy. The conductivity at the sampling positions of
type 1 is represented by a value averaged over the four ad-
joining cells, while the conductivity for type 2 is the inverse
of the average resistivity of the two adjacent cells. As bound-
ary conditions, the tangential component of the sampled field
on the grid boundary is specified depending on the source
polarization for the plane wave problem, and is set to zero
for the finite source problem. Approximating Eq. (8) or (10)
with finite difference results in a linear system of equations

Kf = s, (12)

where K is a complex symmetric matrix, f is the unknown
vector of the electric fields, and s is the vector that depends
on the source term and the boundary conditions.
Equation (12) can be solved using the biconjugate gradient

(BCG) method, preconditioned with an incomplete Cholesky
decomposition. The preconditioning schemes using stan-
dard incomplete Cholesky decompositions break down be-
cause K is not positive-definite. However, Mackie et al.
(1994) show that this difficulty can be avoided by applying
the decomposition to only the diagonal subblocks that are
positive-definite when K is grouped into subblocks depend-
ing on the related components of the electric fields. Although
in many instances reasonable convergence rates can be ob-
tained with the incomplete Cholesky biconjugate gradient
(ICBCG) method, they tend to degrade at lower frequencies.
This is because conservation of current is not guaranteed in a
discretized version of Eq. (8) or (10) when the second term of
the left-hand side is small. Smith (1996b) derived a correc-
tion procedure that enforces divergence-free conditions on
the current density in the earth and the electric field in the
air. The convergence rate can be improved significantly by
alternating ICBCG iterations with this correction procedure.
The finite-difference modeling outlined above is tested on

the model shown in Fig. 1. This model is used in Mackie
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Fig. 6. Static shifts included in the synthetic data set (circles) and corresponding static shifts recovered by inversion (triangles). The top panel is for the
xy mode and the bottom is for the yx mode.

et al. (1993) to compare the accuracy and efficiency of in-
tegral equation and finite difference results. Figure 2 shows
the comparison of two different solutions for the xy mode re-
sponse at a period of 1000 s along the x-axis. In this figure,
the open circles and crosses show the results computed on a
29×21×22 grid using the sampling schemes of types 1 and
2, respectively. The agreement is good in both the apparent
resistivities and the phases. Since there is very little differ-
ence in both accuracy and efficiency between types 1 and 2,
only the solution with type 1 is used hereafter. In Fig. 3, the
squared residual is plotted as a function of iteration number
for the cases with and without divergence corrections. With
corrections, the relative residual is reduced to 10−8 after 52
iterations. This computation (one frequency and two source
polarizations) took about 6 seconds on a 2.53-GHz Pentium
4 PC.

4. Sensitivities
The sensitivities of the MT response are derived from

those of the electric and magnetic field components at the
surface. The sensitivities of these fields with respect to the
conductivity of a block, σk , can be obtained from the for-
ward modeling results by the adjoint-equation method (Wei-
delt, 1975; Mackie and Madden, 1993; McGillivray et al.,
1994, among others). For example, the sensitivity for the
x-component of the electric field can be written as

∂Ex

∂σk
=
∫

Ẽ · E dv, (13)

Fig. 7. Plot of rms data misfit versus iteration number for the inversions
resulting in the models shown in Fig. 5.

where Ẽ is the electric field in the block due to an x-directed
unit electric dipole at the receiving location, and E is the
electric field due to the plane-wave source. The sensitivity
of the magnetic field is given similarly to Eq. (13) as

∂Hy

∂σk
= − 1

iωμ

∫
Ẽ · E dv. (14)
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Fig. 8. Locations of the MT sites in the Kakkonda geothermal field. The approximate location of the geothermal power plant is also shown.

Fig. 9. Apparent resistivity (top) and phase curves (bottom) from all 18 locations along line B. The left panels are for the xy mode, and the right panels
are for the yx mode.

Here, Ẽ is now defined as the electric field due to a y-directed
magnetic dipole with unit moment at the receiving location.
One can compute the sensitivities for any field components
by doing an additional forward modeling for an appropriate
finite source at the measurement site and by integrating, over
the block of interest, the dot product of the electric fields
due to the plane-wave and (fictitious) finite sources. Since
the MT impedance is defined in terms of four field compo-
nents (Ex , Ey , Hx , and Hy), constructing the sensitivity ma-
trix requires forward modeling involving four different finite
sources for each measurement site at each frequency. Thus,
the total number of forward modelings needed at each in-
version iteration is equal to 4×(no. measurement sites)×(no.
frequencies). One can see that the computer time can be-
come prohibitive as the numbers of measurement sites and
frequencies increase.

A simple way to get around this computational difficulty
is to use the sensitivities for a homogeneous half-space in all
iterations (Sasaki, 1994; Farquharson and Oldenburg, 1996).
Since these sensitivities can be obtained from the analytical
solutions of electric fields, they are fast to compute. (Here,
this approach is referred to as fast approximate inversion.)
However, this method has some limitations in both resolution
and convergence as will be shown later. In this study, to
obtain a more acceptable result, the following approach is
taken: (1) the sensitivities for the starting homogeneous half-
space are used in the first few iterations; (2) after that, e.g. at
the third iteration, the rigorous sensitivity matrix is generated
only once; and (3) in the subsequent iterations, it is updated
using Broyden’s method (Loke and Barker, 1996; Torres-
Verdin et al., 2000).
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Fig. 10. Vertical sections of the 3-D inversion model along the survey lines B, C, D, and E.

5. Examples
This section presents synthetic and field data examples

to illustrate the ability of the inversion algorithm described
above in the presence of static shifts as well as to show its
performance. All of the results were computed on a 2.53-
GHz Pentium 4 PC.
5.1 Synthetic example
The model (Fig. 4) consists of a conductive prism embed-

ded in an otherwise vertical contact media. The prism has
dimensions of 400 × 800 × 600 m and its depth of burial is
400 m. The data set was generated using the finite-difference
code, over a 10 × 10 grid of 200 m spacing at nine frequen-
cies, ranging from 0.2 to 200 Hz. The data are the apparent
resistivities and phases calculated from the off-diagonal el-
ements of the impedance tensor. The total number of real-
valued data points is 3600. Prior to inversion, 1.5 percent
Gaussian random noise was added to the impedance ele-
ments, which translates into standard deviations of 3 percent
for the apparent resistivity and 0.9 degrees for the phase. Be-
sides adding the noise, the apparent resistivities were ’static-
shifted’ using random values from a Gaussian distribution
with a mean of zero and a standard deviation of 0.5. Note
that static shifts of 0.5 and −0.5 correspond to multiplicative
factors of 1.65 (= e0.5) and 0.61 (= e−0.5), respectively.
In the inversion, the forward modelings were carried out

on a 35 × 35 × 29 grid, and the subsurface was divided into
1100 (10 × 10 × 11) blocks. The outer blocks extend to

the boundaries of the finite-difference grid, and the inversion
domain coincides with the subsurface region of the forward
modeling domain. The starting model was a homogeneous
half-space of resistivity 30 �-m, and the boundary values
for this starting model were used as the boundary condi-
tions throughout the iterations. The parameter β was cho-
sen as 0.2; this value is the one among three trial values
providing the smallest misfit in the fast approximate inver-
sions performed prior to applying the present inversion algo-
rithm. Seven iterations were required to produce the model
shown in Fig. 5 and the static shifts in Fig. 6. For compari-
son, the model obtained from the fast approximate inversion
is shown in the third column of Fig. 5. The inversion algo-
rithm using the update procedure gives better resolution than
that using a constant sensitivity matrix; the vertical contact
is better resolved, and the conductive zone left of the con-
tact is also recognizable as an isolated 3-D body. As shown
in Fig. 6, the recovered static shifts are in good agreement
with the true values. The plots of the data misfit (R) versus
iteration number are shown in Fig. 7 for the two cases. It is
clear that, as a result of updating sensitivities rigorously at
the third iteration, the data misfit converges to the assumed
noise level. Incidentally, there was no significant improve-
ment in the convergence when Broyden’s method was used
throughout the iterations (without calculating the exact sen-
sitivity matrix at the third iteration). This is probably be-
cause this quasi-Newton updating method is effective only
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Fig. 11. Comparisons between the observed and predicted xy-mode data
along line B. The top two panels are for the apparent resistivities and the
bottom two panels are for the phases.

Fig. 13. 2-D inversion results for line C (after Uchida et al., 1999). The left panel is for the TM-mode inversion, and the right panel is for the joint (TM
plus TE) mode inversion. The colour scale is different from that of Fig. 10.

if the current estimates are, to some extent, close to the true
values. The present inversion procedure required about 7 hr
of CPU time. Approximately 6 hr of time was spent on the
computation of a full sensitivity matrix involving 3600 ad-
ditional forward modelings. The fast approximate inversion
took about 1 hr.
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Fig. 12. Comparisons between the observed and predicted yx-mode data
along line B.

5.2 Field data example
An extensive MT survey was conducted by the New En-

ergy and Industrial Technology Development Organization
(NEDO) in 1998 over the Kakkonda geothermal area located
in the northern part of Honshu Island, Japan (Uchida et al.,
1999). Figure 8 shows the locations of the measurement
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sites, which are arranged along four lines B, C, D, and E.
These sites are spaced approximately 200 m apart along the
lines, except near the power plant, while the line separations
are mostly about 600 m. The impedances are rotated to the
(x , y) coordinates, where the x axis is nearly along the sur-
vey lines. The data set used in the inversion comprises xy
and yx mode apparent resistivities and phases at 75 sites and
11 frequencies per site. The frequency range is from 0.03 to
47 Hz. The apparent resistivity and phase curves from line B
are shown in Fig. 9. Static-shift effects are obvious in the fig-
ure and even more severe than those shown in Jones (1988),
indicating complicated near-surface structure.
The inversion model consists of 2704 (26×8×13) blocks,

and the forward modeling employs a 71× 40× 32 grid. The
starting model was a homogeneous half-space of 10 �-m.
The data were assumed to have the same standard devia-
tions. The vertical sections of the inversion model along the
four survey lines are shown in Fig. 10, which are obtained
with β = 0.8 after seven iterations. As in the synthetic ex-
ample, the value of β was chosen among three trial values.
The final data misfits are 14.8 percent for the apparent re-
sistivities and 4.2 degrees for the phases. Figures 11 and 12
show the comparisons between the observed and predicted
data pseudosection along line B for the xy and yx modes,
respectively. They show good agreement, and similar data
fits are observed on the other lines. This example required
about 24 hr of CPU time and 490 Mbytes of memory.
Overall, the result of the 3-D inversion is consistent with

the previous 2-D inversion results (Uchida et al., 1999).
However, there are some noticeable discrepancies for each
line. The resistivity models obtained by 2-D inversions for
line C are shown in Fig. 13, where the left panel is from
the TM-mode data and the right panel is from the joint (TM
plus TE) mode data. In the 2-D inversions, static shifts were
not taken into account, although topography was included. It
can be seen that the 2-D model from the TM-mode data is
closer to the corresponding section of the 3-D model. This
is not surprising, because the 2-D inversion of the TE-mode
data is more susceptible to both the effects of 3-D structure
and static shifts than TM-mode inversion (Wannamaker et
al., 1984). The main features in the result of 2-D TM-mode
inversion are (1) the resistive zone in the south-western part
of the 2-D model is located about 1 km deeper than the cor-
responding zone in the 3-D model, (2) its peak resistivity is
much higher (about 3000 vs. 120 �-m), and (3) the adjacent
conductive zone near a horizontal coordinate x = −1 km
extends upward. Such features are interpreted to be the dis-
tortions caused by the effect of 3-D structure, particularly at
depths of less than about 1 km. Note that in Fig. 10, the shal-
lower structure characterized by distinct conductive zones is
obviously 3-D, judging from the resistivity variation along
the y direction, while the structure at depths of greater than
about 1 km is nearly 2-D except in the north-eastern part of
line E. In geological circumstances having complex near-
surface structure such as geothermal areas, 3-D inversion
accounting for static shifts is required even if the regional
structure is expected to be 2-D.

6. Conclusions
A robust, efficient method is presented for inverting si-

multaneously for a 3-D resistivity model and static shifts.
As opposed to the previous work on 3-D MT inversion, the
method is based on a traditional Gauss-Newton approach that
requires a sensitivity calculation. However, the computer
time can be greatly reduced by implementing a simple and
effective procedure for updating the sensitivity matrix and
by using an efficient finite-difference modeling scheme. To
stabilize the inversion process, a constraint is imposed so that
static shifts are Gaussian distributed with a mean of zero, in
addition to a smoothness constraint on the resistivity model.
The examples demonstrate that the method is effective in re-
covering a 3-D resistivity structure from static-shifted data
and can be used for 3-D problems of at least moderate size.
Lastly, it must be noted that the diagonal components of

the impedance tensor are not used in the 3-D inversions pre-
sented here. While some field data examples (Uchida et al.,
2001; Uchida and Sasaki, 2003) suggest that the dependence
of the rotation angle of the coordinate axes on the 3-D in-
version result is not significant, it is desirable to invert on
the complete impedance tensor, for example, if the rotation
angle changes radically with frequency.
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