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Bias and imprecision in posture percentile
variables estimated from short exposure samples
Svend Erik Mathiassen1*, Jens Wahlström1,2 and Mikael Forsman1,3

Abstract

Background: Upper arm postures are believed to be an important risk determinant for musculoskeletal disorder
development in the neck and shoulders. The 10th and 90th percentiles of the angular elevation distribution have
been reported in many studies as measures of neutral and extreme postural exposures, and variation has been
quantified by the 10th-90th percentile range. Further, the 50th percentile is commonly reported as a measure of
“average” exposure. These four variables have been estimated using samples of observed or directly measured
postures, typically using sampling durations between 5 and 120 min.

Methods: The present study examined the statistical properties of estimated full-shift values of the 10th, 50th and
90th percentile and the 10th-90th percentile range of right upper arm elevation obtained from samples of seven
different durations, ranging from 5 to 240 min. The sampling strategies were realized by simulation, using a parent
data set of 73 full-shift, continuous inclinometer recordings among hairdressers. For each shift, sampling duration
and exposure variable, the mean, standard deviation and sample dispersion limits (2.5% and 97.5%) of all possible
sample estimates obtained at one minute intervals were calculated and compared to the true full-shift exposure
value.

Results: Estimates of the 10th percentile proved to be upward biased with limited sampling, and those of the 90th

percentile and the percentile range, downward biased. The 50th percentile was also slightly upwards biased. For all
variables, bias was more severe with shorter sampling durations, and it correlated significantly with the true full-
shift value for the 10th and 90th percentiles and the percentile range. As expected, shorter samples led to
decreased precision of the estimate; sample standard deviations correlated strongly with true full-shift exposure
values.

Conclusions: The documented risk of pronounced bias and low precision of percentile estimates obtained from
short posture samples presents a concern in ergonomics research and practice, and suggests that alternative,
unbiased exposure variables should be considered if data collection resources are restricted.

Background
Upper arm postures and musculoskeletal disorder risk
In ergonomics intervention and epidemiology studies,
upper arm posture is often assessed and viewed as an
important measure of biomechanical exposure [1-4].
This is justified by evidence that working with elevated
arms is associated with increased risk of musculoskeletal
disorders (MSD) in the shoulders [5,6]. The extent of
‘rest’ during occupational work has also been proposed
to be an important determinant of risk [7,8], which

suggests that the occurrence of neutral postures is of
interest as well [9-12]. In occupational studies, percen-
tiles of the cumulative posture distribution have been
commonly used to assess the occurrence of neutral and
extreme postures. Most studies have employed the 10th

and 90th percentiles for this purpose [12-27]. The pro-
minent standing of these variables stems from two semi-
nal papers, published approximately 30 years ago, in
which Jonsson suggested that an exposure distribution
should be described not only by its median, but also by
the 10th and 90th percentiles to reflect its ‘static’ and
‘peak’ properties, respectively [28,29]. In these papers,
Jonsson also proposed guidelines for acceptable 10th,
50th and 90th percentiles of muscle activity during
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occupational work. While originally proposed as a data
reduction method for electromyographic recordings
from relevant muscles, and extensively used for this pur-
pose in the ergonomics literature (examples in [30]),
posture percentiles ad modum Jonsson were introduced
by Aarås [31], and have - as shown by the references
above - been commonly accepted as descriptive metrics
in occupational studies of biomechanical exposures. Per-
centiles have even been used to describe the distribution
of other occupational and environmental exposures, for
instance noise [32].
In addition to the effects of neutral and extreme pos-

tures in their own right, lack of posture variation is also
commonly accepted to imply an increased risk for disor-
ders, especially in the shoulders and neck [33,34]. The
concept of ‘variation’ has been proposed to include sev-
eral aspects of change in exposure over time [35], one
of which - the amplitude of exposure changes - can be
assessed using a percentile range for postural distribu-
tion. In studies of the upper arm, the 10th -90th

[9,12,36,37] and 5th-95th [13,22,38] percentile ranges
have been used for this purpose.

Posture sampling strategy, precision and bias
Occupational posture assessments by observation and
direct technical recording have typically employed a
continuous sampling approach of a duration ranging
from some minutes up to approximately two hours
[13,14,16,17,25,26,31,39]. In a few rare cases, a whole
shift has been monitored [12,19,27,40,41], or even a
whole day including both work and leisure [37]. These
sampling strategies have been applied even in studies
pursuing exposures over an extended period of time, for
example, a month or a year. Since postures vary across
time within individuals, limited duration samples do, in
these cases, return uncertain estimates. The variability
of posture variables between individuals, and within and
between days within individuals has been addressed in
several occupational settings [12,23,40,42,43], and the
influence of sample size [30,40,44-51], sample allocation
[46,48,50,52], and data processing method [53,54] on
the precision of the resulting exposure estimate has
been discussed for postures and other biomechanical
exposures. All of these studies have addressed the size
and effects of random error, assuming that the investi-
gated sampling strategies produce unbiased exposure
estimates, i.e. values free of systematic error. However,
the latter conjecture is not trivial, particularly for vari-
ables that are not necessarily well estimated over an
extended period of time by averaging across embedded
sub-periods, for example, variances [55] and, as we pro-
pose, percentiles. Data on lumbar muscle activity in dif-
ferent occupations reported by Trask et al. [56] indicate
that job exposure percentiles may, indeed, be biased if

based on short samples. Bias and precision when asses-
sing posture percentiles have not to our knowledge,
been previously investigated, nor have the effects of the
selected sampling strategy on the size and structure of
these errors been quantified.
The purpose of this study was to examine the effect of

different data sampling strategies, ranging in duration
from 5 to 240 min, on the bias and precision of esti-
mated full-shift values for the 10th, 50th and 90th upper
arm elevation percentiles, and the 10th-90th percentile
range. We based the study on 73 full-shift inclinometry
recordings from 20 hairdressers.

Methods
Subjects and posture recordings
Full-shift, right upper arm elevation angles were col-
lected from a convenience sample of 20 female hairdres-
sers in 13 salons in Umeå, Sweden; mean age 31 (range
19-60) years, mean height 167 (150-176) cm, mean
seniority 11 (0.25-42) years. Only hairdressers working a
minimum of 30 h per week were considered for inclu-
sion. These data were collected as part of a larger study
which included 28 hairdressers [12], however, only data
from hairdressers who fully completed a study diary
were included in the parent data set for the present data
analyses. Participants were recorded over four full shifts
within the same week, using triaxial accelerometers [57]
mounted above the insertion of the right deltoid muscle,
aligned with the long axis of the humerus. These accel-
erometers have previously been shown to provide eleva-
tion angles deviating, on average, less than 2° from true
values [57]. The study was approved by the local ethical
committee at Umeå University.
Procedures for calibration and basic data processing

have previously been described in detail [12]. Following
the exclusion of shifts with technical shortcomings and/
or less than 300 min of viable data, 73 acceptable shifts
remained: 14 subjects with 4 shifts, 5 subjects with 3
shifts, and 1 subject with 2 shifts. The mean full-shift
recording duration was 486 min (range 300 to 595 min).

Data processing and simulated sampling strategies
For all 73 shifts, the true 10th, 50th and 90th percentiles,
and the 10th-90th percentile range were determined
from the cumulative distribution of the full-shift parent
data set recording. The same four variables were also
estimated for seven simulated sampling strategies of
durations: 5, 10, 20, 40, 60, 120 and 240 min. For each
sampling strategy, sampling windows of the appropriate
duration were formed from the parent data set at one-
minute intervals across the full-shift data. For example,
employing the 10-minute sampling strategy over a 480
min shift, 471 ten-minute sampling windows would be
obtained, the first window spanning minutes #1-10, the
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second minutes #2-11, and so on until the last window,
spanning minutes #471-480. For each of the 471 sam-
pling windows in this example, the four posture vari-
ables would then be calculated as estimates of their true
full-shift value.
For each sampling strategy, shift and posture variable,

four statistical performance variables were calculated on
the basis of these estimates:

Sample bias; B = μy-M
Sample standard deviation; sy
Lower sample dispersion limit; D2.5 = P2.5-M
Upper sample dispersion limit; D97.5 = P97.5-M

where μy and sy are the mean and standard deviation
of the sample estimates (n = 471 in the example above);
M is the true exposure value for the full-shift; and P2.5
and P97.5 are the empirical 2.5th and 97.5th percentile
values of the cumulative distribution of the sample esti-
mates. Thus, D2.5 and D97.5 state the distances in either
direction from the true exposure value that a single
sample will exceed with a 2.5% probability, and can be
viewed as measures of the combined effect of bias and
imprecision. D2.5 and D97.5 give the same information as
the limits of agreement in a standard Bland&Altman
plot [58], however, since they are based on the empirical
structure of data, they represent a more versatile
approach which allows for a non-normal distribution of
the difference between sample estimates and true expo-
sure values.
For each sampling strategy and posture variable,

cumulative probability distribution plots across the 73
shifts were produced for each of the four performance
variables, B, sy, D2.5 and D97.5, as a basis for comparing
statistical performance.
To further examine the nature of the sampling error,

Spearman’s rank correlation coefficients (with 95% con-
fidence intervals) were determined according to stan-
dard procedures [59] between M and B, and between M
and sy for each posture variable and sampling strategy
across the 73 measured shifts.

Results
True posture values
The true mean 10th, 50th and 90th percentile elevation
angles across all 73 full-shifts in the parent data set
were 8.2°, 21.9° and 50.3°, respectively, and the mean
10th-90th percentile range was 42.0°. As expected [12],
the cumulative probability distribution plots for all four
posture percentile variables as well as the mean inclina-
tion angle showed a considerable dispersion across shifts
(Figure 1). This exposure variability contains contribu-
tions from both between-subject and within-subject
(between-shifts) sources.

Sampling bias
Estimates of the 10th and 50th percentile were, in general,
‘upward’ biased (shifted to the right), while those for the
90th percentile and the 10th-90th percentile range were
‘downward’ biased (shifted to the left) for all sampling stra-
tegies; the bias was more severe with shorter sample dura-
tions (Figure 2). For a particular sampling duration, the
size of the bias differed considerably among the 73 shifts
(as seen in the width of the distribution) and, for long
sample durations, some shifts even showed a bias in the
opposite direction of the rest of the data; for example,
negative values were seen for the 10th and 50th percentiles
for sampling durations 60 min or longer, while conversely,
some examples of positive bias were seen for the 90th per-
centile and the 10th-90th percentile range.
For the 10th and 90th percentiles and the 10th-90th per-

centile range, bias correlated significantly with the true
exposure value, M, in particular for short samples (Table
1). Thus, for the 10th percentile variable, a larger positive
bias was found for full-shifts with larger true mean expo-
sures, while for the 90th percentile and the 10th-90th per-
centile range, larger true M values were associated with a
larger negative bias. The bias of the 50th percentile was
positively correlated with the true exposure, M, value for
long samples, but since bias was small in this case, corre-
lations may not be particularly informative.

Sampling precision
As anticipated, the precision of the sample exposure
estimate increased, i.e. sy decreased, with longer
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Figure 1 Cumulative probability distributions across the 73
investigated full work shifts for the 10th, 50th and 90th upper
arm elevation percentiles, the mean elevation (m), and the
10th-90th percentile range, as marked by the colour codes and
text above the figure.
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sampling durations for all three percentile variables (Fig-
ure 3), and for the percentile range. However, sy
decreased at a slower rate than that expected for

randomly distributed data, for which the standard devia-
tion should decrease in inverse proportion to the square
root of the sampling duration [35]. For all four posture
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Figure 2 Cumulative probability distributions across the 73 investigated work shifts for the bias, B, of the four assessed posture
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variables, sy was significantly correlated with the true
exposure value M (Table 1), and the association was
stronger at short sampling durations.

Sampling dispersion
As expected from the precision results, smaller disper-
sions resulted for all postural variables with longer sam-
pling durations, but estimates were still skewed due to
the bias. This pattern is reflected in the dispersion limits
D2.5 (Figure 4) and D97.5 (Figure 5) which both approach
zero with increasing sample duration, while not being of
equal size. Ninety-five percent of all samples within a
full-shift will lie in the interval between the two disper-
sion limits. For example, for the 20 min sampling strat-
egy, an estimate of the 10th-90th percentile range could,
in median, with a 5% probability be either more than
22.7° smaller (marked in Figure 4) or more than 25.4°

larger (marked in Figure 5) than the true full-shift per-
centile range.

Discussion
The present study showed that estimates of the 10th and
90th upper arm elevation percentiles and the 10th-90th

percentile range can be severely biased if they are esti-
mated from posture samples collected over short peri-
ods of time. Since short samples were also shown to
have a larger variability, i.e. be less precise, great caution
should be exercised when using such sampling strategies
to estimate overall exposures intended to represent
extended periods of time. The findings also imply that
previous studies reporting posture percentiles should be
compared cautiously and only with due consideration to
the fact that estimates may have been based on samples
of different durations. What would appear to be a

Table 1 Spearman’s rank correlation coefficients [95% confidence intervals] between the true full-shift exposure value
M and the bias B, and between M and the sample standard deviation sy, for each of the seven sampling durations (5,
10, 20, 40, 60, 120, 240 min) and each of the four posture variables (10th, 50th, 90th percentiles, 10th-90th percentile
range)

Posture variable: 10th

percentile
50th

percentile
90th

percentile
10th-90th

percentile range

M vs B

Sampling duration, minutes 5 0.64
[0.48;0.76]

0.02
[-0.21;0.25]

-0.65
[-0.76; -0.49]

-0.66
[-0.77; -0.51]

10 0.61
[0.45;0.74]

0.03
[-0.20;0.26]

-0.49
[-0.65; -0.29]

-0.58
[-0.71; -0.40]

20 0.56
[0.38;0.70]

0.08
[-0.15;0.31]

-0.27
[-0.47; -0.04]

-0.42
[-0.59; -0.21]

40 0.53
[0.34;0.68]

0.30
[0.07;0.49]

-0.17
[-0.38;0.06]

-0.28
[-0.48;-0.06]

60 0.56
[0.38;0.70]

0.28
[0.05;0.48]

-0.10
[-0.32;0.14]

-0.19
[-0.40;0.04]

120 0.57
[0.39;0.70]

0.36
[0.15;0.55]

-0.02
[-0.25;0.21]

-0.07
[-0.29;0.17]

240 0.44
[0.23;0.61]

0.43
[0.23;0.60]

0.09
[-0.14;0.32]

0.01
[-0.22;0.24]

M vs sy

Sampling duration, minutes 5 0.70
[0.56;0.80]

0.65
[0.50;0.77]

0.77
[0.65;0.85]

0.67
[0.52;0.78]

10 0.70
[0.56;0.80]

0.66
[0.51;0.77]

0.73
[0.60;0.82]

0.62
[0.46;0.75]

20 0.72
[0.58;0.81]

0.59
[0.42;0.72]

0.71
[0.57;0.81]

0.60
[0.43;0.73]

40 0.68
[0.54;0.79]

0.53
[0.34;0.68]

0.72
[0.58;0.81]

0.63
[0.46;0.75]

60 0.66
[0.51;0.77]

0.52
[0.32;0.67]

0.70
[0.57;0.80]

0.63
[0.47;0.75]

120 0.64
[0.48;0.76]

0.47
[0.27;0.63]

0.67
[0.52;0.78]

0.55
[0.37;0.70]

240 0.57
[0.39;0.71]

0.40
[0.19;0.58]

0.44
[0.23;0.61]

0.36
[0.15;0.55]

In bold: correlations for which the 95% confidence interval does not contain 0.
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difference between groups or conditions may - in whole
or part - be the result of a statistical flaw.

Hairdressers as a representative working population
As reported by Wahlström and co-workers [12], the
exposure of the present hairdressers was similar to
those in a sample of Norwegian hairdressers [25], when
considering that the Norwegian data were collected only
when the hairdressers had customers, as compared to
the current study which measured full working shifts,
irrespective of task. The mean 10th percentile value
across the hairdressers in the present study population
was similar to previously reported values from a wide
range of occupational groups, including: sewing machine
assembly workers [17], car disassembly workers [9], and
hospital cleaners [19], while it was lower than that
reported for CAD operators [60], air traffic controllers
[13], floor sheet handlers [18], and dentists [21]. The
90th percentile was comparable to that of cleaners [19]
and dentists [21]. The 10th-90th percentile range was
somewhat smaller than that reported for car disassembly
workers [9]; this variable was nor reported in any of the
other cited studies. In summary, the exposures seen in
the present population seem comparable to those
experienced by several other occupational groups, and
we therefore believe that the performance of percentile
measurement strategies as reported here is valid in a
wide range of occupations. The observed dependence of
both the bias, B, and the sample standard deviation, sy,,
on the true exposure level suggests that in occupational
settings with more extreme percentiles than the present
ones, errors associated with limited sampling would be
larger than those reported here. Further, these supposi-
tions would apply even to jobs characterized by cyclic
operations, such as in industrial assembly. While it is
often claimed that such cyclic jobs can be adequately
monitored by collecting data from just a few work
cycles, several studies suggest that the magnitude of
cycle-to-cycle posture variability can, indeed, be consid-
erable [51,61,62]. In a real occupational setting, the full-
shift exposure variability will, in addition to this within-
day cycle-to-cycle variability, include contributions from
non-cyclic and irregular parts of the job such as produc-
tion stops, breaks, occasional tasks, and meetings. Thus,
the statistical performance of limited duration sampling
strategies in cyclic work may not deviate as much as
expected from that seen in non-routinized work [63].

Bias, imprecision and sampling duration
Bias (Figure 2) and lack of precision, i.e. a large sy (Fig-
ure 3), was very pronounced with sampling durations of
5-10 min - durations which are not unusual among
ergonomics practitioners, e.g. in occupational health
practices [48]. In research studies, samples of this short

a duration are rare, but the present study showed that
the magnitude of both bias and imprecision was consid-
erable even for samples of 20-120 min, as has been pre-
viously used [15-18,24]. Thus, the example marked by
squared in Figures 4 and 5 illustrates that for an ‘aver-
age’ (median) shift, using a 20 min sampling strategy to
determine the 10th-90th percentile range would result in
5% of all estimates deviating more than 22.7° down-
wards or 25.4° upwards from the true full-shift value.
For half of the investigated shifts, the 20 min sampling
strategy performed even worse.
Short samples may occur if a ‘long’ job sampling per-

iod is subdivided into tasks included in the job
[9,12,21,40,64]; and also in cases where a sample is sub-
divided in shorter sequences, for instance for illustrative
purposes (see e.g. Figure 3 in [13]). In these cases, it is
important to comprehend that an overall job exposure
estimate obtained as a weighted average of such consti-
tuent parts [40,52] will be biased to the same extent as
if sampling were conducted using windows that short.
We believe that the finding of limited sampling lead-

ing to upward biased 10th percentiles and downward
biased 90th percentiles and 10th-90th percentile ranges is
a general result, inherent to these percentile variables,
irrespective of the exposure domain. In addition to the
empirical findings in the present study, we also base this
contention on similar results obtained by simulating
limited sampling strategies from artificial, random data
sets, and on the observation by Trask et al. of biased
percentiles in samples of electromyography from the
lower back [56]. We also believe, on the basis of our
observation that the estimation bias of the 10th and 90th

percentiles was directed ‘inwards’ towards the overall
central exposure value, that more extreme percentiles
will be even more biased with limited sampling. Thus,
we recommend great caution when assessing, comparing
and interpreting extreme percentiles, for example, the
1st and 99th posture percentiles as reported in a recent
compilation of studies from a large range of occupations
[24], or 5th-95th posture percentile ranges as used in a
number of studies [13,22,38].
The present study investigated the performance of

limited sampling within shifts because true exposures
were available for comparison at this level. Since, how-
ever, posture distributions vary between shifts for a par-
ticular individual [12,23,40,42], true posture percentiles
for single full-shifts may, themselves, be biased estimates
of posture percentiles across multiple shifts, analogous
to within-shift samples being biased estimates of that
shift’s true exposure. Thus, the magnitude of bias
reported here may, in fact, underestimate the bias of
using limited within-day samples as representations of
the overall occupational exposure of an individual across
an extended period of time, which is standard practice
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in epidemiologic exposure assessment. Examination of
the present data set, which contained subsets of 2-4
shifts from different days belonging to the same subject,
indicated that the true percentiles of individual shifts
(Figure 1) were, indeed, biased when compared to the
corresponding variables measured across all available
shifts within the same subject; the size of the bias was,
however, small compared to the sample bias within a
shift. The most pronounced example of bias across
shifts was seen for the 10th percentile, where 16 of the
20 observed hairdressers had upwards biased shift esti-
mates (as expected), with an average bias of 0.4°. Due to
the limited number of shifts per subject, however, the
extent and structure of this across-shifts bias could not
be determined in detail.

Effects of exposure bias and imprecision in epidemiologic
studies
Bias and imprecision of exposure estimates have an
obvious influence on the quality of studies documenting
or comparing exposures in individuals or groups. Bias
shifts the central result of a study and imprecision
reduces its informative value and decreases power
[30,44]. The combined effect of bias and imprecision
can be assessed by simple metrics, such as the lower
and upper dispersion limits (cf. Figures 4 and 5).
The effects of exposure bias and imprecision are less

trivial in an epidemiologic investigation of the relation-
ship(s) between exposure and outcome, for example
whether the occurrence of neutral or extreme postures,
or the size of posture variation, has an effect on the like-
lihood of developing an MSD. The general effect of
within-subject imprecision is to attenuate the true expo-
sure-outcome relationship, i.e. to modify its slope
towards zero, and add uncertainty to the slope estimate
[65-68]. This attenuation effect is directly dependent on
the so-called variance ratio, i.e. the ratio of within- to
between- subject variability; a proportionally larger
within-subject variability leading to more pronounced
attenuation [65,66]. For a consistently increasing expo-
sure-outcome relationship, an upward biased exposure
estimate will lead to an estimated exposure-outcome
relationship that predicts the outcome at a certain expo-
sure level to be smaller than what it actually is, but the
shape of this attenuation depends on whether the bias is
constant across exposure levels or proportional to the
exposure, as suggested in the present data set. Thus,
both bias and imprecision in 10th percentile estimates
lead to attenuation of an increasing exposure-outcome
relationship, for instance, when investigating whether
decreased occurrence of neutral postures (i.e. a larger
10th percentile value) leads to a larger risk for MSD.
In the case of “extreme” postures measured through

the 90th percentile, an expectedly increasing relationship

with an MSD outcome would be attenuated by exposure
imprecision but amplified by the downward bias. Thus,
bias and imprecision would have opposite effects on the
estimated exposure-outcome relationship. The net
trade-off must be addressed in each particular case, but
in the present setting, noting the between-subjects and
between-days percentile variabilities for the 90th arm
elevation percentiles reported by Wahlström et al. [12],
the attenuating effect of imprecision seems to be more
potent than the amplifying effect of bias. A similar
opposite effect of bias and imprecision on the exposure-
outcome relationship will appear if the exposure value is
downward biased and the relationship is decreasing.
This is the expected scenario if the influence of posture
variation on MSD risk is addressed using the 10th-90th
percentile range as the exposure metric.
While the consequences of exposure variability for

exposure-outcome relationships can often be assessed
and adjusted for, provided that the sources of this varia-
bility are known [66,68], adjustment for bias requires
access to specific and sufficient information on the
structure and properties of the bias to permit a transla-
tion of estimated exposures to the expected true values
[69-71].

Data collection strategies for posture percentile variables
In the present study, bias was correlated with true expo-
sure; thus it might be possible to derive a useful expres-
sion to translate an estimate to the expected true value,
conditional on the sampling strategy. As a more feasible
correction approach, which can be used even if true
values are not available for calibration, the overall med-
ian (or mean) bias calculated for a similar occupational
setting using the same sampling duration (cf. Figure 2)
could be used to adjust the percentile estimate.
If the residual error after bias correction does not have

the desirable random and normal distribution proper-
ties, limited sampling strategies may not perform as
expected from analytical theory [50,52]. For instance,
exposure may be correlated within days, as when a work
shift is composed of a sequence of tasks with different
exposures [52], between days, as in seasonal work [72]
or between subjects, as in team work [73]. In these
cases, depending on the structure of the correlation,
effects of increasing the sample duration can be larger
or smaller than anticipated by theory [50], and consecu-
tive sampling may perform better or worse than a more
dispersed allocation of the same total sample duration
[52]. For a particular setting, this behavior can be diffi-
cult to predict even if a negative effect on sampling per-
formance may be the more common case [50].
For the present data set, visual inspection of the time-

patterns of upper arm elevation angle over individual
shifts clearly indicated that a non-random data structure
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was common: extended periods with a large upper arm
elevation, when handling customers, could alternate
with long periods in an almost neutral posture when no
customers were present. This autocorrelation is a prob-
able explanation to the less-than-expected decrease in sy
which was observed with increased sampling duration
(Figure 3). The attenuated effect of increasing the sam-
ple duration implies that the precision of a percentile
estimate does not improve as much as expected from
theory when longer samples are employed. In this case,
sampling performance may improve if a particular sam-
ple duration is obtained with dispersed sampling rather
than in a consecutive approach, as simulated in the pre-
sent study [50,52]. Alternative sample distributions
across time were not investigated here, and consecutive
sampling has been the dominant strategy in previous
studies of working postures, particularly in studies
employing on-site or video observations [39,74-77].
Consecutive observation may have originally been cho-
sen by virtue of the logistic simplicity, while the draw-
backs, in terms of decreased efficiency, may not have
been realized. In the case of postures assessed by incli-
nometry, sampling in separate time blocks within a day
is not an attractive option. Efforts associated with equip-
ment set up on the subject are substantial, and continu-
ous monitoring with the inclinometers in place appears
to be a cost-efficient choice. In this case, however,
recordings should be continued for sufficiently long per-
iods for the bias and precision to reach satisfying levels;
i.e. at least 120 min when using metrics based on the
10th and 90th percentiles in occupational settings com-
parable to the one studied here.
Autocorrelation may also help explain the occasional

overestimate of the 90th percentile, and hence the 10th-
90th percentile range, particularly for long sampling
durations (Figure 2). With randomly distributed data,
overestimation of the 90th percentile and the 10th-90th

percentile - and the corresponding incident of an under-
estimated 10th percentile - would probably occur only in
rare cases, if ever.

Posture metrics - alternatives to percentiles
The 10th and 90th posture percentiles are intended to
measure the occurrence of neutral and extreme pos-
tures, respectively, in a posture recording. A number
of studies have applied alternative metrics for these
purposes, based on the proportion of time spent in
certain posture sectors [78]. The operational definition
of neutral upper arm postures have included angles
less than 20° [9,12,79], 30° [14,80] and 45° [81], and
extreme or “severe” postures have been expressed as
angles larger than 60° [9,12,14,23,80] or 90° [6,81].
Similar posture metrics based on time spent in specific
angle sectors have also been presented for other body

regions, including the neck [9,14,23,80-82], trunk
[9,23,27,43,51,80,82] and wrist [9,82]. A few studies
have documented the statistical performance of arm
posture metrics based both on angle sectors and per-
centiles in the same population [12,23], suggesting pos-
ture variabilities between and within subjects to be of
similar sizes for comparable variables. Thus, in this
respect, angle sector metrics are a viable alternative to
percentiles. Furthermore, and most important, angle
sector metrics are not inherently biased. For instance,
with a randomly distributed arm elevation across a
shift, the mean value of all 5-minute samples for per-
cent time with arms above 90° will be the correct
value for that shift, while the corresponding 90th per-
centile estimates will, on average, be too small (cf. Fig-
ure 2). This suggests that summary metrics based on
time proportions are preferable to metrics based on
percentiles, in particular if the sampling duration is
short. With longer samples, the percentile bias
vanishes (Figure 2), and the choice among relevant
posture metrics can be based predominantly on their
statistical performance in terms of precision. Thus, as
a tentative rule of thumb, samples longer than 120
min allow for satisfying estimates of both 10th and 90th

percentiles and angle sector metrics, while the percen-
tiles should not be utilised on shorter samples.
For the 10th-90th percentile range, alternative metrics

are not as easy to identify. Other metrics assessing the
“how much” aspect of variation have been proposed
[35], such as, the standard deviation between mean
angles in posture recording chunks throughout a shift
[44], and the standard deviation of the cell values in an
Exposure Variation Analysis of postures [36,37], but
neither of these variables have attractive or even docu-
mented statistical properties. Thus, a viable unbiased
alternative to the 10th-90th percentile range with known
statistical performance still needs to be developed.

Conclusions
This study demonstrated the risk of encountering both
substantial bias and pronounced lack of precision when
estimating full-shift upper arm posture percentiles on
the basis of samples of limited duration. We believe this
to be an inherent property of percentiles as a class of
exposure metrics, even for other measures of biomecha-
nical exposure, including postures of other body parts
and muscle activity levels measured by electromyogra-
phy. This disadvantage should be noted when deciding
which posture variables to use both in research studies
and, in particular, in ergonomics practice, where short
sampling durations may be dictated by resource limita-
tions [48]. Alternatives to variables based on percentiles
may be preferable, such as the proportion of time spent
in pre-defined angle sectors [9,12,23,27,79,80]; informed
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decisions based on the statistical properties of such
alternatives are paramount [6,12,50,51,78].
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