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1 Introduction

Inequalities estimating the norm of an intermediate derivative of a function in terms of
the norm of the function itself and the norm of its higher-order derivative (inequalities of
Kolmogorov type) are important in many areas of mathematics and its applications. Due
to the efforts of many mathematicians, nowadays, a great number of sharp Kolmogorov
type inequalities are known (see, for instance, surveys [1-3] and monographs [4—6]). In
many questions of analysis and its applications the study of fractional-order derivatives is
also important (see, for instance, [7]). For some known results on the Kolmogorov type
inequalities for derivatives of fractional order we refer the reader to [8—15], the book [16,
Chapter 2] and references therein.

In this paper we shall obtain some new Kolmogorov type inequalities for fractional
derivatives. Simultaneously, we consider two closely related problems: the Stechkin prob-
lem on approximation of unbounded operators by bounded ones on a given class of el-
ements Q, and the problem of optimal recovery of unbounded operator on the class Q
under assumption that elements in Q are given with known error (for more information
see [1, 2] and [4, Section 7.1]).

1.1 The Kolmogorov type inequalities
Let G be the real line R = (—00, +00) or half-line R, = [0,+00). By L,(G), 1 < p < 00, we

denote the space of measurable functions f : G — R whose modulus to the pth power is
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integrable on G (essentially bounded on G if p = 00), endowed with the standard norm

(J f@IF dr)'», if1 <p<oo,
Il = .
esssup{|f(¢)| : £t € G}, if p=o0.
Forr € Nand1 <s < 00, by L}, (G) we denote the space of the functions f € L,(G) having
locally absolutely continuous on G derivative f" and such that f) € L(G).
Letl<g<00,keNU{0},0 <k <r-1,and A, u € R. Inequalities of the form

k ) || *
“f( )”Lq(G) = KW”ZP(G) |V( ) Ls(G) @
holding true, for every function f € L (G) with some constant K independent of f, are
called Kolmogorov type inequalities (Kolmogorov-Nagy type inequalities when k = 0). It is
well known (see [17]) that the constant K in inequality (1) is finite if and only if

:k‘”ﬂ, w=1-2, 2)
r—1/s+1/p
and
q p s

Naturally, inequalities with the lowest possible (sharp) constant K are of the most interest.
We refer the reader to [1, 2] and the books [4, 6] for the detailed survey on the Kolmogorov
type inequalities and discussion of related questions.

Together with inequalities (1) the study of inequalities between the norms of intermedi-
ate function derivative, the function itself and its higher-order derivative in spaces more
general than L, are also important. In Sections 2-4 we shall obtain several inequalities
between the norms of derivatives in ideal lattices (see [18, Chapter 2, Section 2]).

In this paper we focus on the study of the Kolmogorov type inequalities for non-integer
(fractional) values of k. There are many ways to give a sense to the fractional derivative of
a function defined on R or R,. Among the first ones was the fractional derivative in the
Riemann-Liouville sense (see [7, Section 5.1]) that is defined for a function f : R — R and

x € R, as follows:

(F1)* 4"
I'(n-k) Cdan

Dhf(x) := /0 - Y xFdt, n=[k+1, (4)

where I'(z) is the Euler gamma function and [z] stands for the integer part of real num-
ber z. We shall mostly consider fractional derivatives in the Marchaud sense (see [19] or
[7, Section 5.6]) that are defined for a function f : R — R and x € R, as follows:

1 [ ALAR
DA = o fo 0 ar (5)
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where 7 € N, n > k (the definition itself is independent of ), and

(ALf) ) = g—nm (m)/< - mt),

sllym) =D (k) S ()" <:’n> .
m=0

For a function f : R, — R, the right hand sided derivatives Df and D’f are defined by
formulas (4) and (5), respectively. The left hand sided derivatives D’j ‘f and D’jf are defined
with the help of slightly different constructions (see [7, Sections 5.1, 5.5]), and we shall not
study these derivatives here.

It is well known (see [7]) that Dif = Dif for ‘good’ functions f : G — R. However, con-
struction (5) is also suitable for a wider class of the functions, e.g. constant functions or
functions whose power growth at infinity has order lower than k.

Let us consider Kolmogorov type inequalities of the form (1) with the term [f®|| Ly(G)
being replaced by || DXf]|., ,(G) in the left hand side:

194510 < KW e f € L0(G). (7)
Similarly to inequalities (1) for derivatives of integer order, it is easy to see that the constant
K in (7) is finite only if parameters A and p satisfy equalities (2).

Together with the Riemann-Liouville and the Marchaud fractional derivatives, Kol-
mogorov type inequalities were also studied [15, 20, 21] for other fractional derivatives,
e.g. the Riesz fractional derivative, the Weyl fractional derivative, etc. To the best of our
knowledge, the sharp constant in inequality (7) was found in the following situations:
G=R,p=g=s=00,r=2,and k € (0,1), - Geisberg [8];
G=R,,p=g=s=00,r=2,and k € (0,2) \ {1}, - Arestov [10] (for DX);
G=R,,p=q=5=00,0<k <1,and k <r <2, - Arestov [10] (forD’j‘[);
G=RorG=R,,p=5=2,q=00, k<r, - Buslaev and Tihomirov [21] (for the Weyl
derivative);

5. G=RorG=R,,p=g=00,1<s<o00,r=1,ke(0,1-1/s), - Babenko and
Churilova [22];

6. G=R,p=g=00,1<s<o00,r=1,2,ke(0,r-1/s)\ {1}, - Babenko and
Parfinovych [20] and Babenko, Parfinovych and Pichugov [15] (for the Riesz
derivative).

S

Here we establish sufficient conditions which allow writing sharp Kolmogorov type in-
equalities. Specifically, we focus on inequalities between the uniform norms of the func-
tion and its derivatives; the uniform norms of the function and its intermediate derivative
and the norm of its higher-order derivative in the ideal lattice; the norms of the function
and its derivatives in the ideal lattice. As a consequence in Section 4 we obtain several new
sharp Kolmogorov type inequalities in the following cases:

1. G=RorG=R,,p=g=00,r=1,and k €(0,1), the norm of f’ is considered in an

ideal lattice;
G=R,p=g=s=1,r=1,and k € (0,1);

3. G=R,,p=g=00,r=2,and k € (0,1), the norm of f” is considered in an ideal

lattice;
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4. G=R,p=g=00,1<s<o00,r=2,and k € (0,1);
5. G=RorG=R,,p=g=00,1<s<o0,r=2,and k € (1,2 - 1/s).

1.2 The Stechkin problem
The problem of the best approximation of unbounded operators by linear bounded ones
is close to the problem of finding sharp constants in inequalities (1), (7) and, furthermore,
presents an independent interest. We follow [23] (see also surveys [1, 2]) to set the problem
rigorously.

Let X and Y be the Banach spaces; A : X — Y be an operator (not necessarily linear)
with domain of definition D4 C X; Q C D4 be some set. The function

Q(8) = (8,4, Q) :=sup{llAfly :f € Q IIfllx <8}, §=0, (8)

is called the modulus of continuity of the operator A on the set Q.

By £ = L(X,Y) we denote the space of all linear bounded operators S : X — Y. The
error of approximation of the operator A by linear bounded operator S € £ on the set Q is
defined by

U(A,$;Q) := sup [[Ax — Sx| y.
x€Q

For N > 0, we set

En(4;Q): nf U4, S Q). )

= i
SeL,|ISI=N

The Stechkin problem on the best approximation of the operator A by linear bounded
operators on set Q consists in evaluating quantity (9) and finding extremal operators (if
any exists) delivering an infimum in the right hand part of (9).

Now, we let
0(8,4;Q) := I\i[g%(EN(A; Q) +N3).

The following theorem by Stechkin [23] (see also [2, 4]) provides a simple but nevertheless

effective lower estimate of quantity (9) in terms of the modulus of continuity 2.

Theorem A If A is a homogeneous (in particular, linear) operator, Q C D, is centrally

symmetric convex set, then, for every N > 0 and § > 0,
Exn(A;Q) = sup{Q(5,4; Q) — N8} = sup{ || Ax[ly - Nllx[x}, (10)
§>0 xeQ
Q(8,4;Q) < £(5,4;Q).

Furthermore, if there exists a pair of element xo € Q and operator Sy € L such that

lAxolly = U(A,So; Q) + [ISoll - llxollx (11)
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then Q(||xollx,4; Q) = |Axo ||y and
Ejiso1(A; Q) = U(A, S5 Q) = A% ly — IS0l - Iloxo llx.

Consequently, the operator Sy is extremal in problem (9) for N = ||So||, and the element xq

in problem (8) for § = ||xo | x-

We refer the reader to [1, 2] for a survey of other known results on the Stechkin problem
and a discussion of related questions.
In the particular case when G=Ror G=R,, X =L,(G), Y = L(G), A = D, and

Q=W,(G):={f €L, (G):|f"], =1}
for every § > 0, we have
k+1
Q65,05 W (G) =K -8, 2= 1P
P r—1/s+1/p

where K = Q(1, D¥; W;,S(G)) is the sharp constant in inequality (7) with g = co. From the
result of Gabushin [24, Lemma 1] it can easily be shown that estimate (10) is sharp when
Y = L+ (G). Hence, for every N > 0,

En (DL W;,(G) = sup{Ko'™ - No} =21 - WITIKENT

Therefore, in all cases when the sharp constant K in inequality (7) for g = oo is found, we
immediately know the exact value of the quantity of the best approximation of the operator
DF by linear bounded operators on the class W, (G).

1.3 The problem of optimal recovery of operators on elements given with an
error

Another problem that is closely related to the Stechkin problem and sharp Kolmogorov

type inequalities is the problem of optimal recovery of an operator with the help of the set

of linear operators (or mappings in general) on elements of some set that are given with

an error. We follow [2] to set the problem rigorously.

Let X and Y be the Banach spaces; A : X — Y be an operator (not necessarily linear)
with domain of definition D4 C Q; Q C D4 be some set. By % we denote either the set &
of all linear operators acting from X to Y, or the set of all mappings & from X to Y. For
an arbitrary § > 0 and S € &, we set

Us(A,S; Q) = sup{llAf = Sflly :f € Qg € X, IIf —gllx <8}.

It is clear that Uy (A, S; Q) = U(A, S; Q). The problem of optimal recovery of the operator A
with the help of the set of operators Z on elements of the set Q with given error § consists

in finding the quantity

7 . — 1 s
56(j)A; Q) = S!S; UB(A;S; Q),
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called the best recovery of the operator A with the help of mappings from Z on elements Q
given with prescribed error 8. The detailed survey of existing results and further references
can be found, for instance, in [2]. The following statement is a corollary of the result by
Arestov [2, Theorem 2.1] that indicates the close relations between this problem and the
Stechkin problem.

Theorem B If A is a homogeneous (in particular, linear) operator, Q C D4 is a centrally
symmetric convex set, then, for every N > 0 and § > 0,

Q(8,4;,Q) <&(0,4;Q) <&(ZL,A4;,Q) <L(8,4;Q).

Moreover, if there exist an element xy € Q and an operator Sy € L(X,Y) satisfying (11) from
Theorem A then for § = ||xo|x,

[Axolly = (8,4;Q) = &5(0,4;Q) = E(Z, A4; Q).

Similarly to the Stechkin problem, in the case G=R or G=R,, X =L,(G),and Y =
L (G), for every § > 0, we have

&(0,D5 W) (G)) = & (L, D5 W, (G)) = Q(8,D5 W, (G)).

So once the sharp constant in inequality (7) is found, we immediately know the value of
the error of optimal recovery of the operator DX by operators from ¢ (or .#) on elements
of the class Wg)s(G) given with error 8.

1.4 Organization of the paper

The paper is organized in the following way. Section 2 is devoted to auxiliary results con-
cerning properties of the Marchaud fractional derivatives: existence, continuity, and in-
tegral representation in terms of the higher-order function derivative. Then we establish
some sufficient conditions when sharp Kolmogorov type inequalities (7) can be written
and derive some consequences from these conditions for r = 1,2 in Section 4. Finally, in
Section 5 we present applications of the main results: the Kolmogorov problem for three
numbers consisting in finding necessary and sufficient conditions on the triple of real pos-
itive numbers that guarantee the existence of a function attaining these numbers as the
norms of its three consecutive derivatives, and sharp Kolmogorov type inequalities for the
weighted norms of the Hadamard fractional derivatives.

2 Auxiliary results

In this section we formulate auxiliary propositions on the existence and continuity of the
Marchaud fractional derivative and its integral representation in terms of the higher-order
derivative. These and similar questions were studied by many mathematicians. For an
overview of known results we refer the reader to the books [7, 25] and references therein.

2.1 Definitions and results
Let G = R or G = R,. By 6(G) we denote the space of measurable functions f : G — R.
The linear space E C &(G) endowed with the norm || - || is called the ideal lattice on G
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(see [18, Chapter 2, Section 2]) if, for every f € E and g € &(G) such that |g(x)| < [f(x)]
a.e. on G, it follows that g € E and ||g|| < ||flle. The set A(E) C G is called the support of
the ideal lattice E if f(x) = O for every f € E and x ¢ A(E). By E! we denote the associated
space to E (see [18, Chapter 2, Section 3]), i.e. the space of the functions g € &(G) such
that suppg C A(E) and

gl = sup /G F@)g) dx < oo

feE,
IfllE<1

It is clear that E' is the ideal lattice on G and is a subspace in the space dual to E. Ideal
lattices generalize many important spaces e.g. spaces L,(G), 1 < p < 0o, the Orlicz spaces
[26], the Lorentz spaces [18], the Marcinkiewicz spaces [18], etc.

In what follows we would also say that an ideal lattice E is semi shift invariant if, for every
f € Eand x € G, we have f(- + x) € E and either ||f(- + %)z = |[flle if G=Ror |[f(- +x)| <
Ifllz if G = R,.

Letr€ N, k€ (0,7) \ N, and F let be an ideal lattice. By L] (G) and L% ;(G) we denote
the spaces of the functions f € L,.(G) and f € F, respectively, such that "V is locally
absolutely continuous on G and f) € E. In addition, let xz stand for the characteristic
(indicator) function of a measurable set B C R.

Propositionl Let G=RorG=R,,re N, k € (0,r)\ N, E be a semi shift-invariant lattice
on G such that

O xon() € E (12)
and
Jim 1O x0m )] o1 = 0, (13)

where E! is the associated space to E. Then D¥f exists and is continuous on G, for every
Sunction f € L ((G).

Proposition2 LetG=RorG=R,,reN, k€ (0,r)\N, E be a semi shift-invariant lattice
on G satisfying condition (12). Then, for every f € L], ;(G),

(_1)1" ‘/‘+OO i
Drf() = KO 1 8 du 14
0= 50 ) FO(+ ) du (14)
Proposition3 LetG=RorG=R,,reN, k € (0,r)\N, E be a semi-shift invariant lattice
on G satisfying condition (12) and F be a semi-shift invariant lattice on G such that x,1) €

FL. Then D*f(x) exists, for every f € Ly and x € G, and the integral representation (14) for
D'ﬁf holds true.

In particular, when E = L,(G), 1 < s < 00, both conditions (12) and (13) are equivalent to
the inequality k < ¥ — 1/s. So the following corollaries hold true.

Proposition4 Let G=RorG=R,,reN,1<p,s <00, and k € (0,r —1/s) \ N. Then, for
every f € L;,S(G), DXf exists and is continuous on G, and (14) holds true.
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Proposition 5 Let G=R or G=R,,re N, 1 <s <00, and k € (0,r) \ N. Then D"f(x)
exists, for every f € L, (G) and x € G, and (14) holds true.

2.2 The proofs of auxiliary results

For the sake of completeness, we prove Propositions 1-3. Preliminarily, we recall the defi-
nition of the B-splines and some of their properties (see, e.g., [27, Section 4.2]). The first-
order B-spline N is the function (o). For r > 2, the r-order B-spline N, is defined by

1
N, (x) = / N,_1(x — )Ny (t) dt = / N,1(x-t)dt, xeR.
R 0
It is well known that N, is continuous and positive on (0, ) function, compactly supported

on [0,r]. Moreover (see Theorem 4.3 in [27]), for every r-times differentiable function
f:G— Randeveryt>0,

(A7 f)=) = (1)t /0 rN,(u)f(’)(x +ut)du, x€G. (15)

Proof of Proposition 1 Let a function f € L] ;(G) and a point x € G be arbitrary. We ob-
serve that [(A”,f)(x)| < 2"||f |1 (c), for every ¢ > 0. Hence, by definition (5), for every /1 > 0,
we have

sk, )| DFf ()| = /0 (A;#dt‘
" (AT )) w2 (AT f)(x)
= /0 t1+k dt‘ + /h t1+k dt‘
h r r
</ (A;}:k)(x) dt‘+2 IU;(ILLkoc(G) (16)

Using (15), changing variables, altering the order of integration and applying the Holder
inequality we obtain

(A’j)(x) B rr N (u)f O (x + ut)
0 t1+k ‘ = / tk+1—r du dt‘
" N.(v/ t)f (x +V)
[ [ )
= f f ng/f) dtdv‘

IA

, NA()12)
o, H o) [ N

El

It is easy to show that N,(x) < x"1 for every x € [0, r]. Hence, for every v € (0,rh),

h h —k-1
/ Nr(V/t) dt < Vr_l / dt < YK .
iy th+2-r wir tk+1 krk

From the latter and estimate (16) we conclude that

2 Wl , 1O x0mOle - Il

sk, r)| DXf ()| < o = ,

Page 8 of 29
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which proves the existence and uniform boundedness of derivative D¥f(x) at an arbitrary
pointx € G.
Now, we turn to the proof of continuity of D*f on G. Let x € G be an arbitrary point.

For every ¢ > 0, there exist numbers /% > 0 and H > 0 such that

1O xomOlle - e e 2 Wl &
krkse(k, r) 6 kH¥se(k,r) ~ 3’

The function f is continuous on G and is uniformly continuous on [4/2,7H + rh/2]. Hence,
there exists § € (0,4/2) such that, for every y',y" € [h/2,rH + rh/2], |y’ — y"| < §, we have
FO)=f(")| < 27"k | 5¢(k, r)|e. Then using similar arguments to the proof of the existence
of DXf, we see that, for every x,y € G, |x — y| < 8, for the function g(t) = f(x + t) — f(y + t)

we have

|DXf (%) - DXf ()|

+00 r

- 1 / (A”,2)(0) at
~ =k, )| /o ik

1 " (A7,)(0) " (A”,2)(0) " (A”,2)(0)
< dt —=—dt e g
- %(k, V)( 0 t1+k + ‘/I; t1+k + '/H tl+k )
- g™ N - 1) x0m Ol . 2Ng bootrrmy 2718 N Loo()
- krkse(k,r) khk 3¢(k,7) kH*3¢(k, r)
- 21F M - 1 x0m Ol s 2"+ ) = + Il Lo (Urrm)
- krkse(k, r) kh* ze(k, )

YWl €, € €,

kH*sc(k,r) 3 3 3

Therefore, the Df is continuous on G. O

Remark 1 During the proof of Proposition 1 we have established the Kolmogorov type
inequality between the uniform norm of fractional derivative of the function, the function

itself and the norm of its higher-order derivative in the ideal lattice:

i 2r|lf||Loo(G) . ‘ Nr((')/t) . (r)
R PREES e LOCION Wibrze=atd I A

Proof of Proposition 2 First we note that

" N (u) - (-1)
o uk T ktk=1)---(k—r+1)

_ (-1) : ml 7 2
_k(k—1)~-~(k—r+1)n§(_1) <m>m

»(k,7) sx(k,r)

TTER (k) (—k+1)---(—k+r—1) T(r-k)

(A7,()9)(0)

Page 9 of 29


http://www.journalofinequalitiesandapplications.com/content/2014/1/504

Babenko et al. Journal of Inequalities and Applications 2014, 2014:504
http://www.journalofinequalitiesandapplications.com/content/2014/1/504

Let f € L] (G) and x € G. The derivative DFf(x) exists due to Proposition 1. Altering the
order of integration and applying the Tonelli theorem we obtain

k = e r-1-k (r)
DY f(x) = / PN () (x + ut) dudt
x(k,r) Jo  Jo

_ " e r—k—=1,£(r) " N, (u)

=sn ) W (x + w) = du | dw
_1 r +00

= ﬁ/ w’_l_kf(') (x +w) dw,
r— 0

which finishes the proof. d

Proof of Proposition 3 Letf € L ;(G) and x € G. Using the same arguments as in the proof
of Proposition 1 we can prove that the first of two integrals

1 r +00 r
/ (A7, f)(x) Jt and / (AT, f)(x) gt
0 1

tl+k t1+k

is convergent. Hence, it is sufficient to prove the convergence of the second integral. The
latter is obvious because

0 (ALS) ) —~ (1 [T+ m)
/1‘ ik dt| < 2 (m) TR dt
&l ¢ r\ [T+ u)l
= * %mk<m)/m Ty du

@l N
< lf/f +ka<;>|[f||5' ||(.) 1 kX(m,+oo)(')||F1,

m=1

and, form=1,2,...,r,

[e¢]

_1-k Ixonllp m+k
O™ Xm0 Aot < Eglonlle

=

Hence, Df(x) exists, for every x € G. Finally, we remark that equality (14) immediately
holds true if DXf(x) exists. The proof is finished. O

3 Main results

Let us present results on some general sufficient conditions allowing one to write a sharp
Kolmogorov type inequality in various situations. We start with the Kolmogorov type in-
equality between the uniform norms of the Marchaud fractional derivative of a function,
the function itself and its higher-order derivative. In Section 3.2 we extend this result on
the case of inequalities between the norms of the function and its derivatives in an ideal
lattice. Then in Section 3.3 we give another extension of results of Section 3.1 on the case
of inequalities between the uniform norms of the Marchaud fractional derivative of a func-
tion, the uniform norm of the function itself, and the norm of the higher-order derivative
in an ideal lattice.

Page 10 of 29


http://www.journalofinequalitiesandapplications.com/content/2014/1/504

Babenko et al. Journal of Inequalities and Applications 2014, 2014:504 Page 11 of 29
http://www.journalofinequalitiesandapplications.com/content/2014/1/504

The idea used to prove main results of the paper consists in approximating fractional
differentiation operator with the help of linear bounded operators. More precisely, let G =
Ror G=R,, X, Y, Z be the linear normed spaces of measurable on G functions f : G —
R, L # ¥ be the space of the functions f € X having locally absolutely continuous on G
derivative of order (r — 1), and such that f*) € Z. Letalso T: X — Y and R: Z — Y be
linear bounded operators such that, for every f € L, D¥f = Tf + Rf"). Then, for every f € L,

1D, < 0TFly + | RFV )y < ITlx— v I lx + IR z— v £

VA

which is an additive form of the Kolmogorov type inequality (7). If for some operators T
and R there exists a function f € W turning the above inequality into an equality then the
corresponding Kolmogorov type inequality is sharp.

We remark that this idea is not new and is already contained in [23] by Stechkin. Besides,
some similar ideas were even in the papers by Landau and Hadamard. The corresponding
operators T and R as well as the extremal function f were found in many cases (see [28—
30], and surveys [1, 2, 4] for more details).

Let G =R or G = R,. By V(G) we denote the space of the functions f € L;(G) with
bounded on G variation. Also, we set x, := max{x; 0}, for every x € G, and for f € L;(G)
and m € N, we denote by fI” the mth-order integral of the function f:

1

[m] () .
A Y

/ x-t)" (@) dt, xeG.
G

Finally, for t > 0, we define the function R, : G — R as follows:

xr—l
I'(r)’

0, x <0.

x>0,

Re(x) = {

3.1 The Kolmogorov type inequalities for the Marchaud fractional derivatives:
case of uniform norms
The following results hold true.

Theorem 1 Let G=R, or G=R,reN, k € (0,7) \ N, and a function Q € V(G) be such
that (R, — QU € Li(G) and, for every f € L, . (G),

D7)~ [ f9a2 = 1 [ (Rostw) - 27 V)0 17)
Then, for every f € L, (G) and h > 0, we have the inequality
(27 P h"‘\G/ Q- f (@)
KR = - P76 (18)

Furthermore, if a function ® € W1 (G) satisfies the equalities

JECEECRVERT IR (19)
G
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and

-1y /G (Rrk@) - Q1)) @) dx = | Ry - 21, (20)

then (18) is sharp and the function ®y(-) := O((-)/h) turns (18) into an equality.

Minimizing the right hand part of (18) by 4 we obtain the next consequence.

Corollary 1 Let G=R, or G=R,reN, k € (0,r) \ N, and assume that the functions
and ® satisfy assumptions of Theorem 1. Then, for every f € L, . (G), the following sharp

inequality holds true:

15 =

”D]:q)”Loo(G) 1-k/r (r) || &/
IR Il @) If “LDO(G)' (21)
1@l 6

We remark that the following results on sharp inequalities of the form (7) concretize

Corollary 1.

1.

For G=R, r=2,and k € (0,1), the extremal function ® in inequality (18) and the
corresponding function € that satisfy the conditions of Corollary 1 were found by
Geisberg [8] and Arestov [10], respectively:

(1+p)?
T q x < —P,
8 —
Oy . X E 0; (x+p)27(1+p)2  xe [_p, P_p]’
Q(x) = T2-X)’ X € (0, 1)y q>(x) = (1+p)2§(1—x)2 1-p 2
R Lol e [l ),
r1-k)’ = 1+p)?
-8 X Z 1’
wherep=1- 2kIA~k)

For G=R,, r=2, and k € (0,1), the extremal function ®, and the corresponding
function € that satisfy the conditions of Corollary 1 were found by Arestov [10,
Theorem 3]:

ST Loxe ¥, xelol
T—X+5, xe€|U,1],
Q(x) := I l_k)’ x€(0,1), D(x):=1* 1 2
K > 1 7 x>1.
TR0’ )

For G=R,, r=2,and k € (1,2), the extremal function ® and the corresponding
function 2 that satisfy the conditions of Corollary 1 were also found by Arestov [10,
p.32]:

0, x=0,

o) % xe(0,v2-1],
e RE D’ xe(/2-1,1),
el x>1,

3-24/2-4(y/2-1)x+2x2 1

4 , ) VS [01 E];
) 122424452 1
®(x) := —zx x xe(%,l),

—3’1‘/5, x> 1.
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For integer values of &, the extremal function ® on R in inequality (21) was found by
Kolmogorov [31] (see also [3]), for every r = 2,3,.... In the surveys [1, 2, 4] the reader
could find more references and a detailed history of the subject and overview of cases
when the extremal function & in inequality (21) on R, is known.

In addition, for integer values of k, the function Q on R, for which inequality (18) is
sharp was explicitly constructed by Stechkin [23] in the case = 2, 3. In the case G = R the
existence of such a function Q was proved by Domar [32] and explicitly it was constructed
by Stechkin [23] for r = 2,3, Arestov [33] for r = 4,5, and Buslaev [34] for r > 5.

Proof of Theorem 1 First, we let & = 1 and define the linear operator T : Lo (G) — Loo(G)

as follows:

To() = /G g +0dRAD), geLu(O).

Clearly, T isbounded and || T'l| = \/; Q2. Next, let a function f € L . (G) and a pointx € G
be arbitrary. Then from Proposition 2 and (17) we deduce

DA = ‘Tf(x) . ((—1)’ fG Ros (OO (x + )t - Tf(x))‘

< |Tf ()| +

(-1 / (R - Q@) (x+ 1) dt‘
G

= \/ Q- (e + ”Rr—k -l ||L1(G) ’ Hf(r) ||Lw(s>’
G
which implies the desired inequality (18) in the case & =1:

”Dlif”Loo(G) = \/ Q- fllzoc(e) + ”Rr—k - QY ||L1(G) ’ Hf(r) ”LOO(G)' (22)
G

Next, we assume that there exists a function ® € W (G) satisfying equalities (19)
and (20). Due to Proposition 1 the derivative DX & is continuous on G. Hence, taking into

account equalities (19) and (20) we have

[P, q = [DE2)]

/ P (x) dQAx) + (-1)" f (Ry—i(x) — QU (x)) @) () dx
G G

> \/ Q- (Pl + [ Rrx — Q7Y ||L1(G) -|o® ”LOQ(G)'
G

Therefore, the statement of the theorem is proved in the case /1 = 1.

Now, weleth>0and f € L] , (G) be arbitrary, and consider the function f, (x) := f (x/}),
x € G. Evidently, f, € L], (G) and by substituting f, into (22) we derive inequality (18).
Clearly, &, turns (18) into an equality. O

Page 13 of 29
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3.2 The Kolmogorov type inequalities for the Marchaud fractional derivatives:
case of norms in an ideal lattice

Let us generalize Theorem 1 to the case of Kolmogorov type inequalities between the

norms of the Marchaud fractional derivative of a function, the function itself, and its

higher-order derivative in an ideal lattice.

Theorem 2 Let G = R or G = R, E be a semi shift-invariant lattice on G, r € N, and
k € (0,r)\N. Let also Q € V(G) be such that (R,_; — QU-Y) e L(G) and (17) hold true, for
every f € Ly ((G). Then, for every f € Ly :(G),

[P =\ @ Wle+ [Reac = 2y 17
G

An immediate consequence of Theorem 2 is the following.

Corollary2 Let G=RorG=R,,1<s<oo,reN,and k € (0,r)\ N. Let also a function
Q e V(G) be such that (R,_x — QU-Y) € L1(G) and (17) holds true, for every f € L; (G).
Then, for every f € L}, (G) and h > 0,

”Dlif”LS(G) = ™k \/ Q- lfllzo) + i ”Rr—k -ql~y ||L1(G) ’ Hf(r) Ls(G)*
G

Moreover, if a function ® € W (G) satisfies (19) and (20) then, for f € L} (G),

1A Dllic(6) 1 Y
101, 6 < ||d>||1-Lkgr()G) A Tad s (23)
Loo(G

Evidently, inequality (23) is sharp for s = co. In Section 4.1 we shall show that this in-
equality is also sharp when s =1, r =1, and G = R. For integer values of k and G = R,
inequality (23) is known as the Stein inequality [35] (see also [36, 37]).

Proof of Theorem 2 Using Proposition 3 and the generalized Minkowskii inequality (see
(18]), for every function f € L} :(G), we have

+
E

|1, < | [ so0da
G

[ (Rrceta) - @) )
G

E

< \/ QI lle + | Rymi — QU ||L1(G) O g
G

The proof is finished. d

3.3 The Kolmogorov type inequalities for the Marchaud fractional derivatives:
case when the norm of the higher-order derivative is considered in an ideal
lattice

In this subsection we generalize the results of Section 3.1 on the case when the norm of the

higher-order derivative is taken in an ideal lattice. For convenience, we split the subsection

into two parts: first we present results concerning the case when extremal function in the

Kolmogorov type inequality (i.e. turning it into an equality) exists and then we present
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results concerning the case when the extremal function in the Kolmogorov type inequality
does not exist. For integral-order derivatives, the existence of an extremal function in the
Kolmogorov type inequalities (1) was proved in the case when 1 < p,q < 00,1 < s < 00,
and inequality (3) is strict. For the corresponding results, we refer the reader to [24, 38,
39].

3.3.1 Case of existence of extremal function in the Kolmogorov type inequality
For an ideal lattice E on G and r € N, we set

Wi (G) = {f €L £(G): ”f(r) ||E = 1}'

Theorem 3 Let G=R, or G=R,reN, k€ (0,r) \ N, E be an ideal semi shift-invariant
lattice on G satisfying conditions (12) and (13), and E* be the associated space to E. Also,
let a function Q € V(G) be such that (R,_x — QU-Y) € E' and (17) hold true, for every f €
L7, £(G). Then, for every f € L ;(G),

1D 1, 0= V @ Wllier + [ Rk =201 - 7] (24)
G
Furthermore, if a function ® € W (G) satisfies equalities (19) and
V[ (Reso) - 2 9) 00) d = R, - 27, 25)
G

then inequality (24) is sharp and ® turns (24) into an equality.
We remark that Theorem 3 can be generalized as follows.

Theorem4 Let G=RorG=R,,reN, ke (0,7)\N, E be a semi-shift invariant lattice on
G that satisfy conditions (13), E* be the associated space to E, F be an ideal lattice such that
its associated space F' contains the function xo1). Let also a locally absolutely continuous
function Q € V(G) on G be such that (R,_; — QU™Y) € E' and (17) holds true, for every
f € Ly (G). Then, for every f € L ((G),

1D 1o = 192 L - W+ [ Rk = Q-

For the spaces Ly(G), 1 < s < 0o, we obtain the following consequence.

Corollary3 Let G=RorG=R,,1<s<00,8 =s/(s-1),reN, and k € (0,r —1/s) \ N.
Let also a function Q € V(G) be such that (R,_x — QU™Y) € Ly(G) and (17) holds true, for
every f € L, (G). If a function ® € W, (G) satisfies equality (19) and the relation

O [ (Realo) - @) @0 @)= [ Ry~ 2],

then, for every f € L, (G) and h > 0, the sharp inequalities

||lef||Lm(G) <h™* \/ Q- fllzo(a)
G

W R, - Q| " Ti& (26)

Ls(G)
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and

IDA @16 k

) 1-2 (r) ||* -
. Il y A= ——, (27)
”cD”L::(G) Lo (G) ”f ||LS(G) r—1/s

k
|, =
hold true. Moreover, the function ®,(-) := K"~Y*®((-)/h) turns (26) and (27) into equalities.

We remark that Theorems 3.1.2 and 3.2.2 [16] are concretizations of Corollary 3. In
addition, in the case of integer values of k and r = 2,3 and 1 < s < 0o, the functions ® and

2 satisfying conditions of Corollary 26 were explicitly constructed by Arestov in [28].

Proof of Theorem 3 The proof is similar to the proof of Theorem 1 in the case / = 1. The
difference is that for a function f € L ;(G) and x € G, we need to use the inequality

‘ / (Rr—x(®) - QU V@)V (x + 1) de
G
= [Rei= @ 7G4 = [ Rk = @ - 17
The extremity of the function ® can be proved in a similar way to Theorem 1. g

Proof of Corollary 3 For every & > 0, we observe that the functions 2 (x) := h*Q(x/h),
x € G, and Py, satisfy conditions (17), (19), and (25). Moreover,

_ 7,k [r-1] _ g r—k-1/ [r-1]
\/ Qu=h \/ Q, ”Rr—k - Qhr “LS/(G) =n ) ”Rr—k -Qv | Ly(G)
G G
Hence, by Theorem 3 the desired inequality (26) holds true and the function &, turns (26)

into an equality. Finally, minimizing the right hand part of (26) by the variable 4, we arrive
at inequality (27). The proof is finished. d

3.3.2 Case of non-existence of extremal function in the Kolmogorov type inequality

Let us present two results showing when conditions (19) and (25) can be relaxed.
Theorem 5 Let G =R, or G =R, and numbers k, r, an ideal semi shift-invariant lattice E
on G and a function Q € V(G) satisfy assumptions of Theorem 3. Also, assume that there

is a family of the functions {®.}e.0 C W £(G) satisfying the equality (19) and, for > 0,
the inequality

(-1)" /G (Rrok(®) - QUM (@) @V (x) dix > | Ry — QU Ly — e (28)

Then inequality (24) holds true and is sharp in the sense that, for every sufficiently small
& >0, there exists a function f. € L] ;(G) such that

”D]-(f’" ”Loo(G) > \/ Q- lfellzoee) + (”R’—k - Q! HEl - 8) : Hfs(r) HE
G
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Theorem 6 Let G=R, or G=R,re N, k€ (0,r —1) \ N, E be an ideal semi shift-
invariant lattice on G such that liminfy,_.o+ (W xom llg) = 1 € (0, +00). Also, let a func-
tion Q € V(G) be such that (R,_i — Q) € E' and (17) holds true, for every f € L. ;(G).
Assume that there exists a function ® € L(G) such that its derivative &b jg piecewise
constant on G, \/ 5 U = i1, there exists hy > 0 such that the distance between each pair
of discontinuity points of "V is bounded below by hy, and equalities (19) and

(-1) /G (Rroi(®) - QUM (@) dd" V() = [ R - QU

are valid. Then inequality (24) holds true and is sharp.
In the case E = L;(G) we obtain the following.

Corollary 4 Let G=Ror G=R,,r€ Nand k € (0,r —1) \ N. Let also a function Q €
V(G) be such that (R,_x — QU-Y) € Loo(G) and (17) holds true, for every f € L (G). If
an (r —1)-times differentiable function ® with piecewise constant derivative ®"~V satisfies
equalities (19), \/ g O =1, there exists hy > 0 such that the distance between each pair
of discontinuity points of "V is bounded below by hy, and

1y /G (Rrk@) - Q1)) do V@) = [Rrg - 2V, o

then, for every f € L] _(G) and h > 0, the sharp inequalities

”Dl—(f”Loo(G) = a \/ Q- Ifllzeee) + W ”Rr—k -ql “LOO(G) ’ ”f(r) ||L1(G)
G

and

k
O
_ Il 6

3 ) - (r) || * _ k
”D,f”Lao(G) - ”q)”};:(G) ”f”ioc):(G) “fr ”Ll(G)’ A= :r

hold true.

We remark that for integer values of k and r = 2,3, the functions ® and  satisfying
conditions of Corollary 4 were constructed by Arestov in [28].

Proof of Theorem 5 We observe that inequality (24) holds true, for every f € L] -(G). Let
us prove that (24) is sharp. Let ¢ > 0 be arbitrary and sufficiently small. Due to Propo-
sition 1 the fractional derivative DX ®, is continuous on G. Hence, taking into account
equalities (19) and (28) we obtain

[DEc]], ) = [PE@:(0)

/ @, (x)dQx) + (=1) / (Ry-k(x) - QU () @9 (x) dx
G

G

=\ Q- 19elline) + [Rrk =@V i -6
G

2V @ 1Pl + ([Rrk = 2 1 =) - [0 -
G

The proof is finished. d
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Proof of Theorem 6 Since k < r—1 we see that (')"k‘lx(o,l)() € E' and condition (13) is also
fulfilled. Hence, by Theorem 3, inequality (24) holds true. Let us prove that inequality (24)
is sharp. To this end by B = {;};e; (J is a finite or countable set of indices) we denote the
discontinuity points of ®V and set o) = CD(ﬁj*) - <I>(,3j‘),j € J. Due to the assumption
there exists /o > 0 such that |8; — B;| > ko for all distinct indices i,j € . Now, for every
h € (0, hg), we define the function

1 rh
®Op(x) = —/ O +1t)dt, xe€G.
h Jo
It is easy to show that as # — 0%, we have
[ eudae ~ [ emdam-\/2- 19l
G G G
[ (Roosts) - @)@ x> [ (Ryoata) - @) o)
G G
= (_1)r ”Rr—k - Q[’Ll] HEl’
and

I xco,mlE 1
h

E (r) P |O‘i| 1 ..
liminf| ® < liminf E —_ = — - liminf
h—0+ ” h HE ~ noot P h ||X(o,h) ”E B0t

Due to the continuity of DX &, for every ¢ and every sufficiently small / > 0,
[ DA, g = DE@u(0) > \/ Q- 1Phllinie + [Rrk - QU] -6
G

2\ @ 19ulinie + (Rt = 2 ) @]
G

The proof is finished. O

4 Consequences of main results
In this section we deduce new sharp Kolmogorov type inequalities from the results of the
previous section when the order of the higher-order derivative is 1 or 2.

4.1 Caser=1andk €(0,1)
Let G=Ror G=R,. For k € (0,1) and /& > 0, we set

o) i 0, x¢ G\ (0,h),
BT kR, x e (0, k).

The following proposition is the consequence of Theorem 5.

Corollary 5 Let G=R or G=R,, k € (0,1), E be an ideal semi shift-invariant lattice on
G satisfying conditions (12) and (13), E' be the associated space to E. Then, for every f €
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LLO,E(G) and h > 0, the sharp inequality

2h_k ”Th” 1 ’
holds true.

Proof For every h > 0, we define the function

) 0, xe€ G\ (0,+00),
) 1= Racklo) = s = F?‘_i , xe(0,h), (30)
rog ¥ h

It is easy to check that (17) holds true, for every f € LL -(G), \/ 5 2 rz(}{ ];( ,and Ry, — Q2 =
T 1

rip €E-
Let us construct a family of functions {®,}..¢ C Wéo £(G) satisfying conditions (19) and

(28). For every ¢ > 0, there exists a function g, € E, ||g. ||z < 1, such that

Izulle

h
| (Rt - ) > 1Rk - 211 -6 = LS

Without loss of generality we may assume that g; is non-negative on G and suppg. = [0, /].
Next, we define the function ®, as the first integral of (—g.):

x h
c1>£(x):=-/ ge(t)dt+%/ gBdt, xeG.
0 0

Clearly, ®, € W) .(G) and @, (x) = —P,(0) = —[| ¢ ||, ()> ¥ > h. As a result,

h*®,(0) &, (x)d
/Gd>g(x)d9(x)=m+/h TP k \/9 1Pl oo(c)

and

A
- /G(Rl—k(x) - Q(x)) P, (x) dx = /0 (Rick(x) — Q(x))ge (%) dx > | Ry — Q|2 — €.

Therefore, the function €2 and the family of the functions {®,}..¢ satisfy the assumptions
of Theorem 5. Hence, inequality (29) holds true and is sharp. g

Next, we formulate the following Stein type inequality.
Corollary 6 Fork e (0,1),h>0,andf € L, ,(R), the sharp inequalities

2675 @) .\ S TS
F(l—k) re-k ’

1D e <
(31)

19 ey =g i e

hold true.
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Proof For h > 0, let Q2 be defined by (30). Then both desired inequalities follow from
Corollary 2. Let us prove that inequalities (31) are sharp. To this end, for every ¢ € (0, 4),
we consider the Steklov averaging operator S; : Lo (G) = Lo (G)

ng(-)zéfof(~+t)dt, feLlo(G)

and define the function ®, := S; x(o,»). Clearly, || .|z, ®) =4, | P, ||, ®) = 2, and

2h1—k
re-k’

lim ||Dkd) “Ll(R) ||Dk X(0,n) ||L1 )

e—>0%

Plugging the latter relations into the first of inequality (31) we turn it into an equality. The
proof is finished. d

4.2 CaseG=R,,r=2,andke(0,1)
For k € (0,1) and % > 0, we define

*k_hkx, x€0,h),
0, x> h.

The following consequence of Theorem 5 holds true.

Corollary 7 Let k € (0,1), E be an ideal semi shift-invariant lattice on R, satisfying condi-
tions (12) and (13), E* be the associated space to E. Then, for every f € L2 (R,) and h >0,
the sharp inequality

2nt ||f || "

holds true.

Proof For every h > 0, we define the function

o, x=0,
h—k
Q(x) = 1"(2;(/()’ X € (O)h)¢
rR *2h
Evidently, \/;Q = ( 7 and Ry — Qll = T € E'. Moreover, for every f € L2 ;(R,),
we have (17). Indeed,
- [ rwaae
0

WRFO)  kiRF) k[ f(x)dx
re—k "Te-k "Ta=kJ), =
k(MO =f) k()

“Tan /), Ak PrTa_n

* (= Of"(0) Kk

k G "
Z_F(l—k) . ik dtdx+l"(2—k) ; (h—0)f"(t)dt

= D'f(0) -

- / (Roi(®) — QU0 (1) dt
0
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Let us construct a family of functions {®,}.o C Wgo,E(G) satisfying conditions (19) and
(28). For every ¢ > 0, there exists a function g, € E, ||g.||[g < 1, such that

A
re-k °

h
/o (Ra-k(x) — QU () ge (¥) dx > | Roi - QM| 1 — & =

Without loss of generality we may assume that g, is non-negative on G and suppg. = [0, /].
Next, we define the function @, as the second integral of g.:

h x
D, (x) :=/0 (—x +¢/2) E(t)dt+/0 (x—t)g.(t)dt, xeR,.

Clearly, ®, € W2 1(G), ®¢(x) = =D (0) = = Pell 1o (®,)s X > 4. As a result,

[©.(0) —kD . (h)] k(1-k) [*™ D.(x)
T'@2-k) TTQ-kJ, Atk

+00 h—k
/ ®, (1) dAx) = dx
0

+00
=\ Q19 o)
0

and

+00 h
f (Ro-i(x) — QW (x)) @ (x) dx = / (Ro-k(x) — QM (x)) g (x) doc
0 0

s [Ra- 2] e

Therefore, the function Q2 and the family of the functions {®,}..¢ satisfy assumptions of
Theorem 5. Hence, inequality (32) holds true and is sharp. g

Let us formulate the consequence of Corollaries 3, 4, and 7. For s > 1, we set

h x
Ors(x) = / (—x+/2)7 (£ dt + / k-t Y(t)dt, x€eR,,
0 0
and @y := ”‘/’ka”Zsl(Rg - @rs. Also, we define
1
®r1(x) = 7 - max Q- —2x; -1 - k), xeR,.

Corollary 8 Let k € (0,1),1 <s < o0, and s’ = s/(s —1). Then, for every f € Lgo,s(]R,,), the
sharp inequality

- DX @l o, k

k ) 1111+ || > _
||DJ||LOO(R+) — ”(Dk,s”};j(R” |lf||Loo(R+) Hf “LS(]R+)’ A= 5 1/5’

holds true.

43 CaseG=R,;,1<s<oo0,andk e(1,2-1/s)
Letl<s<o00,s =s/(s—1),and k € (1,2 — 1/s). Consider the set

M :={(a,b) € (0,1)*:a < b}
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l

0 a b Tt l0ab 7 ¢ -$.0)

Figure 1 Functions from left to right: ['(2 - k) - Ry and w!"(a, b; -); T(a, b; -); @ s-

and, for every (a, b) € M, we define the function

0, x=0,

all-b)71-1-b-1-b"5)(1-a), x€(0,al,
w(a, b;x) = o -

1-b)1-1-b5), x € (a,1),

(]- - k)x_k’ X > 1.

For x € R,, we consider the functions 7(a, b;x) := ['(2 — k) - Ro_i(x) — (a4, b; x) and
ola, b;x) := / (=% +t/2) - 1wy (a, b; t) dt + / (x—1) - 1v)(a, b; t) dt,
0 0

where gy := lg|* ' signg. Below in Lemma 1 we shall show that system (33) has a
unique solution (ays, by s) on M. For convenience, we denote the functions w(agg, by -),
T(aks) bis; )y @@k brs;+) DY @ksr Thsy Prs respectively. The graphs of the functions
oM(a, b;-), T(a, b;-), and ¢i,s are shown in Figure 1.

The next proposition is a consequence of Corollary 3.

Corollary9 Letl<s<oo,s =s/(s-1), ke (1,2 -1/s), and Oy := ||¢/(,5||ZSI(R+) - @rs- Then,
forevery f € Lgo’s(]&), the sharp inequality

Py k

DX @l o, 5=
L@y 79 1/s

) 1-1
AR

lf//

Dk <
|| —f||Loo(R+) — ”(‘Dk)S”i;j(]RJr)

holds true.
We start with the proof of an auxiliary lemma.

Lemma 1 The system of the following equations has a unique solution on M:

a

Fi(a,b):= [} v)(a, b;t)dt = 0, (33)
Fy(a,b):= [t ts)(a b;t)dt=0.

We remark that in some cases the pair (ax s, i s) can be found explicitly, e.g. ax oo = J2-1

and by o, = 1/4/2.

Proof First, we observe that, for every (a, b) € M, the function t(a, b; -) is positive on (0, b),
is negative on (b,1), and supp t(a, b; -) = [0, 1]. Next, the functions F; and F, are continuous

Page 22 of 29
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on M, and can be continuously extended on a wider set M:= {(a,b) € [0,1)%:b>0,a <b).
Let us prove that system (33) has a unique solution on M. First, we note that F, strictly
increases in the variables a and b, while F; strictly increases in b and strictly decreases

in a. Hence, system (33) could have only one solution. Next, we have

b 1

lim Fy(b,b) < lim { [ AR gy / t - 7e)(b, b; t)dt} = —00,
b—0* -0+ | Jo b

1 =
Jim Fy(b,b) = / (£ —t)" " dt>o,
—-1- 0

1 =)
blinP F5(0,b) =/ t -1+ 1 -A-1) dt>o0.
-1 0

Hence, there exist points a*, b* € (0,1) such that F,(0,5*) = F,(a*,a*) = 0. Taking into ac-
count continuity of the function F, and its monotonicity in both variables we conclude
that, for every a € [0,a*], there exists b = g(a) € [a*, b*] such that F,(a, b) = 0. Moreover,
the function o is continuous and is decreasing on the interval [0,a*] because it has an

inverse function. Finally, we observe that

1

1

F(0.) = - {b* [ ot dt}

0
(" . F5(0,5%)
> E{/O t-7s)(0,b ;t)dt} == —=0
and
1

Fi(a*,a¥) =/ ) (a*,a*;t) de < 0.

Hence, there exists ag € (0,a*) such that Fi(ag,0(a0)) = 0. The latter implies that

(a0, 0(ap)) € M and satisfies system (33). O

Proof of Corollary 9 We set Q := % It is easy to check that for f € L2 ((R.,),

DKf(0) - / F(0)dt) - f (Rai(t) - QUO)f (0.
0 0

Moreover, (Dk,s S WOZO,S(R*.), q)k,s(o) = _q)k,s(ak,s) = ||(Dk,s||Loo(R+)r (Dk,s(x) = ch,s(O)’ for every
x > h, Oy decreases on [0, 4y ] and increases on [ag s, +00). Hence, the functions €2 and

Dy satisfy the conditions of Corollary 3. d

44 CaseG=R,1<s<oo,andk €(0,1)
Letk €(0,1),1 <s < o0, and s’ =s/(s—1). For p € [0,k/(1 - k)], we consider the function

0, X S _pr
op;x)=3-1+p)~t, xe(-pll,
1-kax*, x>1.
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T(p; t) d)k,.v (‘ka
1-k g a \
t/ s =P\ 0 1 t
/" (p;t) 7
_1/? 0 ] t _(pk,s(_pk,.v)

Figure 2 Functions from left to right: T'(2 - k) - Ry« and ! (p; -); T(p; -); @k.s-

For x € R, we consider the function 7 (p;x) := I'(2 — k) Ry (x) — @V (p; x) and define

1 x

LT (pst)de + / (x—1t) - 7s)(p;t)dt, whens>1,

P

@s(p3%) = %/_

P

(1+p)/4, x<-p,
opx) =31 +p-2x)/4, x€(-p,1),
-1+ p)/4, x>1.

Below in Lemma 2 we shall prove that the equations of (34) have a unique solution. For
convenience, we denote by pi, s > 1, the solution to the first equation in (34) and by
Pk the solution to the second equation in (34). In addition, we denote the functions
O WPis; ) T(Pks; ), and @(Pis; -) bY wis, Ts, and ¢ s, respectively. The graphs of the func-
tions @ (p;-), 7(p;-), and g1 ; are shown in Figure 2.

The following consequence of Corollaries 3 and 4 holds true.

Corollary10 Let1<s<o00,s =s/(s—1), k € (0,1), and h > 0. Then, for every f € L2 (R),
the sharp inequality

k

A
L ATy

|DF sl -
”D]-(f”Loo(]R) = ||<I) k”Sl—Lk = ”f”ioiL(R) Hf,,
ksl Loo (R)

where @y s := ||(p,’<’,s||zsl(R) “Qks» S > 1, and Oy := g1, holds true.
We start with the proof of the following auxiliary lemma.

Lemma2 Letl<s<oo,s =s/(s—1),and k € (0,1). Then the following equations have a
unique solution on the interval [0, k/(1 - k)]:

1
Zy(p) := / ) ps)dt=0 and Zy(p) = kXA - k)'7FQ + p) - (2 F = 0. (34)
v

We remark that for particular values of s we can find py s explicitly, e.g. px oo = 1—27%/0-0
and pro = k/(2 - k).

Proof The fact that the equation Z;(p) = 0 has a unique solution on the interval [0, k/(1 -
k)] is trivial. To prove that the equation Zs(p) = 0 also has a unique solution on the same
interval we observe that Z; is continuous and strictly decreases on the interval [0, k/(k—1)],
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'p ks

S oah 1 i 3 (0)

Figure 3 Functions from left to right: T'(2 - k) - Ry« and w!"(a, b, p; ); T(a, b, p; -); @ s-

and attains values of opposite signs at points 0 and k/(k — 1). Thus the equation Zs(p) = 0
has a unique solution on [0, k/(1 - k)]. O
Proof of Corollary 10 We set Q := % Similarly to Section 4.2 we can check that, for
every f € LgO‘S(R), equality (17) holds true. Moreover, if s > 1, we see that @y, decreases
onR, Oy € Wgo,s(]R), D (—pr,s) = —Pis(1) = [|Pisll oo (r). Hence, the functions €2 and Py
satisfy the conditions of Corollary 3. In turn, for s =1 we can check that the functions 2
and @y satisfy the conditions of Corollary 4. d

45 CaseG=R,1<s<oo,andk e(1,2-1/s)
Letl<s<o00,s =s/(s—1),and k € (1,2 — 1/s). Consider the set S := M x [0, +00), where
the set M was defined in Section 4.3, and, for every (a, b, p) € S, we define

0, x = -p,
1-b+(1-b' %) (a-1) _
wlabpx)=] 0-Bap) x€lpal,
(1_b)_1 '(bl_k_l)r X € [ﬂyl]y
(1-k)x*k, x>1.

For x € R, we consider functions 7 (a, b, p;x) := I'(2 — k) - Ro_x(x) — @V (a, b, p;x) and

a X

t-tvyy(a b,p;t)dt + f (x—t) - 7y(a, b, p; t) dt.

P

1
1b1 5 ==
¢(a, b, p;x) 2[

p
Below in Lemma 3 we shall prove that the system of equations (35) has at least one solution
on S. Let (aks, bis, Pr,s) be one of such solutions and, for simplicity of notation, we denote
the functions w(ax,s, bis Pis; *)» T(aks bis: Pis ), and @(as, bis, Piss -) BY 0r,s, Ths and gis,
respectively. The graphs of the functions w!l(a, b, p;-), t(a,b,p;-), and ¢ are shown in
Figure 3.

Next, we set @y s := [l¢] ||ZX1(R) - @ks- The following consequence of Corollary 3 holds true.

Corollary11 Letl<s<oo,s =s/(s—1),k € (1,2-1/s),and h > 0. Then, for every function
f € L2 (R), the sharp inequalities

Y k
L ) A= P
@ *= 5T

|1 DX @l _
1D 1y = =2 W e
”q)ka”Loo(]R)

hold true.

We start with the proof of the following auxiliary lemma.
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Lemma 3 The following system of equations has a solution on S:

Z\(a,b,p) := f_“p Tw)(a, b,p;t)dt =0,
Zo(a,b,p) = [, we)(a, b,p;t)dt = 0, (35)
Zs(a,b,p) = f_lp t-tw)(a b,p;t)dt = 0.

For particular values of s the triple (a5, bis, Pi,s) can be found explicitly, e.g. pi.co = dk,00 =
1/3 and by o, = 2/3.

Proof First, we observe that the function Z; is continuous on S, strictly decreases in the
variable g, strictly increases in the variable b, and is constant in the variable p. In addition,
for every a € (0,1), Zy(a,a,0) < 0 and limp_,1_¢ Z(a, b, 0) > 0. The latter and monotonicity
of Z, in the variable b imply that there exists a strictly increasing function y : (0,1) —
R such that Z;(a, y(4),0) = 0. Moreover, continuity of the function y follows from its
monotonicity and continuity of the function Z,.

Next, we consider the function Z;. Evidently, Z; is continuous on S, strictly increases in
the variables a and b, and strictly decreases in the variable p. Since, for every a € (0,1),
Zi(a,y(a),0) > 0, and lim,_, _ Zi(a, y (a), p) = —00, we conclude that there exists a func-
tion § : (0,1) — R such that, for every a € (0,1), Z1(a, ¥ (a), 8(a)) = 0. Since Z; is continuous
on S and § is monotone, we conclude that § is also continuous on (0, 1). Therefore, for every
a € (0,1), we have Z(a, y(a),8(a)) = Z3(a, y(a),§(a)) = 0. Now, we set b* = lim,_, .o y (a).
Since

a—0*

1/2 ,
lim Z, <u, %,o) =/ (T -1+2(1-2N1-1) " dt
0

1 J
—/ (F—1+2(1-2N1-1) "dt>0
1/2

and

1 1/2 - 1 -
lim Z, (a, 5,0> =/ (- dt—/ (£*-2) "dt>o0,
0 1

a—0% 2

we conclude that b* € (0,1).
Finally, note that Z3 is also continuous on the S function, and

b*
lim Z(a,(@),5(@)) = Z3(+0,",0) = / £ 23 (+0,6%,0) dr
a—0* 0

1
—/ t~t]i/_1(+0,b*,0)dbt
b

s«

b* 1
<b* [/ r,ﬁl_l(a, b,p;t)dt — f r,ﬁ/_l(a, b,p;t) dt:|
0 £
=b*Z,(+0,b%,0) =0,
1
. —k s'-1
allf?f Z3(a,v(a),8(a)) > /0 t(d*-1) " de>o0.

Hence, there exists a € (0,1) such that Z3(a, y (a), §(a)) = 0. O
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Proof of Corollary 11 We set Q := r(;)zkf/<)' It is easy to check that (17) holds true, for every
f €L (R,). Moreover, ®is € W2 (R), Prs(—pis) = —Prs(ais) = | Pssll oo (m)y Pros®) =

Pl (r)s for every x > 1, @y is non-increasing on (—00,dx ] and non-decreasing on

[aks, +00). Hence, the functions 2 and @i satisfy the conditions of Corollary 3, which
finishes the proof. O

5 Applications

In this section we consider applications of results of this paper. We devote Section 5.1 to
consequences related to the Kolmogorov problem for three numbers and in Section 5.2 we
obtain sharp Kolmogorov type inequalities for the weighted norms of fractional powers
of the operator Z = xdix obtained by the Hadamard fractional derivative.

5.1 The Kolmogorov problem for three numbers

Let G=RorG=R,,1<p,q,s<o0o,reN,and k € (0,r) \ N. The Kolmogorov problem
for three numbers (see [3]) consists in finding necessary and sufficient conditions on three
positive numbers My, My, and M, that guarantee the existence of a function f € L;,s(G)
satisfying the equalities

=M,. (36)

I llz,0) = Mo, ”DlifHLq(G) =M, ‘V(r) Ls(G) ~

For an overview of known results in this direction, we refer the reader to [3, 4] and refer-
ences therein. Using similar arguments and combining them with results of the previous
section we deduce the following consequences.

Theorem 7 Let G=RorG=R,,1<s<00,p=q=00, k€ (0,2-1/s), r =2, and My,
My, My be positive numbers. Assume that K is a sharp constant in inequality (7) and there
exists a non-negative function turning (7) into an equality. Then there exists a function

f € L2, (G) satisfying equalities (36) if and only if My < K - My™Mj where A = 3.

Theorem 8 Let G=Ror G=R,,s=1,p=qg=00, k€ (0,2 -1/s), r =2, and My, My,
M, be positive numbers. Assume that K is a sharp constant in inequality (7). Then there
exists a function f € L. (G) satisfying equalities (36) if and only if My < K - My~ M} where

_ _k
A= 2-1/s*

5.2 Sharp Kolmogorov type inequalities for the Hadamard fractional derivatives
Let Z be the operator mapping every differentiable function f : R, — R into the function
Df(x) =xf'(x), x €R,, i.e. I = x%. The fractional power, k € R, \ N, of the operator 2
is obtained by the Hadamard fractional differentiation operator Qi (see [7, Section 18])
which is defined as follows: for f : R, - Randx € R,,

1 10 r du
k _ _1\m m
7S ) = sk, 7) /0 g( D (m)j(u x) u| In g H%°

+o00 I d
D) = — > (;)f(u’"x) -
m=0

»(k,r) S u| Inu|+’

where r € N, r > k, and »(k, r) was defined in (6). Some Kolmogorov type inequalities for
the Hadamard fractional derivatives were considered in [40]
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For an arbitrary function f : R, — R, let us define the function g : R — R as fol-
lows: g(¢t) =f ('), t € R. Then, for every x € R,, we have Qif(x) = D';g(lnx). As a result,
125w, = IDX.gllL.®) and, for every 1 <s < oo,

+00 sdx s
/0 |ZLf )| = = HDigHLS(RV

x

The latter formula allows deducing sharp Kolmogorov type inequalities for the weighted
L¢-norms of the Hadamard fractional derivatives from sharp Kolmogorov type inequalities
for Ls-norms of the Marchaud fractional derivatives. Let us present rigorous statements.
For 1 < s < 00, by .%; we denote the space of the functions f : R, — R endowed with the

norm

o T @IS, 1<s<oo,

”f”Loo(R+)’ §=00.

Ifll.z =

For r € N, let £ be the space of the functions f € Lo(R,) such that £ is locally
absolutely continuous on R, and f* € .%,. From the above arguments we conclude that
the following proposition holds true.

Theorem 9 Let the Kolmogorov type inequality (1) with sharp constant K hold true for
some collection of parameters1 < p,q,s <oo,r e N,k € (0,r),and uy, e R,0<pu=1-1 <
L. Then for the same collection of parameters and, for every f € £, the sharp inequality

k I rel|
|77 2, <Kl |77 ,
holds true.
Combining Theorem 9 with Corollaries 10 and 11 we obtain the following.

Corollary 12 Let1 <s<o00,s =s/(s—1), k € (0,2 - 1/s), and A = k/(2 — 1/s). Then, for

every function f € £2 , the sharp inequality

,$7

Dk
< ” - k,s”LgQ(]R) ”f”ig}i; “@2](“%

ok
I JH%C TPkl g

holds true, where the function ®y s was defined in Sections 4.2-4.5.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors made an equal contribution to the paper, and they have read and approved the final manuscript.

Received: 11 August 2014 Accepted: 2 December 2014 Published: 17 Dec 2014

References
1. Arestov, VV, Gabushin, VN: Best approximation of unbounded operators by bounded operators. Russ. Math. (Izv. VUZ)
39(11),38-63 (1995)
2. Arestov, VV: Approximation of unbounded operators by bounded operators and related extremal problems. Russ.
Math. Surv. 51(6), 1093-1126 (1996)


http://www.journalofinequalitiesandapplications.com/content/2014/1/504

Babenko et al. Journal of Inequalities and Applications 2014, 2014:504 Page 29 of 29
http://www.journalofinequalitiesandapplications.com/content/2014/1/504

20.

21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34
35.
36.
37.

38.
39.

40.

. Kolmogorov, AN: On inequalities between the upper bounds of the successive derivatives of an arbitrary function on

an infinite interval. In: Selected Works. Mathematics and Mechanics, pp. 252-263. Nauka, Moscow (1985)

. Babenko, VF, Korneichuk, NP, Kofanov, VA, Pichugov, SA: Inequalities for Derivatives and Their Applications. Naukova

Dumka, Kiev (2003)

. Kwong, MK, Zettl, A: Norm Inequalities for Derivatives and Differences. Lecture Notes in Mathematics, vol. 1536.

Springer, Berlin (1992)

. Mitrinovic, DS, Pecaric, J, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer

Academic, Dordrecht (1991)

. Samko, SG, Kilbas, AA, Marichev, Ol: Fractional Integrals and Derivatives: Theory and Applications. Taylor & Francis,

London (2002)

. Gelsberg, SP: Generalization of Hadamard's inequality. Sb. Nauch. Tr. Leningr. Mekh. Inst. 50, 42-54 (1965)
. Geisberg, SP: Fractional derivatives of functions bounded on the axis. Izv. Vyss. U¢ebn. Zaved., Mat. 11, 51-69 (1968)
. Arestov, VV: Inequalities for fractional derivatives on the half-line. In: Approximation Theory, vol. 4, pp. 19-34. Banach

Center Publication, Warsaw (1979)

. Magaril-lljaev, GG, Tihomirov, VM: On the Kolmogorov inequality for fractional derivatives on the half-line. Anal.

Math. 7(1), 37-47 (1981)

. Babenko, VF, Churilova, MS: On inequalities of Kolmogorov type for derivatives of fractional order. Bull.

Dnepropetrovsk Univ. Math. 6, 16-20 (2001)

. Babenko, VF, Churilova, MS: Kolmogorov type inequalities for hypersingular integrals with homogeneous

characteristic. Banach J. Math. Anal. 1(1), 66-77 (2007)

. Babenko, VF, Pichugov, SA: Sharp estimates of the norms of fractional derivatives of functions of several variables

satisfying Holder conditions. Math. Notes 87(1-2), 22-30 (2010)

. Babenko, VF, Parfinovych, NV, Pichugov, SA: Kolmogorov-type inequalities for norms of Riesz derivatives of functions

of several variables with Laplacian bounded in L., and related problems. Math. Notes 95(1), 3-14 (2014)

. Motornyi, VP, Babenko, VF, Dovgoshei, AA, Kuznetsova, Ol: Approximation Theory and Harmonic Analysis. Naukova

Dumka, Kiev (2012)

. Gabushin, VN: Inequalities for the norms of a function and its derivatives in metric L,. Math. Notes 1(3), 194-198

(1967)

. Krein, SG, Petunin, JI, Semenov, EM: Interpolation of Linear Operators. Am. Math. Soc,, Groningen (1982)
. Marchaud, A: Sur les derivées et sur les différences des fonctions de variables réelles. J. Math. Pures Appl. 6, 337-425

(1927)

Babenko, VF, Parfinovych, NV: Kolmogorov type inequalities for norms of Riesz derivatives of multivariate functions
and some applications. Proc. Steklov Inst. Math. 277(1), suppl., 9-20 (2012)

Buslaev, AP, Tikhomirov, VM: Inequalities for derivatives in the multidimensional case. Math. Notes 25(1), 32-40 (1979)
Babenko, VF, Churilova, MS: On Kolmogorov type inequalities for fractional derivatives of the functions defined on
the real line. Bull. Dnepropetrovsk Univ. Math. 13, 28-34 (2008)

Stechkin, SB: Best approximation of linear operators. Math. Notes 1(2), 91-99 (1967)

Gabushin, VN: Best approximations of functionals on certain sets. Math. Notes 8(5), 780-785 (1970)

Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier,
Amsterdam (2006)

Krasnosel'skii, MA, Rutitskii, YB: Convex Functions and Orlich Spaces. Noordhoff, Groningen (1961)

Chui, CK: An Introduction to Wavelets. Academic Press, London (1992)

Arestov, VV: On exact inequalities between norms of functions and its derivatives. Acta Sci. Math. 33(3-4), 243-267
(1972) (in Russian)

Gabushin, VN: On the best approximation of the differentiation operator on the half-line. Math. Notes 6(5), 804-810
(1969)

Taikov, LV: Kolmogorov-type inequalities and the best formulas for numerical differentiation. Math. Notes 4(2),
631-634 (1968)

Kolmogorov, AN: On inequalities between the upper bounds of the successive derivatives of an arbitrary function on
the infinite interval. Uch. Zap. MGU, Mat. 30, 3-13 (1939)

Domar, Y: An extremal problem related to Kolmogoroff’s inequality for bounded functions. Ark. Mat. 7(5), 433-441
(1968)

Arestov, VV: On the best approximation of differentiation operators. Math. Notes 1(2), 100-103 (1967)

Buslaev, AP: Approximation of a differentiation operator. Math. Notes 29(5), 372-378 (1981)

Stein, EM: Functions of exponential type. Ann. Math. 65(3), 582-592 (1957)

Babenko, VF, Pichugov, SA: About one method of Stein. In: Approximation of Functions and Summation of Series,
vol. 43, pp. 420-422. Dnepropetrovsk State University, Dnepropetrovsk (1991)

Korneichuck, NP, Babenko, VF, Ligun, AA: Extremal Properties of Polynomials and Splines. Nova Science Publishers,
New York (1996)

Arestov, VV: On the best uniform approximation of differentiation operators. Math. Notes 5(3), 167-173 (1969)
Buslaev, AP, Magaril-ll'yaev, GG, Tikhomirov, VM: Existence of extremal functions in inequalities for derivatives. Math.
Notes 32(6), 898-904 (1982)

Babenko, VF, Parfinovych, NV: On Kolmogorov type inequalities for the Hadamard fractional derivatives of functions
defined on a semi-axis. Bull. Dnepropetrovsk Univ. Math. 17(6), 31-35 (2009) (in Russian)

10.1186/1029-242X-2014-504
Cite this article as: Babenko et al.: Kolmogorov type inequalities for the Marchaud fractional derivatives on the real
line and the half-line. Journal of Inequalities and Applications 2014, 2014:504



http://www.journalofinequalitiesandapplications.com/content/2014/1/504

	Kolmogorov type inequalities for the Marchaud fractional derivatives on the real line and the half-line
	Abstract
	Keywords

	Introduction
	The Kolmogorov type inequalities
	The Stechkin problem
	The problem of optimal recovery of operators on elements given with an error
	Organization of the paper

	Auxiliary results
	Deﬁnitions and results
	The proofs of auxiliary results

	Main results
	The Kolmogorov type inequalities for the Marchaud fractional derivatives: case of uniform norms
	The Kolmogorov type inequalities for the Marchaud fractional derivatives: case of norms in an ideal lattice
	The Kolmogorov type inequalities for the Marchaud fractional derivatives: case when the norm of the higher-order derivative is considered in an ideal lattice
	Case of existence of extremal function in the Kolmogorov type inequality
	Case of non-existence of extremal function in the Kolmogorov type inequality


	Consequences of main results
	Case r=1 and kin(0,1)
	Case G = R+, r=2, and kin(0,1)
	Case G = R+, 1< s=<infty, and kin(1, 2-1/s )
	Case G = R, 1=<s=<infty, and kin(0,1)
	Case G=R, 1<s=<infty, and kin(1,2-1/s)

	Applications
	The Kolmogorov problem for three numbers
	Sharp Kolmogorov type inequalities for the Hadamard fractional derivatives

	Competing interests
	Authors' contributions
	References


