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Abstract
In this paper we establish some new Kolmogorov type inequalities for the Marchaud
and Hadamard fractional derivatives of the functions defined on a real axis or
semi-axis. Simultaneously we solve two related problems: the Stechkin problem on
the best approximation of unbounded operators by bounded ones on a given class
of elements and the problem of optimal recovery of an operator on elements from
some class given with prescribed error.
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1 Introduction
Inequalities estimating the norm of an intermediate derivative of a function in terms of
the norm of the function itself and the norm of its higher-order derivative (inequalities of
Kolmogorov type) are important in many areas of mathematics and its applications. Due
to the efforts of many mathematicians, nowadays, a great number of sharp Kolmogorov
type inequalities are known (see, for instance, surveys [–] and monographs [–]). In
many questions of analysis and its applications the study of fractional-order derivatives is
also important (see, for instance, []). For some known results on the Kolmogorov type
inequalities for derivatives of fractional order we refer the reader to [–], the book [,
Chapter ] and references therein.
In this paper we shall obtain some new Kolmogorov type inequalities for fractional

derivatives. Simultaneously, we consider two closely related problems: the Stechkin prob-
lem on approximation of unbounded operators by bounded ones on a given class of el-
ements Q, and the problem of optimal recovery of unbounded operator on the class Q
under assumption that elements in Q are given with known error (for more information
see [, ] and [, Section .]).

1.1 The Kolmogorov type inequalities
Let G be the real line R = (–∞, +∞) or half-line R+ = [,+∞). By Lp(G),  ≤ p ≤ ∞, we
denote the space of measurable functions f : G → R whose modulus to the pth power is
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integrable on G (essentially bounded on G if p =∞), endowed with the standard norm

‖f ‖Lp(G) :=
{
(
∫
G |f (t)|p dt)/p, if ≤ p < ∞,

ess sup{|f (t)| : t ∈G}, if p =∞.

For r ∈N and  ≤ s ≤ ∞, by Lrp,s(G) we denote the space of the functions f ∈ Lp(G) having
locally absolutely continuous on G derivative f (r–) and such that f (r) ∈ Ls(G).
Let ≤ q ≤ ∞, k ∈N∪ {}, ≤ k ≤ r – , and λ,μ ∈R. Inequalities of the form

∥∥f (k)∥∥Lq(G)
≤ K‖f ‖μ

Lp(G)
∥∥f (r)∥∥λ

Ls(G)
()

holding true, for every function f ∈ Lrp,s(G) with some constant K independent of f , are
called Kolmogorov type inequalities (Kolmogorov-Nagy type inequalities when k = ). It is
well known (see []) that the constant K in inequality () is finite if and only if

λ =
k – /q + /p
r – /s + /p

, μ =  – λ, ()

and

r
q

≤ r – k
p

+
k
s
. ()

Naturally, inequalities with the lowest possible (sharp) constant K are of themost interest.
We refer the reader to [, ] and the books [, ] for the detailed survey on the Kolmogorov
type inequalities and discussion of related questions.
Together with inequalities () the study of inequalities between the norms of intermedi-

ate function derivative, the function itself and its higher-order derivative in spaces more
general than Lp are also important. In Sections - we shall obtain several inequalities
between the norms of derivatives in ideal lattices (see [, Chapter , Section ]).
In this paper we focus on the study of the Kolmogorov type inequalities for non-integer

(fractional) values of k. There are many ways to give a sense to the fractional derivative of
a function defined on R or R+. Among the first ones was the fractional derivative in the
Riemann-Liouville sense (see [, Section .]) that is defined for a function f :R →R and
x ∈R, as follows:

Dk
±f (x) :=

(±)n

�(n – k)
· dn

dxn

∫ +∞


tn–k–f (x∓ t)dt, n = [k] + , ()

where �(z) is the Euler gamma function and [z] stands for the integer part of real num-
ber z. We shall mostly consider fractional derivatives in the Marchaud sense (see [] or
[, Section .]) that are defined for a function f :R →R and x ∈R, as follows:

Dk
±f (x) =


κ(k,n)

∫ +∞



(�n±t f )(x)
t+k

dt, ()
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where n ∈N, n > k (the definition itself is independent of n), and

(
�n

±t f
)
(x) :=

n∑
m=

(–)m
(
n
m

)
f (x∓mt),

κ(k,n) := �(–k)
n∑

m=

(–)m
(
n
m

)
mk .

()

For a function f : R+ → R, the right hand sided derivatives Dk
–f and Dk

–f are defined by
formulas () and (), respectively. The left hand sided derivativesDk

+f andDk
+f are defined

with the help of slightly different constructions (see [, Sections ., .]), and we shall not
study these derivatives here.
It is well known (see []) that Dk±f =Dk±f for ‘good’ functions f :G →R. However, con-

struction () is also suitable for a wider class of the functions, e.g. constant functions or
functions whose power growth at infinity has order lower than k.
Let us consider Kolmogorov type inequalities of the form () with the term ‖f (k)‖Lq(G)

being replaced by ‖Dk
–f ‖Lq(G) in the left hand side:

∥∥Dk
–f

∥∥
Lq(G)

≤ K‖f ‖μ

Lp(G)
∥∥f (r)∥∥λ

Ls(G)
, f ∈ Lrp,s(G). ()

Similarly to inequalities () for derivatives of integer order, it is easy to see that the constant
K in () is finite only if parameters λ and μ satisfy equalities ().
Together with the Riemann-Liouville and the Marchaud fractional derivatives, Kol-

mogorov type inequalities were also studied [, , ] for other fractional derivatives,
e.g. the Riesz fractional derivative, the Weyl fractional derivative, etc. To the best of our
knowledge, the sharp constant in inequality () was found in the following situations:
. G =R, p = q = s =∞, r = , and k ∈ (, ), - Geı̆sberg [];
. G =R+, p = q = s =∞, r = , and k ∈ (, ) \ {}, - Arestov [] (for Dk±);
. G =R+, p = q = s =∞,  < k ≤ , and k < r ≤ , - Arestov [] (for Dk±);
. G =R or G =R+, p = s = , q =∞, k < r, - Buslaev and Tihomirov [] (for the Weyl

derivative);
. G =R or G =R+, p = q =∞, ≤ s≤ ∞, r = , k ∈ (,  – /s), - Babenko and

Churilova [];
. G =R, p = q =∞, ≤ s ≤ ∞, r = , , k ∈ (, r – /s) \ {}, - Babenko and

Parfinovych [] and Babenko, Parfinovych and Pichugov [] (for the Riesz
derivative).

Here we establish sufficient conditions which allow writing sharp Kolmogorov type in-
equalities. Specifically, we focus on inequalities between the uniform norms of the func-
tion and its derivatives; the uniform norms of the function and its intermediate derivative
and the norm of its higher-order derivative in the ideal lattice; the norms of the function
and its derivatives in the ideal lattice. As a consequence in Section  we obtain several new
sharp Kolmogorov type inequalities in the following cases:
. G =R or G =R+, p = q =∞, r = , and k ∈ (, ), the norm of f ′ is considered in an

ideal lattice;
. G =R, p = q = s = , r = , and k ∈ (, );
. G =R+, p = q =∞, r = , and k ∈ (, ), the norm of f ′′ is considered in an ideal

lattice;

http://www.journalofinequalitiesandapplications.com/content/2014/1/504
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. G =R, p = q =∞, ≤ s≤ ∞, r = , and k ∈ (, );
. G =R or G =R+, p = q =∞, ≤ s≤ ∞, r = , and k ∈ (,  – /s).

1.2 The Stechkin problem
The problem of the best approximation of unbounded operators by linear bounded ones
is close to the problem of finding sharp constants in inequalities (), () and, furthermore,
presents an independent interest.We follow [] (see also surveys [, ]) to set the problem
rigorously.
Let X and Y be the Banach spaces; A : X → Y be an operator (not necessarily linear)

with domain of definition DA ⊂ X; Q⊂DA be some set. The function

�(δ) = �(δ,A,Q) := sup
{‖Af ‖Y : f ∈ Q,‖f ‖X ≤ δ

}
, δ ≥ , ()

is called the modulus of continuity of the operator A on the set Q.
By L = L(X,Y ) we denote the space of all linear bounded operators S : X → Y . The

error of approximation of the operator A by linear bounded operator S ∈L on the set Q is
defined by

U(A,S;Q) := sup
x∈Q

‖Ax – Sx‖Y .

For N > , we set

EN (A;Q) := inf
S∈L,‖S‖≤N

U(A,S;Q). ()

The Stechkin problem on the best approximation of the operator A by linear bounded
operators on set Q consists in evaluating quantity () and finding extremal operators (if
any exists) delivering an infimum in the right hand part of ().
Now, we let

�(δ,A;Q) := inf
N≥

(
EN (A;Q) +Nδ

)
.

The following theorem by Stechkin [] (see also [, ]) provides a simple but nevertheless
effective lower estimate of quantity () in terms of the modulus of continuity �.

Theorem A If A is a homogeneous (in particular, linear) operator, Q ⊂ DA is centrally
symmetric convex set, then, for every N ≥  and δ ≥ ,

EN (A;Q) ≥ sup
δ≥

{
�(δ,A;Q) –Nδ

}
= sup

x∈Q

{‖Ax‖Y –N‖x‖X
}
, ()

�(δ,A;Q) ≤ �(δ,A;Q).

Furthermore, if there exists a pair of element x ∈Q and operator S ∈L such that

‖Ax‖Y =U(A,S;Q) + ‖S‖ · ‖x‖X ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/504
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then �(‖x‖X ,A;Q) = ‖Ax‖Y and

E‖S‖(A;Q) =U(A,S;Q) = ‖Ax‖Y – ‖S‖ · ‖x‖X .

Consequently, the operator S is extremal in problem () for N = ‖S‖, and the element x
in problem () for δ = ‖x‖X .

We refer the reader to [, ] for a survey of other known results on the Stechkin problem
and a discussion of related questions.
In the particular case when G =R or G =R+, X = Lp(G), Y = L∞(G), A =Dk

–, and

Q =Wr
p,s(G) :=

{
f ∈ Lrp,s(G) :

∥∥f (r)∥∥Ls(G)
≤ 

}
,

for every δ ≥ , we have

�
(
δ,Dk

–;W
r
p,s(G)

)
= K · δ–λ, λ =

k + /p
r – /s + /p

,

where K = �(,Dk
–;Wr

p,s(G)) is the sharp constant in inequality () with q = ∞. From the
result of Gabushin [, Lemma ] it can easily be shown that estimate () is sharp when
Y = L∞(G). Hence, for every N ≥ ,

EN
(
Dk

–;W
r
p,s(G)

)
= sup

δ≥

{
Kδ–λ –Nδ

}
= λ( – λ)


λ
–K


λN – 

λ .

Therefore, in all cases when the sharp constant K in inequality () for q = ∞ is found, we
immediately know the exact value of the quantity of the best approximation of the operator
Dk

– by linear bounded operators on the classWr
p,s(G).

1.3 The problem of optimal recovery of operators on elements given with an
error

Another problem that is closely related to the Stechkin problem and sharp Kolmogorov
type inequalities is the problem of optimal recovery of an operator with the help of the set
of linear operators (or mappings in general) on elements of some set that are given with
an error. We follow [] to set the problem rigorously.
Let X and Y be the Banach spaces; A : X → Y be an operator (not necessarily linear)

with domain of definition DA ⊂Q; Q⊂ DA be some set. By R we denote either the set L

of all linear operators acting from X to Y , or the set of all mappings O from X to Y . For
an arbitrary δ ≥  and S ∈ R , we set

Uδ(A,S;Q) := sup
{‖Af – Sf ‖Y : f ∈ Q, g ∈ X,‖f – g‖X ≤ δ

}
.

It is clear thatU(A,S;Q) =U(A,S;Q). The problem of optimal recovery of the operator A
with the help of the set of operatorsR on elements of the setQwith given error δ consists
in finding the quantity

Eδ(R,A;Q) := inf
S∈R

Uδ(A,S;Q),

http://www.journalofinequalitiesandapplications.com/content/2014/1/504


Babenko et al. Journal of Inequalities and Applications 2014, 2014:504 Page 6 of 29
http://www.journalofinequalitiesandapplications.com/content/2014/1/504

called the best recovery of the operatorAwith the help ofmappings fromR on elementsQ
givenwith prescribed error δ. The detailed survey of existing results and further references
can be found, for instance, in []. The following statement is a corollary of the result by
Arestov [, Theorem .] that indicates the close relations between this problem and the
Stechkin problem.

Theorem B If A is a homogeneous (in particular, linear) operator, Q ⊂ DA is a centrally
symmetric convex set, then, for every N ≥  and δ ≥ ,

�(δ,A;Q) ≤ Eδ(O ,A;Q) ≤ Eδ(L ,A;Q) ≤ �(δ,A;Q).

Moreover, if there exist an element x ∈ Q and an operator S ∈L(X,Y ) satisfying () from
Theorem A then for δ = ‖x‖X ,

‖Ax‖Y =�(δ,A;Q) = Eδ(O ,A;Q) = Eδ(L ,A;Q).

Similarly to the Stechkin problem, in the case G = R or G = R+, X = Lp(G), and Y =
L∞(G), for every δ > , we have

Eδ

(
O ,Dk

–;W
r
p,s(G)

)
= Eδ

(
L ,Dk

–;W
r
p,s(G)

)
=�

(
δ,Dk

–;W
r
p,s(G)

)
.

So once the sharp constant in inequality () is found, we immediately know the value of
the error of optimal recovery of the operator Dk

– by operators from O (or L ) on elements
of the classWr

p,s(G) given with error δ.

1.4 Organization of the paper
The paper is organized in the following way. Section  is devoted to auxiliary results con-
cerning properties of the Marchaud fractional derivatives: existence, continuity, and in-
tegral representation in terms of the higher-order function derivative. Then we establish
some sufficient conditions when sharp Kolmogorov type inequalities () can be written
and derive some consequences from these conditions for r = ,  in Section . Finally, in
Section  we present applications of the main results: the Kolmogorov problem for three
numbers consisting in finding necessary and sufficient conditions on the triple of real pos-
itive numbers that guarantee the existence of a function attaining these numbers as the
norms of its three consecutive derivatives, and sharp Kolmogorov type inequalities for the
weighted norms of the Hadamard fractional derivatives.

2 Auxiliary results
In this section we formulate auxiliary propositions on the existence and continuity of the
Marchaud fractional derivative and its integral representation in terms of the higher-order
derivative. These and similar questions were studied by many mathematicians. For an
overview of known results we refer the reader to the books [, ] and references therein.

2.1 Definitions and results
Let G = R or G = R+. By S(G) we denote the space of measurable functions f : G → R.
The linear space E ⊂ S(G) endowed with the norm ‖ · ‖E is called the ideal lattice on G

http://www.journalofinequalitiesandapplications.com/content/2014/1/504
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(see [, Chapter , Section ]) if, for every f ∈ E and g ∈ S(G) such that |g(x)| ≤ |f (x)|
a.e. on G, it follows that g ∈ E and ‖g‖E ≤ ‖f ‖E . The set A(E) ⊂ G is called the support of
the ideal lattice E if f (x) =  for every f ∈ E and x /∈ A(E). By E we denote the associated
space to E (see [, Chapter , Section ]), i.e. the space of the functions g ∈ S(G) such
that supp g ⊂ A(E) and

‖g‖E := sup
f∈E,

‖f ‖E≤

∫
G
f (x)g(x)dx < ∞.

It is clear that E is the ideal lattice on G and is a subspace in the space dual to E. Ideal
lattices generalize many important spaces e.g. spaces Lp(G),  ≤ p ≤ ∞, the Orlicz spaces
[], the Lorentz spaces [], the Marcinkiewicz spaces [], etc.
In what followswewould also say that an ideal lattice E is semi shift invariant if, for every

f ∈ E and x ∈G, we have f (· + x) ∈ E and either ‖f (· + x)‖E = ‖f ‖E if G =R or ‖f (· + x)‖E ≤
‖f ‖E if G =R+.
Let r ∈ N, k ∈ (, r) \N, and F let be an ideal lattice. By Lr∞,E(G) and LrF ,E(G) we denote

the spaces of the functions f ∈ L∞(G) and f ∈ F , respectively, such that f (r–) is locally
absolutely continuous on G and f (r) ∈ E. In addition, let χB stand for the characteristic
(indicator) function of a measurable set B⊂ R.

Proposition  Let G =R or G =R+, r ∈N, k ∈ (, r) \N, E be a semi shift-invariant lattice
on G such that

(·)r–k–χ(,)(·) ∈ E ()

and

lim
h→+

∥∥(·)r––kχ(,h)(·)
∥∥
E = , ()

where E is the associated space to E. Then Dk
–f exists and is continuous on G, for every

function f ∈ Lr∞,E(G).

Proposition  Let G =R or G =R+, r ∈N, k ∈ (, r) \N, E be a semi shift-invariant lattice
on G satisfying condition (). Then, for every f ∈ Lr∞,E(G),

Dk
–f (·) =

(–)r

�(r – k)

∫ +∞


tr––kf (r)(· + t)du. ()

Proposition  Let G =R or G =R+, r ∈ N, k ∈ (, r) \N, E be a semi-shift invariant lattice
on G satisfying condition () and F be a semi-shift invariant lattice on G such that χ(,) ∈
F. Then Dk

–f (x) exists, for every f ∈ LrF ,E and x ∈G, and the integral representation () for
Dk

–f holds true.

In particular, when E = Ls(G), ≤ s ≤ ∞, both conditions () and () are equivalent to
the inequality k < r – /s. So the following corollaries hold true.

Proposition  Let G =R or G =R+, r ∈N, ≤ p, s ≤ ∞, and k ∈ (, r – /s) \N. Then, for
every f ∈ Lrp,s(G), Dk

–f exists and is continuous on G, and () holds true.

http://www.journalofinequalitiesandapplications.com/content/2014/1/504
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Proposition  Let G = R or G = R+, r ∈ N,  ≤ s ≤ ∞, and k ∈ (, r) \ N. Then Dk
–f (x)

exists, for every f ∈ Lrs,s(G) and x ∈G, and () holds true.

2.2 The proofs of auxiliary results
For the sake of completeness, we prove Propositions -. Preliminarily, we recall the defi-
nition of the B-splines and some of their properties (see, e.g., [, Section .]). The first-
order B-spline N is the function χ(,). For r ≥ , the r-order B-spline Nr is defined by

Nr(x) =
∫
R

Nr–(x – t)N(t)dt =
∫ 


Nr–(x – t)dt, x ∈R.

It is well known thatNr is continuous and positive on (, r) function, compactly supported
on [, r]. Moreover (see Theorem . in []), for every r-times differentiable function
f :G →R and every t > ,

(
�r

–t f
)
(x) = (–)rtr

∫ r


Nr(u)f (r)(x + ut)du, x ∈G. ()

Proof of Proposition  Let a function f ∈ Lr∞,E(G) and a point x ∈ G be arbitrary. We ob-
serve that |(�r

–t f )(x)| ≤ r‖f ‖L∞(G), for every t > . Hence, by definition (), for every h > ,
we have

κ(k, r)
∣∣Dk

–f (x)
∣∣ = ∣∣∣∣∫ +∞



(�r
–t f )(x)
t+k

dt
∣∣∣∣

≤
∣∣∣∣∫ h



(�r
–t f )(x)
t+k

dt
∣∣∣∣ + ∣∣∣∣∫ +∞

h

(�r
–t f )(x)
t+k

dt
∣∣∣∣

≤
∣∣∣∣∫ h



(�r
–t f )(x)
t+k

dt
∣∣∣∣ + r‖f ‖L∞(G)

khk
. ()

Using (), changing variables, altering the order of integration and applying the Hölder
inequality we obtain∣∣∣∣∫ h



(�r
–t f )(x)
t+k

dt
∣∣∣∣ = ∣∣∣∣∫ h



∫ r



Nr(u)f (r)(x + ut)
tk+–r

dudt
∣∣∣∣

=
∣∣∣∣∫ h



∫ rt



Nr(v/t)f (r)(x + v)
tk+–r

dvdt
∣∣∣∣

=
∣∣∣∣∫ rh


f (r)(x + v)

∫ h

v/r

Nr(v/t)
tk+–r

dt dv
∣∣∣∣

≤ ∥∥f (r)∥∥E ·
∥∥∥∥χ(,rh)(·)

∫ h

(·)/r
Nr((·)/t)
tk+–r

dt
∥∥∥∥
E
.

It is easy to show that Nr(x)≤ xr–, for every x ∈ [, r]. Hence, for every v ∈ (, rh),∫ h

v/r

Nr(v/t)
tk+–r

dt ≤ vr–
∫ h

v/r

dt
tk+

≤ vr–k–

krk
.

From the latter and estimate () we conclude that

κ(k, r)
∣∣Dk

–f (x)
∣∣ ≤ r‖f ‖L∞(G)

khk
+

‖(·)r––kχ(,rh)(·)‖E · ‖f (r)‖E
krk

,

http://www.journalofinequalitiesandapplications.com/content/2014/1/504
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which proves the existence and uniform boundedness of derivative Dk
–f (x) at an arbitrary

point x ∈G.
Now, we turn to the proof of continuity of Dk

–f on G. Let x ∈ G be an arbitrary point.
For every ε > , there exist numbers h >  and H >  such that

‖(·)r–k–χ(,rh)(·)‖E · ‖f (r)‖E
krkκ(k, r)

<
ε


and

r+‖f ‖L∞(G)

kHkκ(k, r)
<

ε


.

The function f is continuous onG and is uniformly continuous on [h/, rH + rh/]. Hence,
there exists δ ∈ (,h/) such that, for every y′, y′′ ∈ [h/, rH + rh/], |y′ – y′′| < δ, we have
|f (y′)– f (y′′)| < –rkhk|κ(k, r)|ε. Then using similar arguments to the proof of the existence
of Dk

–f , we see that, for every x, y ∈ G, |x – y| < δ, for the function g(t) = f (x + t) – f (y + t)
we have

∣∣Dk
–f (x) –Dk

–f (y)
∣∣

≤ 
κ(k, r)

∣∣∣∣∫ +∞



(�r
–tg)()
t+k

dt
∣∣∣∣

≤ 
κ(k, r)

(∣∣∣∣∫ h



(�r
–tg)()
t+k

dt
∣∣∣∣ + ∣∣∣∣∫ H

h

(�r
–tg)()
t+k

dt
∣∣∣∣ + ∣∣∣∣∫ +∞

H

(�r
–tg)()
t+k

dt
∣∣∣∣)

≤ ‖g(r)‖E · ‖(·)r–k–χ(,rh)(·)‖E
krkκ(k, r)

+
r‖g‖L∞([h,rH])

khkκ(k, r)
+
r‖g‖L∞(G)

kHkκ(k, r)

≤ ‖f (r)‖E · ‖(·)r–k–χ(,rh)(·)‖E
krkκ(k, r)

+
r‖f (x + ·) – f (y + ·)‖L∞([h,rH])

khkκ(k, r)

+
r+‖f ‖L∞(G)

kHkκ(k, r)
<

ε


+

ε


+

ε


= ε.

Therefore, the Dk
–f is continuous on G. �

Remark  During the proof of Proposition  we have established the Kolmogorov type
inequality between the uniform norm of fractional derivative of the function, the function
itself and the norm of its higher-order derivative in the ideal lattice:

∥∥Dk
–f

∥∥
L∞(G) ≤

r‖f ‖L∞(G)

khkκ(k, r)
+

∥∥∥∥χ(,rh)(·)
∫ h

(·)/r
Nr((·)/t)
tk+–r

dt
∥∥∥∥
E

· ∥∥f (r)∥∥E .

Proof of Proposition  First we note that

∫ r



Nr(u)
ur–k

du =
(–)r

k(k – ) · · · (k – r + )
(
�r

–(·)k
)
()

=
(–)r

k(k – ) · · · (k – r + )

r∑
m=

(–)m
(
r
m

)
mk

=
κ(k, r)

�(–k)(–k)(–k + ) · · · (–k + r – )
=

κ(k, r)
�(r – k)

.
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Let f ∈ Lr∞,E(G) and x ∈G. The derivative Dk
–f (x) exists due to Proposition . Altering the

order of integration and applying the Tonelli theorem we obtain

Dk
–f (x) =

(–)r

κ(k, r)

∫ +∞



∫ r


tr––kNr(u)f (r)(x + ut)dudt

=
(–)r

κ(k, r)

∫ +∞


wr–k–f (r)(x +w)

(∫ r



Nr(u)
ur–k

du
)
dw

=
(–)r

�(r – k)

∫ +∞


wr––kf (r)(x +w)dw,

which finishes the proof. �

Proof of Proposition  Let f ∈ LrF ,E(G) and x ∈G. Using the same arguments as in the proof
of Proposition  we can prove that the first of two integrals

∫ 



(�r
–t f )(x)
t+k

dt and
∫ +∞



(�r
–t f )(x)
t+k

dt

is convergent. Hence, it is sufficient to prove the convergence of the second integral. The
latter is obvious because∣∣∣∣∫ +∞



(�r
–t f )(x)
t+k

dt
∣∣∣∣ ≤

r∑
m=

(
r
m

)∫ +∞



|f (x +mt)|
t+k

dt

=
|f (x)|
k

+
r∑

m=

mk
(
r
m

)∫ +∞

m

|f (x + u)|
u+k

du

≤ |f (x)|
k

+
r∑

m=

mk
(
r
m

)
‖f ‖E · ∥∥(·)––kχ(m,+∞)(·)

∥∥
F ,

and, form = , , . . . , r,

∥∥(·)––kχ(m,+∞)(·)
∥∥
F ≤

∞∑
j=m

‖χ(,)‖F
jk+

<
m + k
mk+k

‖χ(,)‖F .

Hence, Dk
–f (x) exists, for every x ∈ G. Finally, we remark that equality () immediately

holds true if Dk
–f (x) exists. The proof is finished. �

3 Main results
Let us present results on some general sufficient conditions allowing one to write a sharp
Kolmogorov type inequality in various situations. We start with the Kolmogorov type in-
equality between the uniform norms of the Marchaud fractional derivative of a function,
the function itself and its higher-order derivative. In Section . we extend this result on
the case of inequalities between the norms of the function and its derivatives in an ideal
lattice. Then in Section . we give another extension of results of Section . on the case
of inequalities between the uniformnorms of theMarchaud fractional derivative of a func-
tion, the uniform norm of the function itself, and the norm of the higher-order derivative
in an ideal lattice.
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The idea used to prove main results of the paper consists in approximating fractional
differentiation operator with the help of linear bounded operators. More precisely, letG =
R or G = R+, X, Y , Z be the linear normed spaces of measurable on G functions f : G →
R, L �= ∅ be the space of the functions f ∈ X having locally absolutely continuous on G
derivative of order (r – ), and such that f (r) ∈ Z. Let also T : X → Y and R : Z → Y be
linear bounded operators such that, for every f ∈ L,Dk

–f = Tf +Rf (r). Then, for every f ∈ L,

∥∥Dk
–f

∥∥
Y ≤ ‖Tf ‖Y +

∥∥Rf (r)∥∥Y ≤ ‖T‖X→Y‖f ‖X + ‖R‖Z→Y
∥∥f (r)∥∥Z ,

which is an additive form of the Kolmogorov type inequality (). If for some operators T
and R there exists a function f ∈W turning the above inequality into an equality then the
corresponding Kolmogorov type inequality is sharp.
We remark that this idea is not new and is already contained in [] by Stechkin. Besides,

some similar ideas were even in the papers by Landau and Hadamard. The corresponding
operators T and R as well as the extremal function f were found in many cases (see [–
], and surveys [, , ] for more details).
Let G = R or G = R+. By V (G) we denote the space of the functions f ∈ L(G) with

bounded on G variation. Also, we set x+ := max{x; }, for every x ∈ G, and for f ∈ L(G)
andm ∈N, we denote by f [m] themth-order integral of the function f :

f [m](x) :=


(m – )!

∫
G
(x – t)m–

+ f (t)dt, x ∈G.

Finally, for τ > , we define the functionRτ :G →R as follows:

Rτ (x) =

{
xτ–

�(τ ) , x > ,
, x ≤ .

3.1 The Kolmogorov type inequalities for the Marchaud fractional derivatives:
case of uniform norms

The following results hold true.

Theorem  Let G = R+ or G = R, r ∈ N, k ∈ (, r) \ N, and a function � ∈ V (G) be such
that (Rr–k –�[r–]) ∈ L(G) and, for every f ∈ Lr∞,∞(G),

Dk
–f () –

∫
G
f (x)d�(x) = (–)r

∫
G

(
Rr–k(x) –�[r–](x)

)
f (r)(x)dx. ()

Then, for every f ∈ Lr∞,∞(G) and h > , we have the inequality

∥∥Dk
–f

∥∥
L∞(G) ≤ h–k

∨
G

� · ‖f ‖L∞(G)

+ hr–k
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥f (r)∥∥L∞(G). ()

Furthermore, if a function � ∈ Wr∞,∞(G) satisfies the equalities

∫
G

�(t)d�(t) =
∨
G

� · ‖�‖L∞(G) ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/504
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and

(–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
�(r)(x)dx =

∥∥Rr–k –�[r–]∥∥
L(G)

()

then () is sharp and the function �h(·) := �((·)/h) turns () into an equality.

Minimizing the right hand part of () by h we obtain the next consequence.

Corollary  Let G = R+ or G = R, r ∈ N, k ∈ (, r) \ N, and assume that the functions �

and � satisfy assumptions of Theorem . Then, for every f ∈ Lr∞,∞(G), the following sharp
inequality holds true:

∥∥Dk
–f

∥∥
L∞(G) ≤

‖Dk
–�‖L∞(G)

‖�‖–k/rL∞(G)
‖f ‖–k/rL∞(G)

∥∥f (r)∥∥k/r
L∞(G). ()

We remark that the following results on sharp inequalities of the form () concretize
Corollary .
. For G =R, r = , and k ∈ (, ), the extremal function � in inequality () and the

corresponding function � that satisfy the conditions of Corollary  were found by
Geı̆sberg [] and Arestov [], respectively:

�(x) :=

⎧⎪⎨⎪⎩
, x≤ ,


�(–k) , x ∈ (, ),
x–k

�(–k) , x≥ ,
�(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
–(+p)

 , x ≤ –p,
(x+p)–(+p)

 , x ∈ [–p, –p ],
(+p)–(–x)

 , x ∈ [ –p , ],
(+p)

 , x ≥ ,

where p =  – k/(–k).
. For G =R+, r = , and k ∈ (, ), the extremal function �, and the corresponding

function � that satisfy the conditions of Corollary  were found by Arestov [,
Theorem ]:

�(x) :=

⎧⎪⎨⎪⎩
, x = ,


�(–k) , x ∈ (, ),
x–k

�(–k) , x≥ ,
�(x) :=

{

 – x + x

 , x ∈ [, ],
– 

 , x ≥ .

. For G =R+, r = , and k ∈ (, ), the extremal function � and the corresponding
function � that satisfy the conditions of Corollary  were also found by Arestov [,
p.]:

�(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, x = ,
–(k+)/

�(–k) , x ∈ (,
√
 – ],

k/–
√


�(–k)(
√
–) , x ∈ (

√
 – , ),

x–k
�(–k) , x≥ ,

�(x) :=

⎧⎪⎪⎨⎪⎪⎩
–

√
–(

√
–)x+x

 , x ∈ [, √
 ],

–
√
+x–x
 , x ∈ ( √

 , ),
–

√


 , x ≥ .
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For integer values of k, the extremal function � on R in inequality () was found by
Kolmogorov [] (see also []), for every r = , , . . . . In the surveys [, , ] the reader
could find more references and a detailed history of the subject and overview of cases
when the extremal function � in inequality () on R+ is known.
In addition, for integer values of k, the function � on R+ for which inequality () is

sharp was explicitly constructed by Stechkin [] in the case r = , . In the caseG =R the
existence of such a function�was proved by Domar [] and explicitly it was constructed
by Stechkin [] for r = , , Arestov [] for r = , , and Buslaev [] for r > .

Proof of Theorem  First, we let h =  and define the linear operator T : L∞(G) → L∞(G)
as follows:

Tg(·) :=
∫
G
g(· + t)d�(t), g ∈ L∞(G).

Clearly, T is bounded and ‖T‖ =∨
G �. Next, let a function f ∈ Lr∞,∞(G) and a point x ∈ G

be arbitrary. Then from Proposition  and () we deduce

∣∣Dk
–f (x)

∣∣ = ∣∣∣∣Tf (x) +(
(–)r

∫
G
Rr–k(t)f (r)(x + t)dt – Tf (x)

)∣∣∣∣
≤ ∣∣Tf (x)∣∣ + ∣∣∣∣(–)r ∫

G

(
Rr–k(t) –�[r–](t)

)
f (r)(x + t)dt

∣∣∣∣
≤

∨
G

� · ‖f ‖L∞(G) +
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥f (r)∥∥L∞(G),

which implies the desired inequality () in the case h = :

∥∥Dk
–f

∥∥
L∞(G) ≤

∨
G

� · ‖f ‖L∞(G) +
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥f (r)∥∥L∞(G). ()

Next, we assume that there exists a function � ∈ Wr∞,∞(G) satisfying equalities ()
and (). Due to Proposition  the derivative Dk

–� is continuous on G. Hence, taking into
account equalities () and () we have

∥∥Dk
–�

∥∥
L∞(G) ≥ ∣∣Dk

–�()
∣∣

=
∣∣∣∣∫

G
�(x)d�(x) + (–)r

∫
G

(
Rr–k(x) –�[r–](x)

)
�(r)(x)dx

∣∣∣∣
≥

∨
G

� · ‖�‖L∞(G) +
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥�(r)∥∥

L∞(G).

Therefore, the statement of the theorem is proved in the case h = .
Now, we let h >  and f ∈ Lr∞,∞(G) be arbitrary, and consider the function fh(x) := f (x/h),

x ∈ G. Evidently, fh ∈ Lr∞,∞(G) and by substituting fh into () we derive inequality ().
Clearly, �h turns () into an equality. �
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3.2 The Kolmogorov type inequalities for the Marchaud fractional derivatives:
case of norms in an ideal lattice

Let us generalize Theorem  to the case of Kolmogorov type inequalities between the
norms of the Marchaud fractional derivative of a function, the function itself, and its
higher-order derivative in an ideal lattice.

Theorem  Let G = R or G = R+, E be a semi shift-invariant lattice on G, r ∈ N, and
k ∈ (, r) \N. Let also � ∈ V (G) be such that (Rr–k –�[r–]) ∈ L(G) and () hold true, for
every f ∈ LrE,E(G). Then, for every f ∈ LrE,E(G),∥∥Dk

–f
∥∥
E ≤

∨
G

� · ‖f ‖E +
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥f (r)∥∥E .

An immediate consequence of Theorem  is the following.

Corollary  Let G =R or G =R+,  ≤ s ≤ ∞, r ∈ N, and k ∈ (, r) \N. Let also a function
� ∈ V (G) be such that (Rr–k – �[r–]) ∈ L(G) and () holds true, for every f ∈ Lrs,s(G).
Then, for every f ∈ Lrs,s(G) and h > ,

∥∥Dk
–f

∥∥
Ls(G)

≤ h–k
∨
G

� · ‖f ‖Ls(G) + hr–k
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥f (r)∥∥Ls(G)

.

Moreover, if a function � ∈Wr∞,∞(G) satisfies () and () then, for f ∈ Lrs,s(G),

∥∥Dk
–f

∥∥
Ls(G)

≤ ‖Dk
–�‖L∞(G)

‖�‖–k/rL∞(G)
‖f ‖–k/rLs(G)

∥∥f (r)∥∥k/r
Ls(G)

. ()

Evidently, inequality () is sharp for s = ∞. In Section . we shall show that this in-
equality is also sharp when s = , r = , and G = R. For integer values of k and G = R,
inequality () is known as the Stein inequality [] (see also [, ]).

Proof of Theorem  Using Proposition  and the generalized Minkowskii inequality (see
[]), for every function f ∈ LrE,E(G), we have

∥∥Dk
–f

∥∥
E ≤

∥∥∥∥∫
G
f (x)d�(x)

∥∥∥∥
E
+

∥∥∥∥∫
G

(
Rr–k(x) –�[r–](x)

)
f (r)(x)dx

∥∥∥∥
E

≤
∨
G

� · ‖f ‖E +
∥∥Rr–k –�[r–]∥∥

L(G)
· ∥∥f (r)∥∥E .

The proof is finished. �

3.3 The Kolmogorov type inequalities for the Marchaud fractional derivatives:
case when the norm of the higher-order derivative is considered in an ideal
lattice

In this subsection we generalize the results of Section . on the case when the norm of the
higher-order derivative is taken in an ideal lattice. For convenience, we split the subsection
into two parts: first we present results concerning the case when extremal function in the
Kolmogorov type inequality (i.e. turning it into an equality) exists and then we present
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results concerning the case when the extremal function in the Kolmogorov type inequality
does not exist. For integral-order derivatives, the existence of an extremal function in the
Kolmogorov type inequalities () was proved in the case when  ≤ p,q ≤ ∞,  < s ≤ ∞,
and inequality () is strict. For the corresponding results, we refer the reader to [, ,
].

.. Case of existence of extremal function in the Kolmogorov type inequality
For an ideal lattice E on G and r ∈N, we set

Wr
∞,E(G) =

{
f ∈ Lr∞,E(G) :

∥∥f (r)∥∥E ≤ 
}
.

Theorem  Let G = R+ or G = R, r ∈ N, k ∈ (, r) \ N, E be an ideal semi shift-invariant
lattice on G satisfying conditions () and (), and E be the associated space to E. Also,
let a function � ∈ V (G) be such that (Rr–k – �[r–]) ∈ E and () hold true, for every f ∈
Lr∞,E(G). Then, for every f ∈ Lr∞,E(G),∥∥Dk

–f
∥∥
L∞(G) ≤

∨
G

� · ‖f ‖L∞(G) +
∥∥Rr–k –�[r–]∥∥

E · ∥∥f (r)∥∥E . ()

Furthermore, if a function � ∈ Wr∞,E(G) satisfies equalities () and

(–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
�(r)(x)dx =

∥∥Rr–k –�[r–]∥∥
E , ()

then inequality () is sharp and � turns () into an equality.

We remark that Theorem  can be generalized as follows.

Theorem  Let G =R or G =R+, r ∈N, k ∈ (, r)\N, E be a semi-shift invariant lattice on
G that satisfy conditions (), E be the associated space to E, F be an ideal lattice such that
its associated space F contains the function χ(,). Let also a locally absolutely continuous
function � ∈ V (G) on G be such that (Rr–k – �[r–]) ∈ E and () holds true, for every
f ∈ LrF ,E(G). Then, for every f ∈ LrF ,E(G),∥∥Dk

–f
∥∥
L∞(G) ≤

∥∥�′∥∥
F · ‖f ‖F +

∥∥Rr–k –�[r–]∥∥
E · ∥∥f (r)∥∥E .

For the spaces Ls(G),  < s≤ ∞, we obtain the following consequence.

Corollary  Let G = R or G = R+,  < s ≤ ∞, s′ = s/(s – ), r ∈ N, and k ∈ (, r – /s) \ N.
Let also a function � ∈ V (G) be such that (Rr–k – �[r–]) ∈ Ls′ (G) and () holds true, for
every f ∈ Lr∞,s(G). If a function � ∈Wr∞,s(G) satisfies equality () and the relation

(–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
�(r)(x)dx =

∥∥Rr–k –�[r–]∥∥
Ls′ (G)

then, for every f ∈ Lr∞,s(G) and h > , the sharp inequalities

∥∥Dk
–f

∥∥
L∞(G) ≤ h–k

∨
G

� · ‖f ‖L∞(G)

+ hr–k–/s
∥∥Rr–k –�[r–]∥∥

Ls′ (G)
· ∥∥f (r)∥∥Ls(G)

()
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and

∥∥Dk
–f

∥∥
L∞(G) ≤

‖Dk
–�‖L∞(G)

‖�‖–λ
L∞(G)

‖f ‖–λ
L∞(G)

∥∥f (r)∥∥λ

Ls(G)
, λ =

k
r – /s

, ()

hold true.Moreover, the function �h(·) := hr–/s�((·)/h) turns () and () into equalities.

We remark that Theorems .. and .. [] are concretizations of Corollary . In
addition, in the case of integer values of k and r = ,  and  < s < ∞, the functions � and
� satisfying conditions of Corollary  were explicitly constructed by Arestov in [].

Proof of Theorem  The proof is similar to the proof of Theorem  in the case h = . The
difference is that for a function f ∈ Lr∞,E(G) and x ∈G, we need to use the inequality

∣∣∣∣∫
G

(
Rr–k(t) –�[r–](t)

)
f (r)(x + t)dt

∣∣∣∣
≤ ∥∥Rr–k –�[r–]∥∥

E · ∥∥f (r)(x + ·)∥∥E ≤ ∥∥Rr–k –�[r–]∥∥
E · ∥∥f (r)∥∥E .

The extremity of the function � can be proved in a similar way to Theorem . �

Proof of Corollary  For every h > , we observe that the functions �h(x) := h–k�(x/h),
x ∈G, and �h satisfy conditions (), (), and (). Moreover,

∨
G

�h = h–k
∨
G

�,
∥∥Rr–k –�

[r–]
h

∥∥
Ls′ (G)

= hr–k–/s
∥∥Rr–k –�[r–]∥∥

Ls′ (G)
.

Hence, by Theorem  the desired inequality () holds true and the function�h turns ()
into an equality. Finally, minimizing the right hand part of () by the variable h, we arrive
at inequality (). The proof is finished. �

.. Case of non-existence of extremal function in the Kolmogorov type inequality
Let us present two results showing when conditions () and () can be relaxed.

Theorem  Let G =R+ or G =R, and numbers k, r, an ideal semi shift-invariant lattice E
on G and a function � ∈ V (G) satisfy assumptions of Theorem . Also, assume that there
is a family of the functions {�ε}ε> ⊂ Wr

∞,E(G) satisfying the equality () and, for ε > ,
the inequality

(–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
�(r)

ε (x)dx >
∥∥Rr–k –�[r–]∥∥

E – ε. ()

Then inequality () holds true and is sharp in the sense that, for every sufficiently small
ε > , there exists a function fε ∈ Lr∞,E(G) such that

∥∥Dk
–fε

∥∥
L∞(G) >

∨
G

� · ‖fε‖L∞(G) +
(∥∥Rr–k –�[r–]∥∥

E – ε
) · ∥∥f (r)ε

∥∥
E .
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Theorem  Let G = R+ or G = R, r ∈ N, k ∈ (, r – ) \ N, E be an ideal semi shift-
invariant lattice on G such that lim infh→+(h–‖χ(,h)‖E) =: μ ∈ (, +∞). Also, let a func-
tion � ∈ V (G) be such that (Rr–k –�[r–]) ∈ E and () holds true, for every f ∈ Lr∞,E(G).
Assume that there exists a function � ∈ L∞(G) such that its derivative �(r–) is piecewise
constant on G,

∨
G �(r–) = μ–, there exists h >  such that the distance between each pair

of discontinuity points of �(r–) is bounded below by h, and equalities () and

(–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
d�(r–)(x) =

∥∥Rr–k –�[r–]∥∥
E

are valid. Then inequality () holds true and is sharp.

In the case E = L(G) we obtain the following.

Corollary  Let G = R or G = R+, r ∈ N and k ∈ (, r – ) \ N. Let also a function � ∈
V (G) be such that (Rr–k – �[r–]) ∈ L∞(G) and () holds true, for every f ∈ Lr∞,(G). If
an (r – )-times differentiable function � with piecewise constant derivative �(r–) satisfies
equalities (),

∨
G �(r–) = , there exists h >  such that the distance between each pair

of discontinuity points of �(r–) is bounded below by h, and

(–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
d�(r–)(x) =

∥∥Rr–k –�[r–]∥∥
L∞(G)

then, for every f ∈ Lr∞,(G) and h > , the sharp inequalities∥∥Dk
–f

∥∥
L∞(G) ≤ h–k

∨
G

� · ‖f ‖L∞(G) + hr–k–
∥∥Rr–k –�[r–]∥∥

L∞(G) ·
∥∥f (r)∥∥L(G)

and ∥∥Dk
–f

∥∥
L∞(G) ≤

‖Dk
–�‖L∞(G)

‖�‖–λ
L∞(G)

‖f ‖–λ
L∞(G)

∥∥f (r)∥∥λ

L(G)
, λ =

k
r – 

,

hold true.

We remark that for integer values of k and r = , , the functions � and � satisfying
conditions of Corollary  were constructed by Arestov in [].

Proof of Theorem  We observe that inequality () holds true, for every f ∈ Lr∞,E(G). Let
us prove that () is sharp. Let ε >  be arbitrary and sufficiently small. Due to Propo-
sition  the fractional derivative Dk

–�ε is continuous on G. Hence, taking into account
equalities () and () we obtain∥∥Dk

–�ε

∥∥
L∞(G) ≥

∣∣Dk
–�ε()

∣∣
=

∣∣∣∣∫
G

�ε(x)d�(x) + (–)r
∫
G

(
Rr–k(x) –�[r–](x)

)
�(r)

ε (x)dx
∣∣∣∣

≥
∨
G

� · ‖�ε‖L∞(G) +
∥∥Rr–k –�[r–]∥∥

E – ε

≥
∨
G

� · ‖�ε‖L∞(G) +
(∥∥Rr–k –�[r–]∥∥

E – ε
) · ∥∥�(r)

ε

∥∥
E .

The proof is finished. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/504


Babenko et al. Journal of Inequalities and Applications 2014, 2014:504 Page 18 of 29
http://www.journalofinequalitiesandapplications.com/content/2014/1/504

Proof of Theorem  Since k < r– we see that (·)r–k–χ(,)(·) ∈ E and condition () is also
fulfilled. Hence, by Theorem , inequality () holds true. Let us prove that inequality ()
is sharp. To this end by B = {βj}j∈J (J is a finite or countable set of indices) we denote the
discontinuity points of �(r–) and set αj := �(β+

j ) – �(β–
j ), j ∈ J . Due to the assumption

there exists h >  such that |βj – βi| ≥ h for all distinct indices i, j ∈ J . Now, for every
h ∈ (,h), we define the function

�h(x) :=

h

∫ h


�(x + t)dt, x ∈ G.

It is easy to show that as h→ +, we have

∫
G

�h(x)d�(x)→
∫
G

�(x)d�(x) =
∨
G

� · ‖�‖L∞(G),

∫
G

(
Rr–k(x) –�[r–](x)

)
�

(r)
h (x)dx→

∫
G

(
Rr–k(x) –�[r–](x)

)
d�(r–)(x)

= (–)r
∥∥Rr–k –�[r–]∥∥

E ,

and

lim inf
h→+

∥∥�
(r)
h

∥∥
E ≤ lim inf

h→+

∑
j∈J

|αj|
h

· ‖χ(,h)‖E = 
μ

· lim inf
h→+

‖χ(,h)‖E
h

= .

Due to the continuity of Dk
–�h, for every ε and every sufficiently small h > ,

∥∥Dk
–�h

∥∥
L∞(G) ≥ Dk

–�h() >
∨
G

� · ‖�h‖L∞(G) +
∥∥Rr–k –�[r–]∥∥

E – ε

≥
∨
G

� · ‖�h‖L∞(G) +
(∥∥Rr–k –�[r–]∥∥

E – ε
)∥∥�

(r)
h

∥∥
E .

The proof is finished. �

4 Consequences of main results
In this section we deduce new sharp Kolmogorov type inequalities from the results of the
previous section when the order of the higher-order derivative is  or .

4.1 Case r = 1 and k ∈ (0, 1)
Let G =R or G =R+. For k ∈ (, ) and h > , we set

τh(x) :=

{
, x /∈ G \ (,h),
x–k – h–k , x ∈ (,h).

The following proposition is the consequence of Theorem .

Corollary  Let G = R or G = R+, k ∈ (, ), E be an ideal semi shift-invariant lattice on
G satisfying conditions () and (), E be the associated space to E. Then, for every f ∈
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L∞,E(G) and h > , the sharp inequality

∥∥Dk
–f

∥∥
L∞(G) ≤

h–k

�( – k)
‖f ‖L∞(G) +

‖τh‖E
�( – k)

∥∥f ′∥∥
E ()

holds true.

Proof For every h > , we define the function

�(x) :=R–k(x) –
τh(x)

�( – k)
=

⎧⎪⎨⎪⎩
, x ∈G \ (, +∞),
h–k

�(–k) , x ∈ (,h),
x–k

�(–k) , x≥ h.
()

It is easy to check that () holds true, for every f ∈ L∞,E(G),
∨

G � = h–k
�(–k) , andR–k –� =

τh
�(–k) ∈ E.
Let us construct a family of functions {�ε}ε> ⊂W 

∞,E(G) satisfying conditions () and
(). For every ε > , there exists a function gε ∈ E, ‖gε‖E ≤ , such that

∫ h



(
R–k(x) –�(x)

)
gε(x)dx > ‖R–k –�‖E – ε =

‖τh‖E
�( – k)

– ε.

Without loss of generality wemay assume that gε is non-negative onG and supp gε = [,h].
Next, we define the function �ε as the first integral of (–gε):

�ε(x) := –
∫ x


gε(t)dt +




∫ h


gε(t)dt, x ∈ G.

Clearly, �ε ∈W ∞,E(G) and �ε(x) = –�ε() = –‖�ε‖L∞(G), x≥ h. As a result,

∫
G

�ε(x)d�(x) =
h–k�ε()
�( – k)

+
∫ ∞

h

�ε(x)d(x–k)
�( – k)

=
∨
G

� · ‖�ε‖L∞(G)

and

–
∫
G

(
R–k(x) –�(x)

)
�′

ε(x)dx =
∫ h



(
R–k(x) –�(x)

)
gε(x)dx > ‖R–k –�‖E – ε.

Therefore, the function � and the family of the functions {�ε}ε> satisfy the assumptions
of Theorem . Hence, inequality () holds true and is sharp. �

Next, we formulate the following Stein type inequality.

Corollary  For k ∈ (, ), h > , and f ∈ L∞,(R), the sharp inequalities

∥∥Dk
–f

∥∥
L(R)

≤h–k‖f ‖L(R)
�( – k)

+
kh–k‖f ′‖L(R)

�( – k)
,

∥∥Dk
–f

∥∥
L(R)

≤ –k

�( – k)
‖f ‖–kL(R)

∥∥f ′∥∥k
L(R)

()

hold true.
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Proof For h > , let � be defined by (). Then both desired inequalities follow from
Corollary . Let us prove that inequalities () are sharp. To this end, for every ε ∈ (,h),
we consider the Steklov averaging operator Sε : L∞(G) → L∞(G)

Sεf (·) = 
ε

∫ ε


f (· + t)dt, f ∈ L∞(G),

and define the function �ε := Sεχ(,h). Clearly, ‖�ε‖L(R) = h, ‖�′
ε‖L(R) = , and

lim
ε→+

∥∥Dk
–�ε

∥∥
L(R)

=
∥∥Dk

–χ(,h)
∥∥
L(R)

=
h–k

�( – k)
.

Plugging the latter relations into the first of inequality () we turn it into an equality. The
proof is finished. �

4.2 Case G =R+, r = 2, and k ∈ (0, 1)
For k ∈ (, ) and h > , we define

τh(x) :=

{
x–k – h–kx, x ∈ [,h),
, x ≥ h.

The following consequence of Theorem  holds true.

Corollary  Let k ∈ (, ), E be an ideal semi shift-invariant lattice onR+ satisfying condi-
tions () and (), E be the associated space to E. Then, for every f ∈ L∞,E(R+) and h > ,
the sharp inequality

∥∥Dk
–f

∥∥
L∞(R+)

≤ h–k

�( – k)
‖f ‖L∞(R+) +

‖τh‖E
�( – k)

∥∥f ′′∥∥
E ()

holds true.

Proof For every h > , we define the function

�(x) :=

⎧⎪⎨⎪⎩
, x = ,
h–k

�(–k) , x ∈ (,h),
x–k

�(–k) , x≥ h.

Evidently,
∨

G � = h–k
�(–k) and R–k – �[] = τh

�(–k) ∈ E. Moreover, for every f ∈ L∞,E(R+),
we have (). Indeed,

Dk
–f () –

∫ +∞


f (x)d�(x)

=Dk
–f () –

h–kf ()
�( – k)

+
kh–kf (h)
�( – k)

+
k

�( – k)

∫ ∞

h

f (x)dx
x+k

=
k

�( – k)

∫ h



f () – f (x)
x+k

dx +
kh–kf (h)
�( – k)

= –
k

�( – k)

∫ h



∫ x



(x – t)f ′′(t)
x+k

dt dx +
kh–k

�( – k)

∫ h


(h – t)f ′′(t)dt

=
∫ +∞



(
R–k(t) –�[](t)

)
f ′′(t)dt.
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Let us construct a family of functions {�ε}ε> ⊂W ∞,E(G) satisfying conditions () and
(). For every ε > , there exists a function gε ∈ E, ‖gε‖E ≤ , such that

∫ h



(
R–k(x) –�[](x)

)
gε(x)dx >

∥∥R–k –�[]∥∥
E – ε =

‖τh‖E
�( – k)

– ε.

Without loss of generality wemay assume that gε is non-negative onG and supp gε = [,h].
Next, we define the function �ε as the second integral of gε :

�ε(x) :=
∫ h


(–x + t/)gε(t)dt +

∫ x


(x – t)gε(t)dt, x ∈ R+.

Clearly, �ε ∈W ∞,E(G), �ε(x) = –�ε() = –‖�ε‖L∞(R+), x≥ h. As a result,

∫ +∞


�ε(x)d�(x) =

h–k[�ε() – k�ε(h)]
�( – k)

–
k( – k)
�( – k)

∫ +∞

h

�ε(x)
x+k

dx

=
+∞∨


� · ‖�ε‖L∞(R+)

and ∫ +∞



(
R–k(x) –�[](x)

)
�′′

ε (x)dx =
∫ h



(
R–k(x) –�[](x)

)
gε(x)dx

>
∥∥R–k –�[]∥∥

E – ε.

Therefore, the function � and the family of the functions {�ε}ε> satisfy assumptions of
Theorem . Hence, inequality () holds true and is sharp. �

Let us formulate the consequence of Corollaries , , and . For s > , we set

ϕk,s(x) :=
∫ h


(–x + t/)τ s′–

 (t)dt +
∫ x


(x – t)τ s′–

 (t)dt, x ∈R+,

and �k,s := ‖ϕk,s‖–Ls(R+) · ϕk,s. Also, we define

�k,(x) =



·max
{
( – k)/k – x; –( – k)/k

}
, x ∈ R+.

Corollary  Let k ∈ (, ),  ≤ s ≤ ∞, and s′ = s/(s – ). Then, for every f ∈ L∞,s(R+), the
sharp inequality

∥∥Dk
–f

∥∥
L∞(R+)

≤ ‖Dk
–�k,s‖L∞(R+)

‖�k,s‖–λ
L∞(R+)

‖f ‖–λ
L∞(R+)

∥∥f ′′∥∥λ

Ls(R+)
, λ =

k
 – /s

,

holds true.

4.3 Case G =R+, 1 < s≤ ∞, and k ∈ (1, 2 – 1/s)
Let  < s ≤ ∞, s′ = s/(s – ), and k ∈ (,  – /s). Consider the set

M :=
{
(a,b) ∈ (, ) : a≤ b

}
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Figure 1 Functions from left to right: �(2 – k) ·R2–k and ω[1](a,b; ·); τ (a,b; ·); ϕk,s .

and, for every (a,b) ∈M, we define the function

ω(a,b;x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
, x = ,
a–( – b)– · ( – b – ( – b–k)( – a)), x ∈ (,a],
( – b)– · ( – b–k), x ∈ (a, ),
( – k)x–k , x ≥ .

For x ∈R+, we consider the functions τ (a,b;x) := �( – k) ·R–k(x) –ω[](a,b;x) and

ϕ(a,b;x) :=
∫ a


(–x + t/) · τ(s′)(a,b; t)dt +

∫ x


(x – t) · τ(s′)(a,b; t)dt,

where g(s′) := |g|s′– sign g . Below in Lemma  we shall show that system () has a
unique solution (ak,s,bk,s) on M. For convenience, we denote the functions ω(ak,s,bk,s; ·),
τ (ak,s,bk,s; ·), ϕ(ak,s,bk,s; ·) by ωk,s, τk,s, ϕk,s, respectively. The graphs of the functions
ω[](a,b; ·), τ (a,b; ·), and ϕk,s are shown in Figure .
The next proposition is a consequence of Corollary .

Corollary  Let  < s≤ ∞, s′ = s/(s – ), k ∈ (,  – /s), and �k,s := ‖ϕk,s‖–Ls(R+) · ϕk,s. Then,
for every f ∈ L∞,s(R+), the sharp inequality

∥∥Dk
–f

∥∥
L∞(R+)

≤ ‖Dk
–�k,s‖L∞(R+)

‖�k,s‖–λ
L∞(R+)

‖f ‖–λ
L∞(R+)

∥∥f ′′∥∥λ

Ls(R+)
, λ =

k
 – /s

,

holds true.

We start with the proof of an auxiliary lemma.

Lemma  The system of the following equations has a unique solution on M:

{
F(a,b) :=

∫ 
a τ(s′)(a,b; t)dt = ,

F(a,b) :=
∫ 
 t · τ(s′)(a,b; t)dt = .

()

We remark that in some cases the pair (ak,s,bk,s) can be found explicitly, e.g. ak,∞ =
√
–

and bk,∞ = /
√
.

Proof First, we observe that, for every (a,b) ∈M, the function τ (a,b; ·) is positive on (,b),
is negative on (b, ), and supp τ (a,b; ·) = [, ]. Next, the functions F and F are continuous
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onM, and can be continuously extended on a wider set M̃ := {(a,b) ∈ [, )  : b > ,a≤ b}.
Let us prove that system () has a unique solution on M̃. First, we note that F strictly
increases in the variables a and b, while F strictly increases in b and strictly decreases
in a. Hence, system () could have only one solution. Next, we have

lim
b→+

F(b,b)≤ lim
b→+

{∫ b


t(–k)(s

′–)+ dt –
∫ 

b
t · τ(s′)(b,b; t)dt

}
= –∞,

lim
b→–

F(b,b) =
∫ 


t
(
t–k – t

)s′– dt > ,

lim
b→–

F(,b) =
∫ 


t
(
t–k –  + ( – k)( – t)

)s′– dt > .

Hence, there exist points a∗,b∗ ∈ (, ) such that F(,b∗) = F(a∗,a∗) = . Taking into ac-
count continuity of the function F and its monotonicity in both variables we conclude
that, for every a ∈ [,a∗], there exists b = �(a) ∈ [a∗,b∗] such that F(a,b) = . Moreover,
the function � is continuous and is decreasing on the interval [,a∗] because it has an
inverse function. Finally, we observe that

F
(
,b∗) = 

b∗

{
b∗

∫ 


τ(s′)

(
,b∗; t

)
dt

}

>

b∗

{∫ b∗


t · τ(s′)

(
,b∗; t

)
dt

}
=
F(,b∗)

b∗ = 

and

F
(
a∗,a∗) = ∫ 

a∗
τ(s′)

(
a∗,a∗; t

)
dt < .

Hence, there exists a ∈ (,a∗) such that F(a,�(a)) = . The latter implies that
(a,�(a)) ∈ M and satisfies system (). �

Proof of Corollary  We set � := ωk,s
�(–k) . It is easy to check that for f ∈ L∞,s(R+),

Dk
–f () –

∫ +∞


f (t)d�(t) =

∫ +∞



(
R–k(t) –�[](t)

)
f ′′(t)dt.

Moreover,�k,s ∈W ∞,s(R+),�k,s() = –�k,s(ak,s) = ‖�k,s‖L∞(R+),�k,s(x) = �k,s(), for every
x ≥ h, �k,s decreases on [,ak,s] and increases on [ak,s, +∞). Hence, the functions � and
�k,s satisfy the conditions of Corollary . �

4.4 Case G =R, 1≤ s≤ ∞, and k ∈ (0, 1)
Let k ∈ (, ), ≤ s≤ ∞, and s′ = s/(s – ). For p ∈ [,k/( – k)], we consider the function

ω(p;x) =

⎧⎪⎨⎪⎩
, x ≤ –p,
–( + p)–, x ∈ (–p, ],
( – k)x–k , x ≥ .
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Figure 2 Functions from left to right: �(2 – k) ·R2–k and ω[1](p; ·); τ (p; ·); ϕk,s .

For x ∈R, we consider the function τ (p;x) := �( – k)R–k(x) –ω[](p;x) and define

ϕs(p;x) :=



∫ 

–p
t · τ(s′)(p; t)dt +

∫ x

–p
(x – t) · τ(s′)(p; t)dt, when s > ,

ϕ(p;x) :=

⎧⎪⎨⎪⎩
( + p)/, x≤ –p,
( + p – x)/, x ∈ (–p, ),
–( + p)/, x≥ .

Below in Lemma  we shall prove that the equations of () have a unique solution. For
convenience, we denote by pk,s, s > , the solution to the first equation in () and by
pk, the solution to the second equation in (). In addition, we denote the functions
ω(pk,s; ·), τ (pk,s; ·), and ϕs(pk,s; ·) by ωk,s, τk,s, and ϕk,s, respectively. The graphs of the func-
tions ω[](p; ·), τ (p; ·), and ϕk,s are shown in Figure .
The following consequence of Corollaries  and  holds true.

Corollary  Let ≤ s≤ ∞, s′ = s/(s– ), k ∈ (, ), and h > . Then, for every f ∈ L∞,s(R),
the sharp inequality

∥∥Dk
–f

∥∥
L∞(R) ≤

‖Dk
–�k,s‖L∞(R)

‖�k,s‖–λ
L∞(R)

‖f ‖–λ
L∞(R)

∥∥f ′′∥∥λ

Ls(R)
, λ =

k
 – /s

,

where �k,s := ‖ϕ′′
k,s‖–Ls(R) · ϕk,s, s > , and �k, := ϕk,, holds true.

We start with the proof of the following auxiliary lemma.

Lemma  Let  < s ≤ ∞, s′ = s/(s – ), and k ∈ (, ). Then the following equations have a
unique solution on the interval [,k/( – k)]:

Zs(p) :=
∫ 

–p
τ(s′)(p; t)dt =  and Z(p) := kk( – k)–k( + p) – (k)–k = . ()

We remark that for particular values of swe can find pk,s explicitly, e.g. pk,∞ = ––k/(–k)

and pk, = k/( – k).

Proof The fact that the equation Z(p) =  has a unique solution on the interval [,k/( –
k)] is trivial. To prove that the equation Zs(p) =  also has a unique solution on the same
interval we observe thatZs is continuous and strictly decreases on the interval [, k/(k–)],
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Figure 3 Functions from left to right: �(2 – k) ·R2–k and ω[1](a,b,p; ·); τ (a,b,p; ·); ϕk,s .

and attains values of opposite signs at points  and k/(k – ). Thus the equation Zs(p) = 
has a unique solution on [,k/( – k)]. �

Proof of Corollary  We set � := ωk,s
�(–k) . Similarly to Section . we can check that, for

every f ∈ L∞,s(R), equality () holds true. Moreover, if s > , we see that �k,s decreases
onR,�k,s ∈W ∞,s(R),�k,s(–pk,s) = –�k,s() = ‖�k,s‖L∞(R). Hence, the functions� and �k,s

satisfy the conditions of Corollary . In turn, for s =  we can check that the functions �

and �k, satisfy the conditions of Corollary . �

4.5 Case G =R, 1 < s≤ ∞, and k ∈ (1, 2 – 1/s)
Let  < s ≤ ∞, s′ = s/(s – ), and k ∈ (,  – /s). Consider the set S :=M × [, +∞), where
the setM was defined in Section ., and, for every (a,b,p) ∈ S, we define

ω(a,b,p;x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, x≤ –p,
–b+(–b–k )(a–)

(–b)(a+p) , x ∈ [–p,a],
( – b)– · (b–k – ), x ∈ [a, ],
( – k)x–k , x≥ .

For x ∈R, we consider functions τ (a,b,p;x) := �( – k) ·R–k(x) –ω[](a,b,p;x) and

ϕ(a,b,p;x) :=



∫ a

–p
t · τ(s′)(a,b,p; t)dt +

∫ x

–p
(x – t) · τ(s′)(a,b,p; t)dt.

Below in Lemma we shall prove that the system of equations () has at least one solution
on S. Let (ak,s,bk,s,pk,s) be one of such solutions and, for simplicity of notation, we denote
the functions ω(ak,s,bk,s,pk,s; ·), τ (ak,s,bk,s,pk,s; ·), and ϕ(ak,s,bk,s,pk,s; ·) by ωk,s, τk,s and ϕk,s,
respectively. The graphs of the functions ω[](a,b,p; ·), τ (a,b,p; ·), and ϕk,s are shown in
Figure .
Next, we set�k,s := ‖ϕ′′

k,s‖–Ls(R) ·ϕk,s. The following consequence of Corollary  holds true.

Corollary  Let  < s≤ ∞, s′ = s/(s–), k ∈ (, – /s), and h > . Then, for every function
f ∈ L∞,s(R), the sharp inequalities

∥∥Dk
–f

∥∥
L∞(R) ≤

‖Dk
–�k,s‖L∞(R)

‖�k,s‖–λ
L∞(R)

‖f ‖–λ
L∞(R)

∥∥f ′′∥∥λ

Ls(R)
, λ =

k
 – /s

,

hold true.

We start with the proof of the following auxiliary lemma.
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Lemma  The following system of equations has a solution on S:

⎧⎪⎨⎪⎩
Z(a,b,p) :=

∫ a
–p τ(s′)(a,b,p; t)dt = ,

Z(a,b,p) :=
∫ 
a τ(s′)(a,b,p; t)dt = ,

Z(a,b,p) :=
∫ 
–p t · τ(s′)(a,b,p; t)dt = .

()

For particular values of s the triple (ak,s,bk,s,pk,s) can be found explicitly, e.g. pk,∞ = ak,∞ =
/ and bk,∞ = /.

Proof First, we observe that the function Z is continuous on S, strictly decreases in the
variable a, strictly increases in the variable b, and is constant in the variable p. In addition,
for every a ∈ (, ), Z(a,a, ) <  and limb→– Z(a,b, ) > . The latter andmonotonicity
of Z in the variable b imply that there exists a strictly increasing function γ : (, ) →
R such that Z(a,γ (a), ) = . Moreover, continuity of the function γ follows from its
monotonicity and continuity of the function Z.
Next, we consider the function Z. Evidently, Z is continuous on S, strictly increases in

the variables a and b, and strictly decreases in the variable p. Since, for every a ∈ (, ),
Z(a,γ (a), ) > , and limp→–∞ Z(a,γ (a),p) = –∞, we conclude that there exists a func-
tion δ : (, ) →R such that, for every a ∈ (, ),Z(a,γ (a), δ(a)) = . SinceZ is continuous
on S and δ ismonotone, we conclude that δ is also continuous on (, ). Therefore, for every
a ∈ (, ), we have Z(a,γ (a), δ(a)) = Z(a,γ (a), δ(a)) = . Now, we set b∗ = lima→+ γ (a).
Since

lim
a→+

Z

(
a,



, 

)
=

∫ /



(
t–k –  + 

(
 – k–

)
( – t)

)s′– dt
–

∫ 

/

(
t–k –  + 

(
 – k–

)
( – t)

)s′– dt > 

and

lim
a→+

Z

(
a,



, 

)
=

∫ /



(
t–k – t

)s′– dt – ∫ 

/

(
t–k – t

)s′– dt > ,

we conclude that b∗ ∈ (, ).
Finally, note that Z is also continuous on the S function, and

lim
a→+

Z
(
a,γ (a), δ(a)

)
= Z

(
+,b∗, 

)
=

∫ b∗


t · τ s′–

k
(
+,b∗, 

)
dt

–
∫ 

b∗
t · τ s′–

k
(
+,b∗, 

)
du

< b∗
[∫ b∗


τ s′–
k (a,b,p; t)dt –

∫ 

b∗
τ s′–
k (a,b,p; t)dt

]
= b∗Z

(
+,b∗, 

)
= ,

lim
a→–

Z
(
a,γ (a), δ(a)

)
>

∫ 


t
(
t–k – 

)s′– dt > .

Hence, there exists a ∈ (, ) such that Z(a,γ (a), δ(a)) = . �
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Proof of Corollary  We set � := ωk,s
�(–k) . It is easy to check that () holds true, for every

f ∈ L∞,s(R+). Moreover, �k,s ∈ W ∞,s(R), �k,s(–pk,s) = –�k,s(ak,s) = ‖�k,s‖L∞(R), �k,s(x) =
‖�k,s‖L∞(R), for every x ≥ , �k,s is non-increasing on (–∞,ak,s] and non-decreasing on
[ak,s, +∞). Hence, the functions � and �k,s satisfy the conditions of Corollary , which
finishes the proof. �

5 Applications
In this section we consider applications of results of this paper. We devote Section . to
consequences related to the Kolmogorov problem for three numbers and in Section . we
obtain sharp Kolmogorov type inequalities for the weighted norms of fractional powers
of the operator D = x d

dx obtained by the Hadamard fractional derivative.

5.1 The Kolmogorov problem for three numbers
Let G = R or G = R+,  ≤ p,q, s ≤ ∞, r ∈ N, and k ∈ (, r) \ N. The Kolmogorov problem
for three numbers (see []) consists in finding necessary and sufficient conditions on three
positive numbers M, Mk , and Mr that guarantee the existence of a function f ∈ Lrp,s(G)
satisfying the equalities

‖f ‖Lp(G) =M,
∥∥Dk

–f
∥∥
Lq(G)

=Mk ,
∥∥f (r)∥∥Ls(G)

=Mr . ()

For an overview of known results in this direction, we refer the reader to [, ] and refer-
ences therein. Using similar arguments and combining them with results of the previous
section we deduce the following consequences.

Theorem  Let G = R or G = R+,  < s ≤ ∞, p = q = ∞, k ∈ (,  – /s), r = , and M,
Mk ,M be positive numbers. Assume that K is a sharp constant in inequality () and there
exists a non-negative function turning () into an equality. Then there exists a function
f ∈ L∞,s(G) satisfying equalities () if and only if Mk ≤ K ·M–λ

 Mλ
 where λ = k

–/s .

Theorem  Let G = R or G = R+, s = , p = q = ∞, k ∈ (,  – /s), r = , and M, Mk ,
M be positive numbers. Assume that K is a sharp constant in inequality (). Then there
exists a function f ∈ Lr∞,s(G) satisfying equalities () if and only if Mk < K ·M–λ

 Mλ
 where

λ = k
–/s .

5.2 Sharp Kolmogorov type inequalities for the Hadamard fractional derivatives
Let D be the operator mapping every differentiable function f :R+ → R into the function
D f (x) = xf ′(x), x ∈ R+, i.e. D = x d

dx . The fractional power, k ∈ R+ \ N, of the operator D

is obtained by the Hadamard fractional differentiation operator Dk± (see [, Section ])
which is defined as follows: for f :R+ →R and x ∈R+,

Dk
+ f (x) =


κ(k, r)

∫ 



r∑
m=

(–)m
(
r
m

)
f
(
umx

) du
u| lnu|+k ,

Dk
– f (x) =


κ(k, r)

∫ +∞



r∑
m=

(–)m
(
r
m

)
f
(
umx

) du
u| lnu|+k ,

where r ∈ N, r > k, and κ(k, r) was defined in (). Some Kolmogorov type inequalities for
the Hadamard fractional derivatives were considered in []
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For an arbitrary function f : R+ → R, let us define the function g : R → R as fol-
lows: g(t) = f (et), t ∈ R. Then, for every x ∈ R+, we have Dk±f (x) = Dk±g(lnx). As a result,
‖Dk±f ‖L∞(R+) = ‖Dk±g‖L∞(R) and, for every  ≤ s < ∞,

∫ +∞



∣∣Dk
±f (x)

∣∣s dx
x

=
∥∥Dk

±g
∥∥s
Ls(R)

.

The latter formula allows deducing sharp Kolmogorov type inequalities for the weighted
Ls-norms of theHadamard fractional derivatives from sharpKolmogorov type inequalities
for Ls-norms of the Marchaud fractional derivatives. Let us present rigorous statements.
For  ≤ s ≤ ∞, by Ls we denote the space of the functions f : R+ → R endowed with the
norm

‖f ‖Ls =

{
(
∫ +∞
 |f (x)|s dxx )/s, ≤ s <∞,

‖f ‖L∞(R+), s =∞.

For r ∈ N, let L r∞,s be the space of the functions f ∈ L∞(R+) such that f (r–) is locally
absolutely continuous on R+, and f (r) ∈ Ls. From the above arguments we conclude that
the following proposition holds true.

Theorem  Let the Kolmogorov type inequality () with sharp constant K hold true for
some collection of parameters ≤ p,q, s ≤ ∞, r ∈N, k ∈ (, r), andμ,λ ∈R, ≤ μ = –λ ≤
. Then for the same collection of parameters and, for every f ∈ L r

p,s, the sharp inequality

∥∥Dk
±f

∥∥
Lq

≤ K‖f ‖μ

Lp

∥∥D rf
∥∥λ

Ls

holds true.

Combining Theorem  with Corollaries  and  we obtain the following.

Corollary  Let  ≤ s ≤ ∞, s′ = s/(s – ), k ∈ (,  – /s), and λ = k/( – /s). Then, for
every function f ∈ L ∞,s, the sharp inequality

∥∥Dk
±f

∥∥
L∞ ≤ ‖Dk

–�k,s‖L∞(R)

‖�k,s‖–λ
L∞(R)

‖f ‖–λ
L∞

∥∥Df
∥∥λ

Ls

holds true, where the function �k,s was defined in Sections .-..
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