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Abstract

Background: High-throughtput technologies enable the testing of tens of thousands of measurements
simultaneously. Identification of genes that are differentially expressed or associated with clinical outcomes invokes
the multiple testing problem. False Discovery Rate (FDR) control is a statistical method used to correct for multiple
comparisons for independent or weakly dependent test statistics. Although FDR control is frequently applied to
microarray data analysis, gene expression is usually correlated, which might lead to inaccurate estimates. In this
paper, we evaluate the accuracy of FDR estimation.

Methods: Using two real data sets, we resampled subgroups of patients and recalculated statistics of interest to
illustrate the imprecision of FDR estimation. Next, we generated many simulated data sets with block correlation
structures and realistic noise parameters, using the Ultimate Microarray Prediction, Inference, and Reality Engine
(UMPIRE) R package. We estimated FDR using a beta-uniform mixture (BUM) model, and examined the variation in
FDR estimation.

Results: The three major sources of variation in FDR estimation are the sample size, correlations among genes, and
the true proportion of differentially expressed genes (DEGs). The sample size and proportion of DEGs affect both
magnitude and precision of FDR estimation, while the correlation structure mainly affects the variation of the
estimated parameters.

Conclusions: We have decomposed various factors that affect FDR estimation, and illustrated the direction and
extent of the impact. We found that the proportion of DEGs has a significant impact on FDR; this factor might
have been overlooked in previous studies and deserves more thought when controlling FDR.

Introduction
With the advent of high throughput technologies, research
has focused on the systematic genome-wide study of bio-
logical systems. Microarray technology has been used to
measure the mRNA expression of thousands of genes
simultaneously. Concurrently, new statistical methods
have been developed to analyze the data generated by
these experiments. These methods involve both data pre-
processing (background correction, data transformation,
normalization, etc.) and specific tools for different types of

studies (e.g., class discovery, class prediction, or class
comparison).
The canonical class comparison problem involves the

identification of lists of DEGs. The evolving consensus
[1] on the analysis of microarray data recognizes the
centrality of methods that estimate the FDR associated
with gene lists. Although the concept of FDR was intro-
duced by Benjamini and Hochberg in 1995 [2], a variety
of methods have been introduced since then to estimate
the FDR in microrray data sets [3-8]. These methods
share certain characteristics: they perform a separate
statistical test for each gene or protein; they compute a
p-value associated with each test; and they estimate the
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FDR using the distribution of p-values. The methods are
usually based on the assumption of independent or
weakly dependent test statistics. However, when dealing
with microarray data, we know that genes are usually
correlated either for biological or technical reasons.
Recent studies have demonstrated the non-negligible
effects of correlation in microarray data on large-scale
simultaneous hypothesis testing and pointed out how
variable the FDR could be in the presence of strong cor-
relation [9-13].
Our study sheds more light on possible reasons for

the (lack of) precision in the estimated FDR. Our results
provide two concrete examples of this imprecision. First,
we look at an example where univariate Cox propor-
tional hazards (CPH) models are used to determine
which genes appear to be related to survival. By resam-
pling ~ 100 patients at a time (out of a set of ~ 200
patients), we find that the estimates of the percentage of
genes that appear to be related to survival range from
0% to 20%. In a simpler example of univariate t-tests
between two groups of samples, we find that the esti-
mate of the percentage of DEGs ranges between 13%
and 43%. This range of estimates is much wider than
one would anticipate from fitting a distribution based
on thousands of p-values. However, those p-values are
not independent. Since gene expression is often corre-
lated, the effective number of independent measurements
used to estimate the distribution may be quite small.
Strategies that have been proposed to improve the esti-
mation of FDR include resampling [11,14,15] and latent
FDR with a random term to capture the correlation [12].
However, the causes of highly variable FDR estimation
are multifold and deserve further investigation.
Throughout this paper, we estimate FDR using a BUM

model for the distribution of p-values [3]. We select this
method primarily because it can be computed quickly.
While the method may not be the most accurate way to
estimate FDR, the fact that it gives a relatively good fit to
the p-value distributions that we encounter suggests that
our results are driven by intrinsic variability in the
p-value distributions from one sample set to another, and
thus are likely to affect all known methods to estimate
FDR.
In many cases, it is difficult to evaluate analytical meth-

ods for microarray data because of the complex— and
unknown—nature of the underlying biological phenomena.
Thus, simulated data sets with known “ground truth” are
needed in order to assess the performance of computa-
tional algorithms for the analysis of high throughput data.
To address this problem, many groups have developed
microarray simulation software [10,16-20]. However, many
existing simulations rely on simplified ideas of the underly-
ing biology. For instance, the manuscript [10] that intro-
duced the SPLOSH method to estimate FDR includes a

simulation that assumes that (i) genes are independent and
(ii) the genes that are differentially expressed all have the
same fold change. Neither assumption is likely to hold in
the real world, and these simplified assumptions do not
give a realistic view of the variability in the FDR estimates.
We have already introduced a package of microarray

simulation software called UMPIRE [21]. The current
version of UMPIRE allows researchers to simulate het-
erogeneous microarray data with correlated block struc-
ture, which is linked to binary or time-to-event
outcomes. Through a comprehensive set of simulations,
we show that sample size, correlation structure and por-
tion of DEGs account for the majority of observed varia-
bility in the p-value distributions and FDR estimates
found in real data.

Methods
Public data sets
The Affymetrix microrray data were collected as part of a
study to predict survival in follicular lymphoma patients
[22]. The data set contains 191 patient samples measured
with Affymetrix U133A and U133B arrays. Dave and col-
leagues quantified the microarray data using Affymetrix
MAS 5.0 software and then transformed the results by
computing the base-two logarithm. They also separated
the samples into training (N = 95) and testing (N = 96)
sets. We downloaded the processed microarray data and
associated clinical annotations from the supporting web
site (http://llmpp.nih.gov/FL/).
The two-color fluorescent cDNA microarray data were

collected as part of a study to identify clinically relevant
subtypes of prostate cancer [23]. The data set consists
of data from 41 healthy prostate specimens, 62 primary
prostate tumors, and 9 unmatched lymph node metas-
tases. The microarrays contain 42,129 spots for 38,804
different cDNA clones representing 21,287 distinct Uni-
Gene clusters. The prostate cancer samples were labeled
with Cy5. A common reference material, pooled from
11 established human cell lines, was labeled with Cy3.
The raw microarray data were downloaded from the
Stanford Microarray Database (http://cmgm.stanford.
edu/pbrown/). We used intensity-dependent loess nor-
malization to normalize the background-corrected chan-
nels from each microarray, after which the log ratios
between experimental and reference channels were
transformed by computing the base-two logarithm.

Simulated data sets
Genes could be correlated when they are involved in
active biological pathways, or are regulated by the same
set of factors. We consider the correlation in gene
expression to be “clumpy”, meaning that there are gene
groups with high correlation within groups but no or lit-
tle correlation between groups. In order to mimic this
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correlation feature, we applied block structure. Both the
block sizes and the correlations within a block vary in
order to mimic different sized pathways/networks, and
loosely or strongly correlated genes within a particular
pathway/network. Distinct blocks are assumed to be
independent. Please refer to our previous publication for
detailed description of the block structure [21].
Using the UMPIRE package, additive and multiplicative

noise were incorporated, and correlated blocks were
implemented. We simulated normal samples as a homo-
geneous population with G genes and N samples. We
allowed N to vary in order to study the effect of the num-
ber of independent observations on various test statistics.
The same number of cancer samples were generated with
a portion of DEGs, where differential expressions were
simulated as changed mean expression. Rather than
focusing on individual genes, we altered the means of
blocks of genes in order to mimic the effect of cancer
pathology on pathways or networks. We let ѱ denote the
percentage of differentially expressed blocks, which were
randomly selected from the transcriptionally active
blocks. Although it is possible for an inactive block of
genes in normal samples to be turned on in cancer sam-
ples, or vice versa, we kept transcriptionally inactive
blocks inactive in both normal and cancer samples in this
simulation. The absolute changes of the mean expression
values on log scale for a block of genes were given by Δg

~ Gamma(a, b). Both parameters for this gamma distri-
bution were set to 10 so that the absolute fold change on
the log2 scale was 1, and the long tail on the right hand
side of the distribution allowed a few genes to have large
fold changes. A gene in the changed block was randomly
assigned to be up-regulated or down-regulated in cancer
samples.

Results
Survival in follicular lymphoma
Dave and colleagues [22] collected Affymetrix U133A
and U133B microarray data on samples from 191 folli-
cular lymphoma patients for whom they also had exten-
sive clinical follow-up. They split the data set into
training (N = 95) and testing (N = 96) using a method
that guaranteed that the survival curves for the two
halves of the data would be the same. Their method for
developing a model to predict survival began by com-
puting p-values for each gene, derived from univariate
CPH models in the training set. In order to better
understand their method, we began our own analysis by
fitting CPH models on both the training and testing
sets. Figure 1 contains histograms of the resulting
p-values. The distribution of p-values in the training set
is uniform, which suggests that there is no evidence that
any individual gene is associated with survival. However,
the histogram of p-values in the test set shows clear

evidence of an enrichment of small p-values, and is
well-fit by a BUM model [3] that suggests that as many
as 8% of the genes in the study are associated with sur-
vival. A similar histogram (data not shown) of the
p-values from two-sample t-tests contrasting gene
expression between training and testing sets was also
uniform, suggesting that no genes were differentially
expressed. We found this collection of results surprising:
although the survival curves and the expression of indi-
vidual genes were the same in training and testing sets,
there appeared to be a difference in the ability of indivi-
dual genes to predict survival. To resolve this conun-
drum, we hypothesized that the two distributions of
p-values must actually be more variable than the histo-
grams suggest. We repeatedly split the data into half,
computed gene-by-gene CPH models on each half, and
fit BUM models to the p-values. We found that the esti-
mate of the number of significant genes range between
0% and 20%, with a peak near 10%.

Two-sample t-tests comparing prostate tumor with
normal prostate
In order to study the variability of p-value distributions
across experiments, we turned to a simpler example.
Lapointe and colleagues [23] used two-color cDNA micro-
arrays to study subsets of prostate cancer. Their study
included 41 samples of normal prostate, 62 samples of
prostate tumor, and 9 samples of lymph node metastases
of prostate cancer. After downloading and processing the
microarry data, we removed the lymph node metastases.
We then repeatedly (300 times) subsampled the data set,
randomly selecting ten normal and ten cancer samples
each time. (We later repeated this analysis while selecting
20 samples per group.) Each time, we performed gene-by-
gene two-sample t-tests to identify genes that were differ-
entially expressed between normal prostate and prostate
cancer, computed p-values, and fit a BUM model to the
distribution of p-values. We found that the appropriate
p-value cutoff to achieve an FDR of 10% varied between
1.6 × 10–7 and 0.0434 when using ten samples per group,
with a median of 0.00628. The cutoff ranged from 0.0089
to 0.0439, with a median of 0.0229, when using twenty
samples per group. If we tried to use the median cutoff
across all random resamplings from the full data set, we
also found that the effective FDR varied widely from one
data set to another (Figure 2). This variability could be
directly attibuted to differences in the distribution of
p-values.

Simulations
The two practical data sets were used to demonstrate
the variability in the distribution of p-values and FDR
estimation observed in real data. However, due to the
limited sample size and unknown ground truth, the
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practical data sets lack the flexibility needed for testing
analytical methods. Thus, realistic simulations were used
to disentangle different factors contributing to the varia-
tion in FDR estimation.
We simulated 128 sets of normal and cancer data,

using four different sample sizes (N = 10, 25, 50 and
100), eight different mean block sizes (ξ = 1, 5, 10, 50,
100, 250, 500, 1000), and four different θ scenarios,
where θ denote the portion of negatively correlated
genes within a block. In addition, we tested five levels of
differential expression (ѱ = 0, 5%, 10%, 20%, and 40%)
with three different mean block sizes (ξ = 1, 10, 100)
and 25 samples in each biological condition. Our first
goal was to study how sample size, block size, ѱ, and θ
affect FDR. Based on the results, different θs do not
have a pronounced impact on various parameters of
interest (data not shown). Thus in the following sec-
tions, we will only show the results obtained from θ
that is uniformly distributed between 0 and 0.5 (θ =
0.5 – |x – 0.5| where x ~ Beta(1, 1)). We performed
gene-by-gene two-sample t-tests in order to identify
DEGs between normal and cancer samples. Then we
modeled the p-values using a BUM model. Several para-
meters of interest were recorded for each data set.

Precision of parameters estimates in the BUM model
Pounds and Morris [3] showed that the distribution of
p-values can be approximated by a BUM distribution,
whose probability density function is:

f x x( | , ) ( )        1 1

for 0 <x ≤ 1, 0 <a < 1, and 0 < l < 1. The parameter
l determines the size of the uniform component of the
model. The shape of the distribution is determined by
a; smaller values of a yield sharper peaks near zero. We
estimated ̂ and ̂ for each simulation.
Both the mean and the variance of ̂ decrease with

larger ѱ (data not shown), but the effect is not dramatic.
Figure 3 shows the distribution of ̂ for different combi-
nations of sample size and block size when ѱ = 10%. For
a fixed sample size, the variance of ̂ increases with lar-
ger block size, while the mean of ̂ is unchanged.
Because the genes within a block are correlated, larger
block size results in fewer independent gene measure-
ments. The estimation of parameters using fewer inde-
pendent measurements should be less accurate and more
variable. Thus, the phenomena of more variable ̂ can
be explained by the reduced number of independent

Figure 1 Distribution of gene-by-gene p-values from follicular lymphoma data. Histogram of gene-by-gene p-values from univariate Cox
proportional hazards models in the training (left) and testing (right) sets of follicular lymphoma patients.
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measurements in data set with large block size. The con-
stant mean of ̂ indicates that the block size does not
affect the average shape of the BUM model. On the other
hand, for the same block size, both the mean and the var-
iance of ̂ decrease with larger sample size. The
decreased variance of ̂ is due to the increased estima-
tion power with more observations (samples). The
decreased mean of ̂ indicates that the shape of the
BUM model is getting steeper, which suggests the model

predicts DEGs with more confidence. This is consistent
with the increased power expected from more
observations.
Figure 4 shows the distribution of ̂ for different com-

bination of sample size and block size when ѱ = 10%.
Like ̂ , for the same sample size, the mean of ̂ is
essentially constant for different block sizes, and the var-
iance of ̂ increases for larger block size because we
have fewer independent measurements. For the same

Figure 2 FDR and BUM results from prostate data. (Top) Distribution of the effective false discovery rate (FDR) at the median p-value cutoff
when using ten (left) or twenty (right) samples per group in the prostate tumor vs. normal data set. (Bottom) Range of beta-uniform mixture
(BUM) models of the distribution of p-values by randomly sampling ten (left) or twenty (right) samples per group. The red (resp., blue) curve
marks the random samples with the smallest (resp., largest) estimated number of DEGs.
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block size, the variance of ̂ also decreases for larger
sample size because of more observations. Unlike ̂ , the
mean of ̂ increases with larger sample size. Note that
we set ѱ (proportion of DEGs) equal to 0.1 in the simula-
tions summarized in Figure 4. With the increased power
from more observations, the uniform portion of the
BUM model approaches the true proportion, 1 – ѱ, of
non-DEGs. Since ̂ represents the contribution of the
uniform portion to the BUM model, larger ѱ results in
smaller ̂ .
From ̂ and ̂ , we can estimate the logical upper

bound of π using the formula:

ˆ ˆ ( ˆ) ˆ.   ub   1

The remaining 1  ̂ portion of the set of p-values
arises from the alternative hypothesis; that is, 1  ̂
represents the proportion of DEGs. In our example, the
true value of π = 1 – ѱ = 0.9 since ѱ = 10%. The distri-
bution of the calculated upper bound of ̂ when ѱ =
10% has a pattern similar to the one shown in Figure 4.
Even though the upper bound of ̂ is approaching its
true value with large sample size, the model appears to
consistently underestimate the proportion of non-DEGs

and overestimate the proportion of DEGs. This finding
is consistent with previous studies [11].
We also studied the correlation between ̂ and ̂ ,

which are negatively correlated (Additional file 1). How-
ever, the extent of negtive correlation decreases with
increasing sample size. The negative correlation is due
to the fact that the total area under the BUM model
sums to 1. The smaller ̂ is, the smaller the alternative
component (beta density) and the larger the null com-
ponent (uniform density) which corresponds to larger

̂ . With larger sample size, variabilities of ̂ and ̂
are reduced due to more independent observations,
which explains the decrease in absolute correlation.
False discovery proportion as a function of p-value
We simulated cancer samples with a proportion of
DEGs having altered mean expression values. For given
(nominal) p-value thresholds, we counted the number of
significant DEGs that were called “positive”. Because we
know which genes were truly differentially expressed in
the simulation, we calculated the number of true posi-
tives (TP) and false positives (FP) for each p-value
threshold. Next, we calculated the observed false discov-
ery proportion: FDP = FP/(FP + TP). (FDR is the mar-
ginal average of the FDP.)

Figure 3 Boxplot of ̂ grouped by sample size and block size
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One factor that dramatically affects FDP is ѱ (portion
of DEGs). Figure 5 shows FDP estimated from different
combinations of block sizes and ѱ. We observe clearly
that larger ѱ is associated with smaller and better esti-
mated FDP (less variable). This is not surprising because
more true positives render more power during estima-
tion. Another observation from Figure 5 is that block
size only affects the variation of FDP estimation.
To illustrate the influence of sample size on FDP esti-

mation, we performed another set of simulations with
different sample sizes and block sizes, but fixed ѱ (10%).
Since we know that the mean of FDP is not significantly
affected by block size, we calculated mean FDP by aver-
aging over all block sizes for each sample size. Addi-
tional file 2 shows that the mean FDP decreases with
larger sample size. Consistent from what we observed in
Figure 5, larger block size corresponds to more variable
FDP estimation, presumably because of the decreased
number of independent measurements.
Efron’s dispersion variate and the standard deviation of the
correlation density
Efron [9] showed that correlations among genes could
considerably widen or narrow the distribution of the
test statistic under the null hypothesis. Moreover, the
main effect of the pair-wise correlation could be

summarized by a single dispersion variate A. The central
peak of the null distribution widens when A > 0, and
narrows when A < 0. We recorded A for each simula-
tion; Additional file 3 shows the boxplots of A grouped
by sample size and block size when ѱ = 10%. The mean
value of A is essentially unaffected by either block size
or sample size, but the variance of A increases with lar-
ger block size. This observation is consistent with
Efron’s finding that more correlation leads to larger
variance.
One novel finding from our study is that the disper-

sion variate A is dramatically affected by ѱ (Figure 6).
With larger ѱ (i.e., more DEGs), the distribution of the
test statistic widens, so A is larger. The values of Â are
almost always positive in this set of simulations, which
is supposed to mean that gene correlations usually
widen the distribution. However, Figure 6 clearly shows
that the widening of the distribution is attributable to
an increase in the proportion of true positives, and not
to the increased amount of gene correlation.
We also found that FDP is negatively correlated with

the dispersion variate A, which is the opposite of the
conclusion in Efron’s paper. Figure 7 contains a scatter
plot of A vs FDP for varying values of ѱ. For fixed ѱ,
FDP and A exhibit weak positive correlation. However,

Figure 4 Boxplot of ̂ grouped by sample size and block size

Zhang and Coombes BMC Bioinformatics 2012, 13(Suppl 13):S1
http://www.biomedcentral.com/1471-2105/13/S13/S1

Page 7 of 11



when ѱ is allowed to vary, FDP and A are negatively
correlated.
Also following Efron, we calculated the standard

deviation of the empirical correlation densities (corr.std).
We found that corr.std increases with larger block size
(Additional file 4). This result is not surprising, since
increasing the block size increases the total amount of
correlation present in the data but decreases the effec-
tive number of independent measurements that contri-
bute to the estimate. However, the sample size has a

much larger effect, with corr.std decreasing significantly
with larger sample size.

Conclusions
From the two concrete examples, we observed a lack of
precision in the estimation of FDR. In order to study
the sources of variation during FDR estimation, we
simulated microarray data with more realistic para-
meters. In our simulation, block-wise structure with dif-
ferent block sizes and intra-block correlation are used to

Figure 5 FDP for different block sizes and ѱ. Solid lines represent the mean FDPs for particular block size and ѱ, while dashed lines
represent standard deviations of corresponding FDPs. Different colors are used to distinguish scenarios of different ѱ, as shown in the legend of
the top-left figure.
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Figure 6 Boxplot of dispersion variate A under different combinations of block sizes and ѱ

Figure 7 Scatter plot of dispersion variate A and FDP. Colors are used to distinguish results from different ѱ. The pearson correlations
between dispersion variate A vs FDP under different ѱ are shown in legend.
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mimic the molecular networks or biological functional
groups where large scale correlation of gene expression
arises. A particular block of genes could be transcrip-
tionally active or inactive depending on specific bio-
logical conditions. When the block of genes are
transcriptionally active, their expression levels follow a
multi-variate normal distribution with parameters esti-
mated from real microarray data. Certain portion of
genes will be differentially expressed between normal
and cancer samples, where the magnitude of changes
follows a gamma distribution which allows some large
magnitude changes while the majority have two fold
change on average. With this setting, we simulated
microarray data sets with different sample sizes, correla-
tion structure, portion of negtively correlated genes
within a block, and portion of DEGs between two biolo-
gical conditions.
For each simulated data set, we have recorded the para-

meters related to FDR estimation. Different portions of
negtively correlated genes within a block do not affect
the parameter estimations. Thus, the three major sources
of variation in FDR estimation are the sample size, corre-
lation structures and the portion of DEGs. With large
sample size, the variances of all parameters decrease due
to increased estimation power. However, the percentage
of non-DEGs is always under-estimated, even though it
approaches the true portion with larger sample size.
Large block size results in less precise estimation of all
the parameters due to less independent measurements.
However, the block size does not affect the mean estima-
tion of the parameters. Thus the FDR estimation are less
precise with more correlation, but the average FDR esti-
mation is not affected.
Our study suggests that an important factor affecting

FDR estimation is the portion of DEGs. With larger por-
tion of DEGs, the distribution of test statistic is widened
by the larger portion of true positives, thus resulting in
smaller FDR and more precise FDR estimation.
In summary, the correlation structure is not the only

factor affecting FDR estimations. The portion of DEGs,
which varies under different biological conditions contri-
butes to both the precision and the magnitude of FDR
estimation.

Additional material

Additional file 1: Boxplot of pearson correlation between ̂ and

̂ for different sample sizes

Additional file 2: FDP for different sample sizes and block sizes
Solid black lines represent the mean FDPs from all simulated data for the
same sample size. Dashed lines represent standard deviations of FDPs for
different block sizes that are distinguished by colors shown in legend of
bottom-right figure.

Additional file 3: Boxplot of Â grouped by sample size and block
size

Additional file 4: Boxplot of corr std. grouped by sample size and
block size
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