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Abstract
Background: The structural stability of peptides in solution strongly affects their binding affinities
and specificities. Thus, in peptide biotechnology, an increase in the structural stability is often
desirable. The present work combines two orthogonal computational techniques, Molecular
Dynamics and a knowledge-based potential, for the prediction of structural stability of short
peptides (< 20 residues) in solution.

Results: We tested the new approach on four families of short β-hairpin peptides: TrpZip, MBH,
bhpW and EPO, whose structural stabilities have been experimentally measured in previous
studies. For all four families, both computational techniques show considerable correlation (r >
0.65) with the experimentally measured stabilities. The consensus of the two techniques shows
higher correlation (r > 0.82).

Conclusion: Our results suggest a prediction scheme that can be used to estimate the relative
structural stability within a peptide family. We discuss the applicability of this predictive approach
for in-silico screening of combinatorial peptide libraries.

Background
Peptides are important constituents of biological systems.
They often initiate signal transduction cascades by bind-
ing and activating membrane-bound receptors [1,2].
Many therapeutic peptides exert their activity by binding
to these receptors, and either activating [3] or blocking
them [4]. Another type of peptide therapeutic activity is
the prevention of disease-related protein-protein interac-
tions. In this case, peptides derived from one of the pro-
teins compete against it over the interaction site [5].

In all these cases the key to the therapeutic effect is high
affinity binding of the peptide to a specific site in the tar-
get protein. This, in turn, depends on the peptide's ability

to adopt a binding-site-compatible conformation. The
more stable this conformation is, the higher the affinity
[6,7] due to the lower entropic price of binding. Structural
stability of the bound conformation also affects the specif-
icity of binding, because of the inverse correlation
between stability and the accessibility to alternative bind-
ing conformations. Natural peptides are often rather flex-
ible and long and may achieve specificity and affinity by
binding to side-sites. Therapeutic peptide and peptide-like
agents, on the other hand, must be kept short for pharma-
ceutical reasons, and their development often involves
rigidification [6-8].
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The search for specific high-affinity binding peptides
requires the screening of a large number of candidates,
often using combinatorial libraries [9,10]. Such libraries
however carry a very high price tag, for both creation and
screening. In other fields of combinatorial chemistry, this
problem is partially alleviated by the screening of virtual
libraries [11]. With peptides however, widespread appli-
cation of virtual screening is hindered by the difficulty of
peptide structure prediction [12], and the absence of reli-
able methods for the prediction of their structural stabil-
ity. In some highly constrained cases, most notably MHC
binding peptides, these issues were partially solved, and
useful virtual screening was achieved [13]. This however is
not the general rule. Thus, the difficulty of computational
prediction schemes for structure and structural stability of
peptides is a major obstacle to virtual screening of pep-
tides, and to full realization of the therapeutic potential of
peptides.

As with proteins, the problems of predicting peptide struc-
ture and structural stabilities are challenging. The free
energy differences between the folded and unfolded states
are marginal compared with the accuracy of the current
computational tools. In the field of protein structure pre-
diction, homology modeling circumvents much of the
structure prediction problem. Similarly, one may synthe-
size a single peptide, determine its structure experimen-
tally and assume that this structure is shared by a large
number peptides with a similar sequence [14-19]. How-
ever, since minor dissimilarity in sequence may result in
considerable difference in the stability, the problem of
structure stability prediction is more difficult to circum-
vent.

The current work aims to cope with the structural stability
problem using a two-fold strategy. First, instead of pre-
dicting absolute stabilities we focus on predicting relative
stabilities within a family of similar peptides. Second, we
use two complementary tools: Molecular Dynamics (MD)
and a Knowledge-Based Potential (KBP).

MD is a common technique for structural studies of pro-
teins and peptides [24-26]. It uses accurate semi-empirical
forcefields, and is able to reproduce equilibrium, entropy-
based phenomena by substantial sampling of the confor-
mational space [27-29]. Its major disadvantage is that very
long simulations are required to reach equilibrium. In a
series of pioneering studies Zanuy et al. [20-22] and Tsai
et al. [23] used Molecular Dynamics simulations to com-
pare the relative stabilities of different possible configura-
tions of amyloid peptides. Their results, however, were
not directly correlated with experimentally measured sta-
bilities. Furthermore, the MD protocols they used are too
computationally intensive to allow large-scale stability
prediction projects.

Fortunately, much insight can be gained from non-equi-
librium simulations that may be relatively short. Specifi-
cally, unfolding MD simulations of proteins qualitatively
reproduce the unfolding pathways. Those structural fea-
tures that seem most stable in unfolding experiments, also
persist (on the average) longer in the simulations [30,31].
Our working assumption was that a similar trend would
appear in unfolding simulations of peptides, so that more
stable peptides would, on average, retain their structure
longer than non-stable ones.

The alternative complementary approach we use is based
on a backbone conformation KBP. Experimental and
computational evidences confirm the essential role of
local residue preferences in shaping protein structures
[32-35]. These studies motivated several KBPs that scored
the compatibility of short fragments in a protein with a
given conformation, and were used mainly to sort out
native structures from non-native decoys [34-36]. Our
working hypothesis was that in peptides the innate prefer-
ences of the residues would exert an even stronger effect
than in proteins, since peptides are too small to support a
considerable hydrophobic core. Thus, a KBP that meas-
ures the compatibility of peptide conformations with the
innate backbone preferences of the residues may estimate
structural stability. The KBP presented here is similar in
spirit to previously published ones [37,38]. We use it to
estimate the likelihood of finding the residues of a peptide
in specific {Phi, Psi} configurations.

Our structural stability prediction scheme requires struc-
tural models of the peptides. Unfortunately, due to the
difficulty of peptide structure determination, experimen-
tally based structures are scarce. Only 8 out of the 40 pep-
tides used in this study have a known structure (Table 1)
and similar or worse proportion are likely in any real-life
scenario. Thus, we need to make do with the second best
option, template-based modelling. The unknown accu-
racy of this modeling adds to the noise in our prediction.
This however, should not be a major source of errors since
we neither try to predict the most stable conformations of
the peptides nor the stabilities of the most stable confor-
mations. We try to estimate the stability in a predefined
conformation (i.e., the conformation of the template) and
if a peptide is uncomfortable in that conformation we
assume it will be instable. It should be noted that this
approach is compatible with the design of the experimen-
tal work that we try to model. The experiments measure
the stability of a beta hairpin conformation and not the
stabilities of other conformations which may exist or even
be dominant. The EPO4 (E2 in Figures 1, 2, 3) peptide
demonstrates this point [19]. While an NMR study indi-
cates that it has a stable alpha-helix conformation, it is
reported as non-stable (i.e., having positive ΔΔG) by the
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Table 1: The 40 peptides studied in this work

Peptide NameA Peptide IDB Peptide SequenceC Template (PDB)D SubstitutionsE

TrpZip
TrpZip1 T1 S-WTW-EGNK-WTW-K 1LE0 None
TrpZip2 T2 S-WTW-ENGK-WTW-K 1LE1 None
TrpZip3 T3 S-WTW-EpNK-WTW-K 1LE0 G6→D-proline
TrpZip4 T4 GEWTWDDATKTWTWTE 1LE3 None
TrpZip5 T5 GEWTYDDATKTFTWTE 1LE3 W5→ Y

W12→ F
TrpZip6 T6 GEWTWDDATKTWTVTE 1LE3 W14→V
TrpZip7 T7 GEWVWDDATKTWHWTE 1LE3 T4→ V

T13→H
TrpZip8 T8 GEWHWDDATKTWVWTE 1LE3 T4→H

T13→V
TrpZip9 T9 GEWVWDDATKTWVWTE 1LE3 T4→V

T13→V
BhpW

TT B1 CTWEGNKLTC 1N09 None
HT B2 CHWEGNKLTC 1N09 T2→H
TH B3 CTWEGNKLHC 1N09 T9→H
LT B4 CLWEGNKLTC 1N09 T2→L
TL B5 CTWEGNKLLC 1N09 T9→L
VT B6 CVWEGNKLTC 1N09 T2→V
TV B7 CTWEGNKLVC 1N09 T9→V
VH B8 CVWEGNKLHC 1N0D None
HV B9 CHWEGNKLVC 1N0C None
TW B10 CTWEGNKLWC 1N09 T9→W
FT B11 CWFEGNKLTC 1N09 T2→ W

W3→F
TF B12 CTWEGNKLFC 1N09 T9→F
TI B13 CTWEGNKLIC 1N09 T9→I

T13→V
BHKE/MBH

BHKE M1 RGKITVNGKTYEGR 1J4M W4→ I
Y6→V
I9→K

MBH6 M2 RGKWTPNGHTDEGR Y6→ P
I9→H

MBH8 M3 RGKWTYNGHTDEGR I9→H
Y11→D
I9→H

MBH10 M4 RGKWTDNGITYEGR Y6→D
MBH12 M5 RGKWTYNGITYEGR None
MBH20 M6 RGKYTPNGITDEGR W4→Y

Y6→ P
Y11→D

MBH21 M7 RGKYTYNGITDEGR W4→Y
Y11→D

MBH28 M8 RGKYTDNGITYEGR W4→Y
Y6→D

MBH36 M9 RGKYTYNGNTYEGR Y6→D
I9→N

EPO
EPO3 E1 SCHFGPLGWVCK 1KVG None
EPO4 E2 SCRAQPLGWLCK H3→R

F4→ A
EPO8 E3 SCHFGPLGWLCK V10→L
EPO9 E4 SCRAGPLGWLCK V10→L

H3→ R
F4→A

EPO11 E5 SCHAGPLGWLCK F4→A
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effective concentration of the peptide thiols, which esti-
mate the stability of cysteine terminated beta-hairpins.

Results
Preliminary MD simulations
In this work we use the persistence of beta-hairpin confor-
mations during MD simulations as an estimate for the
structural stabilities of peptides. We measure this persist-
ence by the fraction of the simulation time in which the
median RMSDall-atoms (see Methods section for definition)
of the peptide fall below some threshold. This fraction
obviously depends not only on the innate properties of
the peptide itself, but also on the chosen threshold and
the MD parameters. Therefore, it is important to under-
stand the dependencies between these parameters, if ade-
quate correlation to the experimental stabilities is sought.
The most important MD parameter is the simulation tem-
perature. Under low temperature all peptides keep their
structure, with only limited and hard-to-interpret pertur-
bations. Under high temperature all peptides lose their
structure almost instantaneously, again providing very lit-
tle insight (data not shown). At two of the temperatures
that we checked, 288°K and 308°K, all the peptides stud-
ied are marginally stable. That is, they keep their initial
structure for some time along the simulation and then
unfold at some point. For both temperatures, we tested
the correlation between the persistence of the beta-struc-
ture and the experimentally measured stability in the
bhpW and TrpZip families over a wide range of threshold
values (Figure 4). In the 308°K simulations this correla-
tion is very sensitive to the exact threshold value and thus
seems to be an unreliable predictor. In the 288°K runs, on
the other hand, the correlation is almost constant for both
families within the threshold range of 1.5–3.5Å. In the
following sections, we report only the results for 288 K
simulations and a threshold of 2.6Å (the middle of this
range).

Considerable correlation between computed and 
experimentally measured structural stabilities
Figures 1 and 2 show the correlation between the com-
puted and the experimental stabilities for each of the four
peptide-families and for each computational technique.
The peptide families were studied with different experi-

mental methods, and their stabilities were reported in dif-
ferent units. These differences, however, do not affect the
analysis, as we do not compare the stabilities of peptides
across families. By restricting our comparison to peptides
within the same family, we also discard the concern about
different peptide lengths between the different families,
which influences both computational techniques.

The MD technique (Figure 1) shows an average correla-
tion of 0.65 ± 0.12 (average ± SD) between the computed
and the experimental stabilities. The technique was also
able to consistently point to the most stable peptide in
each family. The best predicted stabilities, with a correla-
tion coefficient larger than 0.7, are obtained for the TrpZip
and MBH peptide families. The prediction for the EPO
family was the least accurate and the only statistically
insignificant one. The persistence fraction of time, in
which a peptide is within 2.6Å of its initial conformation,
varies considerably between the families, averaging 60%
in bhpW and less than 20% in MBH. In contrast to this
inter-family heterogeneity, the ratios of persistence times
between the most and the least stable peptide within the
same family is 2–3 folds in all families.

The correlations between the KBP and peptide stabilities
(Figure 2) have a negative sign as higher energies imply
lower stabilities. Their average magnitude, however, is a
bit higher than that of the MD correlations, 0.66 ± 0.12.
The application of this technique is slightly more
restricted than MD, because the KBP is only defined for
naturally occurring amino acid types. Consequently, the
TrpZip3 peptide, which contains a D-amino acid (D-Pro-
line) in its chain, had to be eliminated from this data set.
The peptide families with high correlation coefficients
according to this technique are quite different than the
ones found by MD. The KBP provides the best predicted
stabilities (R < -0.7) for the bhpW and MBH peptide fam-
ilies. On the other hand, statistically insignificant predic-
tion is obtained in the TrpZip family that had high
correlation in the MD technique.

The overall performances of the two techniques are very
similar, as the magnitudes of the average correlation coef-
ficients are around 0.66 for both methods. The prediction

V10→L
EPO12 E6 SCRFGPLGWLCK H3→ R

V10→L
EPO14 E7 SCHAGPLGWVCK F4→A
EPO16 E8 SCRAGPLGWVCK H3→R

F4→A
EPO21 E9 SCRFGPLGWVCK H3→R

Columns are as follows: A – Peptide name in the literature [14-19]. B – Peptide ID in figures 3-5. C – Amino acid sequence. Bold letters indicate 
invariant residues, p = D-proline. D – Protein Data Bank (PDB) [50] code of the NMR structures used as a template. For each NMR ensemble the 
first structure was employed. E. The amino acid substitutions applied on the templates in order to prepare the peptide models.

Table 1: The 40 peptides studied in this work (Continued)
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details, however, are rather different. First, the accuracy of
prediction for a certain peptide family might be higher
with one method and lower with the other. Moreover, the
stability of a peptide within a certain family may be over-
predicted with one technique and under-predicted with
the other. For example the EPO12 peptide (E6 in Figures
1-3) is predicted to be the second least stable of its family

by MD and among the 4th most stable by the KBP. These
observations, as well as the different theoretical founda-
tions of the two approaches, suggest that better correla-
tion may be achieved by merging the predictions of the
two techniques. Direct summation of both results is
impossible because of unit discrepancy. The KBP stability
estimator is an energy value in some arbitrary units, while

The correlations between the computed and the experimentally measured stabilitiesFigure 1
The correlations between the computed and the experimentally measured stabilities. The structural stabilities 
during MD simulations (Y-axis) are plotted against the experimentally measured stabilities of TrpZip, bhpW, MBH and EPO 
peptides (X-axis). The structural stability of EPO and bhpW was measured by effective concentration of peptide thiols in -ΔΔG 
units [17–19]; the structural stability of MBH/BHKE was measured by NMR in population [%] units [14–15]; and the structural 
stability of TrpZip was measured by CD in Tm[K] units [16]. The structural stability during MD was measured by the fraction 
of time in which the RMSDall-atoms is below 2.6Å. Correlation coefficients are indicated. The p-values of the correlation coeffi-
cients are 0.2, 0.02, 0.016, 0.02 for EPO, TrpZip, bhp, and MBH respectively.
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the MD estimator is the fraction of time the peptide spent
in the beta-hairpin conformation. To achieve comparable
scales for both techniques we converted each stability esti-
mate into its corresponding Z-score relative to the other
peptide estimates from the same family. The TrpZip3 pep-
tide that had no KBP estimation, because it includes the
non-standard residue D-Proline, was arbitrarily assigned
with the Z-score of 0. The final combined estimator for
each peptide was simply the average of the MD Z-score
and the negative value of the KBP Z-score (because of the
negative correlation coefficient).

Indeed, the combined stability estimator shows consider-
ably better correlation with the experimental results than
any of the two techniques alone (Figure 3). The average
correlation coefficient rises to r = 0.82 ± 0.02, and the cor-
relations are all statistically significant (p ≤ 0.01) and
within the narrow range of 0.8–0.85. Furthermore, boot-
strapping suggests that these correlation values are rather
robust. Subsets of each peptide family have similar
median correlations and only slightly lower average corre-
lations and 79% or more than of them are statistically sig-
nificant (p < 0.05) (Table 2). The small variability in the

The correlations between the KBP and the experimentally measured stabilitiesFigure 2
The correlations between the KBP and the experimentally measured stabilities. The peptide KBP energies (Y-axis) 
are plotted against the experimentally measured stabilities of TrpZip, bhpW, MBH and EPO peptides (X-axis). The KBP has 
arbitrary energy units. Correlation coefficients are indicated. The p-values of the correlation coefficients are 0.045, 0.22, 0.002, 
0.025 for EPO, TrpZip, bhp, and MBH respectively.
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The correlations between the average Z-score of the two computational techniques and the experimental stabilitiesFigure 3
The correlations between the average Z-score of the two computational techniques and the experimental sta-
bilities. The averaged Z-scores (Y-axis) are plotted against the experimentally measured stabilities of TrpZip, bhpW, MBH and 
EPO peptides (X-axis). Correlation coefficients are indicated. The p-values of the correlation coefficients are 0.0065, 0.01, 
0.006, 0.003 for EPO, TrpZip, bhp, and MBH respectively.
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Table 2: Bootstrap Analysis

family All peptides Bootstrapping

mean (Figure 3) mean median standard deviation % significant  
correlation
coefficients

bhpW 0.817 0.78 0.83 0.16 90%
TrpZip 0.797 0.78 0.80 0.15 84%
MBH 0.855 0.81 0.87 0.23 89%
EPO 0.822 0.73 0.82 0.30 79%

The mean, median and standard deviation of the correlation coefficients of 1000 bootstrap samples of each peptide family. The percentages of the 
statistically significant correlation coefficients (p-value < 0.05) are indicated in the last column. The correlation coefficients for the whole families 
(Figure 3) were added for completeness.
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four correlation values provided by the combined estima-
tor is very different from the variable results obtained by
the single technique estimates. As in the MD estimator
case, the combined estimator is able to consistently point
to the most stable peptide in each family, and in 3 out of
the 4 cases also to the least stable peptide.

Discussion and Conclusion
The structural stability of peptides profoundly affects their
efficiency as therapeutic agents. Despite this, experimental
quantitative data on peptide structural stability is scarce
and computational studies are (to the best of our knowl-

edge) non-existent. The current work is the first attempt to
fill this void, which hampers wider use of virtual peptide
libraries and screening. We use two orthogonal computa-
tional schemes to estimate the relative structural stabilities
within peptide families. The KBP scheme estimates the
local preferences of the residues in a peptide to adopt a
conformation, based on database statistics. This scheme
shows a -0.66 ± 0.12 average correlation with experimen-
tally determined stabilities of peptides from four families.
The MD scheme simulates the physical process of peptide
unfolding in an explicit solvent, and shows a very similar

Sensitivity of the MD based stability estimate to the temperature and RMSDall-atoms thresholdFigure 4
Sensitivity of the MD based stability estimate to the temperature and RMSDall-atoms threshold. The correla-
tions between the median structure persistencies and the experimentally measured stabilities are plotted against the threshold 
at two temperatures (288°K and 308°K) and for two peptide families (TrpZip and bhpW). The lower temperature was 
selected for further analysis as it shows higher and more stable correlation. The chosen threshold, 2.6Å, is in the middle of an 
almost constant correlation region.
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average correlation with the experimental results (0.66 ±
0.12).

Each of the schemes has its own advantages over the
other. The KBP calculations are practically instantaneous,
while MD runs require hours of CPU time at the very least.
In addition, the KBP may represent some aspects of local
conformational preferences better than MD [47]. On the
other hand, MD in an explicit solvent is likely to account
better for the entropic effects of solvation. MD is also able
to treat uncommon residue types (e.g. the D-Proline in
TrpZip3), whereas the KBP cannot. As the two schemes are
based on very different theoretical foundations, and
because their advantages are complementary in many
ways, their errors need not be correlated. A combined pre-
diction approach, using a simple average of the two esti-
mators, indeed showed a considerable improvement in
the correlation with experimental results (0.82 ± 0.02).

Two previous studies compared KBPs with a detailed
atomic potential [48] and with the results of MD simula-
tions [49]. Both emphasized the correlation between the
results of these theoretically unrelated approaches. We
also observe this correlation, as the results of both KBP
and MD correlate with the experimental results, and thus
with one another. Our work however, is the first to take
advantage of the low correlation between the errors of
these approaches.

The major problem to any computational study in this
field is the scarceness of experimental data, which raises
two concerns: unstable results and overfitting. The boot-
strapping analysis however, suggests that the results pre-
sented here are robust (Table 2). We tried to avoid the
overfitting problem, at least partially, by using a minimal
set of adjustable parameters. An immediate consequence
of this requirement is our decision to focus on only one
KBP. In principle, other terms like torsion-angle propen-
sity [35] or solvation [51,52] might have added more
information but at the same time their weights in the
overall scheme would have been hard to learn without
overfitting. In our scheme the only four user-defined
parameters are the temperature of the MD simulation
(288°K), the similarity threshold to the initial conforma-
tion (2.6Å), the length of the MD run (3000 ps) and the
weights of the MD and KBP results in the averaged predic-
tion. The length of the simulation was a direct conse-
quence of the available computational resources. We
simply used the longest runs we could afford. However,
inspection of selected traces however, indicates that the
exact length is not very influential (Figure 5). Of the other
two MD parameters, the temperature is the more sensitive
one. In fact, its selection was done with the aim of making
the second MD parameter (the similarity threshold) as
robust as possible (Figure 4). Finally, no attempt was

made to optimize the combined estimator by differen-
tially weighting the two techniques in the Z-score averag-
ing. Figure 1 suggests that indeed no significant over-
fitting occurred in the choice of the MD parameters. The
performance over the two peptide families that were used
in tuning the temperature and threshold (TrpZip and
bhpW) is similar to the performance over the two other
families.

These results suggest, for the first time, a rational strategy
for virtual screening of potentially therapeutic peptides.
Given a lead peptide with some weak desired activity and
a known structure, a large number of similar peptides can
be constructed and screened in-silico. First, their structural
models will be built based on the assumed functional
conformation of the lead, and then their relative stabili-
ties, in that conformation can be estimated by the com-
bined MD/KBP approach presented in this study. The
peptides predicted to be most stable may then be synthe-
sized and tested experimentally for enhanced affinity and
specificity.

If the lead peptide is a competitive inhibitor of an interac-
tion between its protein of origin and another protein,
and if the structure of the protein complex is known, a
similar screening scheme may be applied even in the
absence of an experimental structure of the lead, which is
often unstructured when unbound. The initial conforma-
tion can be inferred from the known structure of the com-
plex, and peptides that will show high predicted stability
for that conformation will be tested for affinity and specif-
icity.

A final note is warranted about further acceleration of the
proposed screening process. The MD stability estimator
requires several simulations for each peptide. This may be
too computationally demanding if the number of virtual
peptides is large. In such cases, the KBP estimator may
serve as a "quick and dirty" method for initial screening.
The application of the MD estimator could then be
restricted to the 20% top-ranking peptides selected by the
KBP (Fig. 4) and the final selection would proceed with
the combined estimator.

Methods
The peptide dataset
This study focused on forty short (10–16 residues) β-hair-
pin peptides that belong to four families: BHKE/MBH
[14,15]; Tryptophan Zipper – TrpZip [16]; bhpW [17,18];
and EPO [19] (Table 1). The developers of these families
used diverse design strategies to enforce the β-hairpin
structures: Disulfide bridges between the terminals con-
strain the bhpW and EPO peptides; TrpZip peptides are
characterized by strong hydrophobic interactions of four
tryptophan residues; and the BHKE hairpin conformation
Page 9 of 12
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is stabilized by high β-propensity residues and by electro-
static interactions. The NMR structures of eight of these
peptides are available. The structures of the other 32 pep-
tides were modeled (using the Swiss-PdbViewer [39]
"mutate" tool) based on the NMR structure with the high-
est sequence similarity. The experimentally measured
structural stabilities of these peptides are available in the
literature [14-19].

MD Simulations protocol
All simulations were performed using the molecular mod-
eling package MOIL [40] under the AMBER/OPLS force-
field [41,42] and with TIP3P [43] explicit water model.
Peptides were first soaked within a 28 × 28 × 28 Å water
box, and clashes were removed by 500 steps of conjugate
gradient minimization [44]. Next, the MD simulation
started with 30 picoseconds (ps) of heating from 0°K to
the designated temperature. This heating stage was fol-
lowed by 2970 ps of constant temperature simulation.
Throughout the MD simulations periodic boundary con-
ditions were applied and the peptide center of mass was

constrained to the center of the simulation box. MD
parameters were: (a) one-femtosecond time steps; (b)
velocity scaling every 30 ps; (c) non-bonded neighbors list
update every 20 steps; (d) truncation cutoffs of Van der
Waals and electrostatic interactions at 6Å and 8Å, respec-
tively and (e) saving of coordinates every 2ps. For each
peptide, 10 simulations were performed with the same
initial structure, either an NMR structure or a template-
based model, but with different random initial velocities.

The persistence of the initial structures during the simula-
tions was quantified by the root mean square deviation of
all the peptide atoms from the initial structure (RMSDall-

atoms). However, because the trajectories of the RMSDall-

atoms tend to be rather diverse and noisy, we used the
smoother median trajectory (Figure 5). Thus, the struc-
tural stability of a peptide was estimated to be propor-
tional to the fraction of the simulation time in which the
median trajectory was below a 2.6Å threshold. The selec-
tion of this particular threshold is described in the results
section.

Four trajectory simulations of the peptide bhp HVFigure 5
Four trajectory simulations of the peptide bhp HV. The root mean square deviation of all the peptide atoms from the 
initial structure (RMSDall-atoms) is plotted over time for four representative simulation runs. Six more runs were performed 
but their trajectories were omitted for clarity. The black line represents the median RMSDall-atoms of all ten trajectories.
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Knowledge-Based Potential
The second orthogonal technique we used to estimate
structural stability of peptides is motivated by the assump-
tion that local residue preferences have a large impact on
the structural stability [45]. The Knowledge-Based Poten-
tial estimates the statistical likelihood of finding a given
polypeptide in a specific set of {φ, ψ} torsion angles:

E(residue type, φ, ψ) = -log [P(φ, ψ | type)] (1)

Where P is the frequency of finding a certain {φ, ψ} con-
formation among the occurrences of residue type in a large
database, E(residue type, φ, ψ) is the energy associated with
a single residue and ETOTAL is the total energy of the entire
peptide or protein. The parameters of the potential were
derived from a set of 1145 solved protein structures from
the ASTRAL database (release 1.63) [46]. Since the energy
calculation has to be performed only once per peptide, the
structural stability is fast to compute. Peptides are pre-
dicted to be structurally more stable as their energy
decreases.

Bootstrapping
In order to test the sensitivity of the correlation results to
small subsets, we performed bootstrapping analyses with
1000 random samples [53] for each peptide family.

Data analysis
All the statistical analyses were performed using the statis-
tical R software [54]. Specifically, Pearson's correlations
and their p-values (the probability of an error when the
null hypothesis of zero correlation is rejected) were calcu-
lated using the cor and cor.test functions. Bootstrapping
was performed using the replicate and sample functions,
and for each bootstrapping sample the correlation and p-
value were calculated separately.
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