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Abstract

Background: Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other
patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample
preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and
meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li
developed ComBat for use when combining batches of gene expression microarray data.
We propose a modification to ComBat that centers data to the location and scale of a pre-determined, ‘gold-standard’
batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect
adjustment for use with predictive models that are validated and fixed on historical data from a ‘gold-standard’ batch.

Results: We combined data from MIRT across two batches (‘Old’ and ‘New’ Kit sample preparation) as well as external
data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and
then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT
on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets.
Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over
98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero
significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the
proportion of high-risk subjects identified, coincided with the ‘gold-standard’ batch more with M-ComBat than with
ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using
M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of
high-risk subjects.

Conclusion: M-ComBat is a practical modification to an accepted method that offers greater power to control the
location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on
future samples despite known, often unavoidable systematic changes to gene expression data.
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Background
Multiple myeloma (MM) is a systemic hematopoietic
malignancy of plasma cells that expands within the bone
marrow. As plasma cells become cancerous and mul-
tiply, levels of monoclonal immunoglobulins in blood
increase and osteolytic bone lesions form in the major-
ity of patients. Myeloma is also characterized by genetic
heterogeneity at onset as well as variability in patient
response to treatment [1]–survival in patients ranges from
months to more than fifteen years.
Gene expression profiling (GEP) via microarray analy-

sis measures the expression levels of tens of thousands
of genes simultaneously, and has been widely used in
clinical practice for cancer classification, risk stratifica-
tion, and treatment selection. This technique involves
analyzing RNA extracted from purified plasma cells,
pulled from the bone marrow, on high-density microar-
ray gene chips [2,3]. Many gene signatures have been
identified using GEP data to predict outcome of patients
with newly diagnosed disease and identify those with
high-risk disease. The GEP5 [4], GEP70 [5], GEP80
[6], EMC-92 [7], MRC-IX-6 [8], Millenium-100 [9], and
IFM-15 [10] are all gene signatures for identifying high-
risk myeloma in newly diagnosed patients. The GEP70
risk score identified 70 genes linked to shorter over-
all survival, duration of complete response, event free
survival, and progression to clinical disease [5,11-13].
The GEP5 has recently been identified as the optimal
5-gene subset within the GEP70 [4], and the GEP80
was developed based on differentially expressed genes
between baseline and 48-hours after receiving Bortezomib
[6]. All three of these signatures (GEP5, GEP70, and
GEP80) were trained and validated using samples from
the Myeloma Institute for Research and Therapy (MIRT).
Because these GEP-based risk models are affected by
the expression of individual genes, systematic differ-
ences in expression due to batch effects must be cor-
rected when comparing gene signatures across different
batches.
Batch effect corrections aim to eliminate systematic,

non-biological differences that may be introduced from a
variety of sources. Some of the main contributors to batch
effects include:

• Ambient conditions during sample preparation and
handling such as room temperature, humidity, and
ozone levels

• Sites/laboratories: different laboratories may have
different operating procedures

• Storage/shipment conditions
• Sample preparation (including RNA isolation,

amplification, and hybridization): different reagent
lots may perform differently

• Scanner: type, settings, and calibration drift [14,15].

Despite knowing the many potential sources of batch
effects, batch effect associated information is not neces-
sarily recorded for all samples. Oftentimes, data analysts
are left with surrogates such as processing date and prepa-
ration group to use when correcting for batch effects [16].
Here, we will generalize the term ‘batch effect’ to mean
any type of systematic bias between two or more groups
of samples due to differences in sample preparation, scan-
ner, laboratory of analysis, etc. Many batch effects are
unavoidable due to the large sample size requirements
and potentially lengthy time required to complete a study.
Combining data from different batches without correct-
ing for batch effects can lead to, at a minimum, increased
noise and less power to detect a real biological signal, and
at a maximum, false biological conclusions. Careful con-
sideration is needed in identifying and removing batch
effects before further downstream analyses occur.
Combining batches of samples can be performed both

within a single study or on samples from different stud-
ies in a meta-analysis framework. The remainder of this
paper will focus on the latter scenario of combining larger
cohorts of patients across different studies with a modi-
fied alternative of ComBat. Themethod introduced below,
M-ComBat, would work in smaller sample, single cohort
situations; however, ComBat or other methods may be
more applicable in the single cohort context depending on
the focus of the study.

Methods
Baseline MM purified plasma cell samples
All MIRT samples are baseline purified plasma cells from
the bone marrow of patients enrolled on UARK Total
Therapies and processed on Affymetrix U133Plus 2.0
microarrays (Santa Clara, CA) between 2004 and 2014.
In keeping with institutional, federal, and Helsinki Dec-
laration guidelines, all identifiable patients gave written
informed consent for undergoing bone marrow sampling
for gene expression profiling and the institutional review
board of the University of Arkansas for Medical Sci-
ences approved the research studies. Samples analyzed
at the Myeloma Institute were prepared with either the
One-Cycle and Two-Cycle Target Labeling and Control
Reagents (‘Old’ Kit) or, beginning in 2009, the 3’ IVT
Express Kit (‘New’ Kit) [17]. All baseline MM GEP MIRT
data are current as of November 11, 2014. There are a total
of 1071 baseline MM GEP samples included in this study
from two main batches: ‘Old’ Kit samples processed at
Myeloma Institute (n = 928) and ‘New’ Kit samples (n =
143). Additional external data sets will be used to vali-
date both the M-ComBat method and the GEP5, GEP70,
and GEP80 risk signatures. The publicly available data set
of previously untreated patients (HOVON-65/GMMG-
HD4, n = 288, accession number: GSE19784, hereon
referred to as HOVON-65) will be used as well as baseline
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data from the MRC-IX trial (n = 273) [8,18]. Raw inten-
sity values were MAS5 normalized and converted to log2
scale.
Here we will treat the MIRT: Old Kit data as our

‘gold-standard’, reference batch because it was used to
train and validate the GEP5, GEP70, and GEP80. When
using M-ComBat, the designation of the reference batch
should relate to focus of investigation when combin-
ing data across batches. Here we are investigating three
risk signatures (GEP5, GEP70, and GEP80) which are
based on a particular standard (MIRT: Old Kit). Alter-
natively if we were investigating the EMC-92 risk sig-
nature, we would choose the HOVON-65/GMMG-HD4
data as the reference batch as it is the training set of the
EMC-92. In a meta-analysis context where we are per-
forming new analyses or searching for new signatures
on combined data, there are no set rules on choosing
a reference batch; however, it may be best to choose
the largest cohort, most relevant, or most familiar as
the reference batch. However, the only benefit of M-
ComBat over Combat in that context is that a newly
discovered signature would be fixed to a known standard
rather than the arbitrary location of ComBat transformed
data.

ComBat
ComBat [19] is a highly effective method of removing
batch effects based on an empirical Bayes framework
that allows for borrowed strength across probes. Com-
Bat has proven itself to be a strong method, particularly
with smaller sample sizes [20], and continues to be a
widely used technique [14,15,21]. Chen et al. [20] found
ComBat to be ‘best able to reduce and remove batch
effects while increasing precision and accuracy’ when
compared against five other popular batch effect removal
tools.
ComBat combines expression data by first standardizing

the data, given by

Zijg = Yijg − α̂g − Xβ̂g

σ̂g
,

where ordinary least-squares is used to calculate gene-
wise mean and standard deviation estimates, α̂g and σ̂g ,
across gene g, sample j, and batch i. Yijg refers to the
raw expression data, and Xβ̂g represents potential non-
batch related covariates and coefficients in the model. The
standardized data is assumed to be normally distributed,
Zijg ∼ N

(
γig , δ2ig

)
, where γig and δ2ig are the batch effect

parameters with Normal and Inverse Gamma prior dis-
tributions, respectively. Method of moments is used to
estimate hyperparameters which are used to compute the
Empirical Bayes estimates of conditional posterior means

gene-wise by batch for the batch effects parameters. The
final batch effect adjusted data is given by

Y ∗
ijg = σ̂g

δ̂∗
ig

(
Zijg − γ̂ ∗

ig

)
+ α̂g + Xβ̂g .

ComBat centers data to the overall, grand mean of all
samples which results in an adjusted data matrix that is
shifted to an arbitrary location that no longer coincides
with the location of any original batch. When using vali-
dated and fixed gene signatures on ComBat transformed
data, these gene signatures on ‘gold-standard’ data will
also be shifted. Many of these ‘gold-standard’ samples
were likely used to train and build the gene signature;
therefore, altering these samples when combining data
sets will also alter the performance and proportion of
high-risk individuals identified for a fixed risk signature
on the original, reference training data.

M-ComBat
In this study, we propose a modified version of ComBat
(M-ComBat) that shifts samples to the mean and vari-
ance of the ‘gold-standard’, reference batch, rather than
the grand mean and pooled variance. This is achieved by
changing the standardizing mean and variance estimates,
α̂g and σ̂g , to batch-wise estimates, α̂ig and σ̂ig , such that
the standardized data is then given by

Zijg = Yijg − α̂ig − Xβ̂g

σ̂ig
.

Furthermore, the mean and variance estimates used in
the final batch effect adjusted data are calculated using
the gene-wise mean and variance estimates of the ‘gold-
standard’, reference batch, i = r.
The M-ComBat adjusted data is then given by

Y ∗
ijg = σ̂i=r,g

δ̂∗
ig

(
Zijg − γ̂ ∗

ig

)
+ α̂i=r,g + Xβ̂g .

M-ComBat can be applied in R using a modified version
of the ComBat script from the sva package. The altered
script (including a small, simulated example) is available
online for public use at http://github.com/SteinCK/M-
ComBat.
We will illustrate both ComBat and M-ComBat as well

as the GEP5, GEP70, and GEP80 risk signatures by trans-
forming baseline purified plasma cell GEP samples from
UARK Total Therapies across two kinds of sample prepa-
ration (Old and New kits) as well as two external data sets
(HOVON-65 and MRC-IX). ComBat will be performed
assuming a parametric model with no covariates. The four
distinct batches will be shifted byM-ComBat to theMIRT:

http://github.com/SteinCK/M-ComBat
http://github.com/SteinCK/M-ComBat
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Old Kit ’gold-standard’ as this was the standard of data
used to develop and train the GEP5, GEP70, and GEP80
signatures.

Results
Both ComBat and M-ComBat completely eliminated sig-
nificant batch effect related differences across the four
distinct batches. Prior to transformation, over 98% of
all probes were significantly differently expressed across
at least one batch (probe-wise ANOVA found 53,827
of 54,675 q-values [22] below a 0.01 false discovery
rate threshold). After performing either ComBat or
M-ComBat, zero probes remained significantly differ-
ently expressed across batches according to the same
threshold.
In order to further investigate the differences between

ComBat and M-ComBat transformation, principal com-
ponent analysis (PCA) was performed on the 5,000 most
variable probes for the untransformed, ComBat, and M-
ComBat transformed data sets. PCA creates convex linear
combinations of a set of observations that are orthog-
onal and defined in such a way that the components
are ordered by variance where the first principal compo-
nent has the largest variance, the second the next largest
variance, etc. Scatterplots of the top two principal compo-
nents show how both ComBat andM-ComBat remove the
differences in probe expression between the batches while
shifting the data to different locations (Figure 1). Com-
Bat transformed PCA plot includes a grey ellipse marking
the ‘gold-standard’ 95% data ellipse of the untransformed
MIRT: Old Kit data. By shifting all of the data to the grand
mean rather than a specific batchmean, ComBat alters the

location of potential reference samples and therefore also
alters gene signatures developed on those reference sam-
ples. However following transformation byM-ComBat, all
three batches overlay one another and are centered on the
MIRT: ‘Old’ Kit batch. This visually demonstrates the two
main features of M-ComBat: elimination of batch effect
related differences while offering researchers the ability to
shift data to a desired standard.
Differences in the distribution of risk scores across

batches are eliminated for GEP5, GEP70, and GEP80
using either ComBat or M-ComBat (Figures 2 and 3). M-
ComBat also shifts the means of each risk score back to
the mean of the original untransformed, ‘gold-standard’
batch. The mean GEP70 score for all batches after M-
ComBat is 0.01, which is the same as the untransformed
MIRT: Old Kit mean GEP70 score (identical effect for
GEP5 and GEP80). The GEP70 also shows that it is better
protected from the impact of batch effects as its distri-
bution across batches are more aligned for the untrans-
formed data (than GEP5 or GEP80) and change minimally
following ComBat or M-ComBat.
The GEP80 is more susceptible to the impact of batch

effects, especially in the proportion of patients desig-
nated with high risk. The proportion of high-risk GEP80
patients on the untransformed MIRT: Old Kit is 7.5%,
while all other non-transformed data sets have over 43%
of patients defined as high-risk (using optimal high-low
risk cutoff from original research) (Figure 4). When trans-
forming all four of these batches by ComBat, all four
data sets define at least 21% of individuals as high risk
including our ‘gold-standard’ batch; however, when using
M-ComBat all four of these batches move within 7.3%

Figure 1 Principal component analysis. Scatter plot of Principal Component Analysis (PCA) of the 5,000 most variable probes across batches
without transformation, transformed by ComBat, and transformed to the MIRT: Old Kit standard by M-ComBat. Grey data ellipse seen in ComBat
panel represents untransformed MIRT: Old Kit. After transformation by M-ComBat, the differences in location between the batches has been
eliminated and all batches coincide with the desired MIRT: Old Kit standard.
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Figure 2 GEP70 boxplots and density curves. Boxplot and density curves of GEP70 scores for all baseline MM purified plasma cell samples across
four batches without transformation, transformed by ComBat, and transformed to the MIRT: Old Kit standard by M-ComBat. Grey, dashed line
indicates high risk threshold for GEP70. Following transformation by ComBat and M-ComBat, GEP70 scores are more aligned in mean, median, and
distribution across batches.

to 7.7% defined as high risk. These proportions of high
risk are much closer to those seen on the untransformed,
‘gold-standard’ MIRT: Old Kit data (7.5%). A similar trend
occurs for the other scores, and in general M-ComBat
allows for original optimal cutpoints to continue to func-
tion well on external data sets for binary, high-low risk
scores. Alternatively, ComBat adjusts all data sets, so the
proportion of high-risk individuals may change–even in
our reference, ‘gold-standard’ batch.

In general, hazard ratios from Cox regression of over-
all survival increase andWald p-values decrease following
ComBat and M-ComBat transformation (Figure 4). The
GEP5 applied toMRC-IX (Figure 5) and the GEP80 on the
HOVON-65 data (Figure 6) showed significant improve-
ments between ComBat and M-ComBat transformations.
In both scenarios, using M-ComBat and the original
high-low cutoffs allowed for increased ability to identify
individuals that are truly high risk (3-year survival from

Figure 3 GEP80 boxplots and density curves. Boxplot and density curves of GEP80 scores for all baseline MM purified plasma cell samples across
four batches without transformation, transformed by ComBat, and transformed to the MIRT: Old Kit standard by M-ComBat. Grey, dashed line
indicates high risk threshold for GEP80. Following transformation by ComBat and M-ComBat, GEP80 scores are more aligned in mean, median, and
distribution across batch.
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Figure 4 Forest plot of cox proportional hazards models. Forest plot of overall survival hazard ratios associated with cox proportional hazards of
GEP5, GEP70, and GEP80 risk across four batches without transformation, transformed by ComBat, and transformed to the MIRT: Old Kit standard by
M-ComBat. Included are the Wald p-values and proportion of high-risk individuals for each score by original risk thresholds.
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Figure 5 GEP5 Kaplan-Meier curves for MRC-IX. Kaplan-Meier plot of GEP5 risk for MRC-IX data without transformation, transformed by ComBat,
and transformed to the MIRT: Old Kit standard by M-ComBat. GEP5 risk for MRC-IX data is most associated with survival when transformed to MIRT:
Old Kit standard. Overall logrank p-values are included as well as 3-year survival estimates with 95% confidence intervals.

ComBat to M-ComBat decreases 16.4% for MRC-IX and
32.0% for HOVON-65). M-ComBat allows for improved
performance of risk scores on external data sets and allows
for risk scores to function as intended.

Discussion
M-ComBat eliminated the overwhelming statistical differ-
ences among probes caused by systematic batch effects.
In addition to eliminating differences in probes, the agree-
ment in mean and distribution of risk scores coincided
with that of the ‘gold-standard’ batch with M-ComBat.

The proportion of high-risk patients identified following
M-ComBat for external data sets more closely matched
that of the reference group as well. The performance
of risk scores improved overall using either ComBat or
M-Combat; however, using M-ComBat and the original,
optimal risk cutoffs allowed for greater ability in our study
to identify a smaller cohort of high-risk subjects.
By eliminating the differences in means between all

probes, all mean risk scores examined coincided with
one another across batches following M-ComBat. This
allows for potentially increased power in the risk score on

Figure 6 GEP80 Kaplan-Meier curves for HOVON-65. Kaplan-Meier plot of GEP80 risk for HOVON-65 data without transformation, transformed by
ComBat, and transformed to the MIRT: Old Kit standard by M-ComBat. GEP80 risk for HOVON-65 data is most associated with survival when
transformed to MIRT: Old Kit standard. Overall logrank p-values are included as well as 3-year survival estimates with 95% confidence intervals.
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external data sets following M-ComBat transformation.
M-ComBat provides the structure to compare risk scores
more fairly and realistically across different data sets lend-
ing itself directly to the further validation and comparison
of yet discovered gene signatures scores.

Conclusion
Modified ComBat eliminates batch effect related differ-
ences while adjusting all samples to a pre-defined stan-
dard. The modification transforms samples to the mean
and variance of the ‘gold-standard’ batch without altering
samples from the original batch. This allows for vali-
dated and fixed predictive models to function properly on
external data sets and offers a less biased framework for
comparing gene signatures. Rather than redefining cut-
points of GEP-based scores for new batches, M-ComBat
allows for the same cutpoints and logic used to build these
GEP-based scores to function properly on external data
sets.
Differences in scanner, laboratory, and sample prepa-

ration contributed significantly toward systematic batch
effects seen when combining gene expression samples
across these four batches. The non-biological variation
introduced by differences in sample preparation kit, scan-
ner, and laboratory had dramatic impacts on overall GEP
expression (seen in PCA plot) as well as the smaller
subsets of probes that define gene signatures. These varia-
tions are often unavoidable in long-term studies, and both
ComBat and M-ComBat are equally as effective in elimi-
nating these confounding batch effect related differences.
However, M-ComBat offers an intelligent framework to
overcome these changes and the power to control the
location and scale of the transformed data.
M-ComBat allows for gene expression meta-analyses to

combine data from different studies to a known standard.
The benefit of a fixed standard in meta-analysis is impor-
tant for gene signature comparison, differential expression
analysis, and the search for new gene signatures on a larger
subset of combined samples on a known standard.
M-ComBat is a practical modification to an accepted

method that offers greater power to control the appear-
ance of batch-effect adjusted data. M-ComBat allows for
historical models to function as intended on future sam-
ples despite known, often unavoidable systematic changes
to gene expression data.
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