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This paper presents a new algorithm called Signal Subspace Extraction (SSE) for detecting and estimating target echoes in
reverberation. The new algorithm can be taken as an extension of the Principal Component Inverse (PCI) and maintains the
benefit of PCI algorithm and moreover shows better performance due to a more reasonable reverberation model. In the SSE
approach, a best low-rank estimate of a target echo is extracted by decomposing the returns into short duration subintervals
and by invoking the Eckart-Young theorem twice. It was assumed that CW is less efficiency in lower Doppler than broadband
waveforms in spectrum methods; however, the subspace methods show good performance in detection whatever the respective
Doppler is. Hence, the signal emitted by active sonar is CW in the new algorithm which performs well in detection and estimation
even when low Doppler is low. Further, a block forward matrix is proposed to extend the algorithm to the sensor array problem.
The comparison among the block forwardmatrix, the conventional matrix, and the three-mode array is discussed. Echo separation
is also provided by the new algorithm. Examples are presented using both real, active-sonar data and simulated data.

1. Introduction

A major problem in moving platform active sonar systems
is the detection of targets in reverberation. Reverberation
is caused mainly by the multiple reflections, diffusions, or
diffractions of the transmitted signal by the surface and
bottom interfaces. When the target is close to one interface,
the target echo is hidden in the reverberation resulting in a
low signal-to-reverberation ratio (SRR). Moreover, since the
reverberation is strongly correlated with the signal, classical
detectionmethods likematched filtering (MF) are inefficient.
In order to improve detection, we can use a model of
reverberation, but a correct model is difficult to find because
reverberation contains both diffuse components (which look
like noise) and also more discrete components (which look
like signal). If a global statistical description of reverberation
is available, like a reverberation scattering function, the
structure of the theoretical optimal receiver is known [1].
Generally, this is not the case and a simplified model is used.

One often used statistical model considers reverberation
as nonstationary, colored noise. This approach is used in [2]
for monochromatic transmitted signals and in [3] for wide-
band signals. In [4], they show that algorithms based on
this approach have some problems when the Doppler shifts
of reverberation and target echo are similar. Further, this
model does not take advantage of the connection between
reverberation and the transmitted signal.

In [4], they propose to use a simplified model which
is deterministic: reverberation is considered as a sum of
undesirable echoes. The method for detection consists in
estimating these echoes and deleting them before applying
the classical MF. It is important to choose a metric to
distinguish reverberation echoes from target echoes, and
since the target echo power is often lower than reverberation
power, they choose echo power as a metric. Next, they
need to find an algorithm which is able to separate echoes
with different power. They used the Principal Component
Inverse (PCI) algorithm which was introduced in [4–6].
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This algorithm originally assumes that noise is completely
different from the searched signal. But [4] shows that PCI
algorithm can separate several similar echoes (which means
echoes with slight time shift or/and Doppler shift) differing
in powers.

PCI is applied to detection in presence of reverberation
by taking reverberation as a sum of echoes with higher power
than target echoes. PCI algorithm separates the received
data into two parts: reverberation and target echoes. By
this means we detect targets. However, even when rever-
beration power is high, there are still some reverberation
echoes with lower power. The sum of these lower rever-
beration echoes sometimes makes a strong confusion with
targets.

In this paper, we present a new algorithm named Signal
Subspace Extraction (SSE) based on a more real-life model.
The SSE algorithm divides the reverberation with target
echoes into three parts: higher reverberation echoes, target
echoes, and lower reverberation echoes. It makes use of a low
rank characteristic of the target echo subspace and separates
the signal subspace via the singular value decomposition
(SVD) method. PCI separates the reverberation and the
target echo by invoking Eckart-Young theorem [7] while
SSE extracts the signal by invoking Eckart-Young theorem
twice.

Broadband waveforms are generally preferred to contin-
uous wave (CW) in low Doppler [8] when using spectrum
methods. However, the subspace algorithms are efficient in
whatever the respective Doppler is [4, 9]. Hence, in this
paper, CW is brought back into use and shows good per-
formance in signal extraction and estimation by experiments
with real and simulated reverberation.

In [10], a three-mode array is brought for PCI for sensor
array problem, and the detection is improved by the three-
mode array. However, the three-mode array is a kind of a
three dimension matrix. To make it work, the Eckart-Young
theorem and SVD have to be extended to a three-dimension
problem, too. In this paper, we provide a block forward
matrix which is a two-dimension matrix, but this matrix
still extends SSE into sensor array problem. SSE with the
block forward matrix can be regarded as a new algorithm
of Space Time Adaptive Process [11] which jointly processes
received data in angle and Doppler to improve the separation
of target echo and reverberation. The comparison among
block forward matrix, traditional matrix, and three-mode
array is also presented.

Section 2 quickly reviews the classical detection/esti-
mation hypothesis, the Block Normalized Matched Filter
(BNMF). Section 3 presents the SSE algorithm and gives
results with adapted real temporal data. Section 4 presents
the block forwardmatrix and extends the algorithm to sensor
array problem and discusses the property of the new matrix
in comparison with the conventional matrix in [4] for PCI.
In Section 4.3, experiments are taken by simulation of space
time reverberation in comparison between PCI and SSE.
We also give the examples of comparison results among
block forward matrix, traditional matrix, and three-mode
array.

2. Detection/Estimation Problem in
the Presence of Reverberation

The detection problem is written as follows:

H0: x(t) = n(t) + r(t),

H1: x(t) = s(t) + n(t) + r(t),
(1)

where x(t) is the observed or received signal, r(t) is the
reverberation noise generated by the transmitted signal, and
n(t) represents white noise. The signal emitted by the active
sonar is assumed to be a CW. s(t) is the signal to be detected.
We assume here that it is linked to the emitted signal e(t) in a
simple way: s(t) is differed from the emitted signal by a time
delay τ, a Doppler shift fd, and an amplitude attenuation A
in the block where signal presents

s(t) = Ae(t − τ) exp
(
2π j fdt

)
, (2)

and let xn be the sampled vector of x(t) and let sn be the
sampled signal, where T = 1/ fs is the the sampling interval
and we sampled at time t = nT :

sn = Ae(nT − τ) exp
(
2π j fdnT

)
, (3)

or

sn = Ae(nT − τ) exp

(

2π j

(
fd
fs

)

n

)

, (4)

where fd/ fs is named as normalized Doppler Frequency. All
signals are complex valued and represent the sonar output
after complex demodulation. We work with time-sampled
signals.

2.1. Detection/Estimation Algorithms. As the reverberation
is nonstationary, we propose to build a block-by-block
detector. The received signal is divided into blocks for
processing. The reverberation is assumed stationary in each
block. This means that A and fd are not changed during
the block time. The detection and estimation are performed
block by block. The length of each block is N . The statistic
test of the Block Normalized Matched Filter (BNMF) [4] is
applied to each block after SSE for detection and estimation.
For the ith block, the statistic test of the BNMF is written as

Li
(
fd
) =

∣
∣
∣
∑N−1

n=0 s∗n
(
fd
)
xin
∣
∣
∣
2

(1/2N)
∑N−1

n=0
∣∣sn
(
fd
)∣∣2∑N−1

n=0
∣∣xin
∣∣2

. (5)

s∗n ( fd) is the conjugate transpose of sn( fd). Since A is the
common divisor of the nominator and denominator, it is
deleted from the equation. τ is decided due to the block in
which a target is detected. Hence, fd is the only parameter we
need to estimate from (5). Li( fd) is computed on each block
and for different Doppler shifts fd = kd fs. The parameter
fs (sampling rate for the estimation of fd) is determined
by considering the ambiguity function of the transmitted
signal [12]. It measures the precision of the Doppler shift
estimation. Let kd be the normalized Doppler frequency
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and it is also the number of Doppler samples. The BNMF
algorithm allows one to obtain a vector Li( fd). Hypothesis
H1 is chosen if maxkdLi( fd) is larger than a given threshold
η. In addition, this maximum estimates the corresponding
Doppler frequency.

3. One-Dimensional Signal Subspace Extraction

We model reverberation as a sum of echoes issued from the
transmitted signal which implies that reverberation and the
target echoes share almost the same properties.

By cutting x into Xi, the forward matrix Yi is generated
by

Yi =

⎛

⎜
⎜
⎜
⎜
⎝

Xi
(
p
)

Xi
(
p − 1

) · · · Xi(1)
Xi
(
p + 1

)
Xi
(
p
) · · · Xi(2)

...
...

. . .
...

Xi(N) Xi(N − 1) · · · Xi
(
N − p + 1

)

⎞

⎟
⎟
⎟
⎟
⎠
, (6)

where N is the block length and p is chosen close to N/2. It
is well known that a vector, which is a linear combination
of k complex exponentials, can be made into the forward
matrix above, and the matrix will have rank k, if min(p,N −
p + 1) ≥ k [5]. However, since for the reverberation echoes
k � min(p,N − p + 1), reverberation echoes span the full
space of matrix Yi. In the context of the real data of interest,
if one assumes that the reverberation or target echoes are
well approximated by a series of CW suitably scaled, the rank
of target echoes subspace is low because for target echoes
k ≤ min(p,N − p + 1) in the matrix in most detection cases.

The SSE algorithm consists of decomposing Yi into three
matrices Yr1

i , Y
s
i , and Yr2

i :

Yi = Yr1
i + Yo

i = Yr1
i + Ys

i + Yr2
i , (7)

where Yr
i = Yr1

i + Yr2
i is the reverberation plus white noise

subspace and Ys
i is the received signal dominant subspace.

As reverberation power is stronger than received signal in
most cases, according to Eckart-Young theorem and [4],
Yr1
i is the best r-rank approximation of Yi if r is the rank

of dominant reverberation subspace. After we delete the
dominant reverberation Yr1

i , the residual matrix contains the
target echoes, residual reverberation, and noise, and target
echoes become the principal component in the residual
matrix. Then we use Eckart-Young theorem for the second
time. Ys

i is the best s-rank approximation of Yo
i if s is the

rank of target echo subspace. The result is obtained via the
Singular Value Decomposition(SVD) of Yi:

Yi = UΣVH = [Ur1|Us|Ur2]

⎡

⎢
⎣
Σr1 0 0
0 Σs 0
0 0 Σr2

⎤

⎥
⎦

⎡

⎢
⎣
Vr1

Vs

Vr2

⎤

⎥
⎦, (8)

where U is the left singular-vector matrix of Yi, V is the right
singular-vectormatrix ofYi, andΣ is a diagonalmatrix which
contains the decreasing singular values of Yi, {σi} (σ1 > σ2 >
· · · ). VectorXs

i is then collected fromYs
i . The subspace signal

estimation is obtained and then Xs
i contains only the signal.

The detection processing is done on the vector Xs
i .

The rank used to partition the matrix is not known and
must be estimated. In the SSE approximation it is determined
by following the method suggested in [13]. This procedure
uses the partial sums of squared singular values from the
SVD of the data matrix as its test statistic. We start testing
from the smallest sum and work our way upwards till, for
some I , the partial sum exceeds a specified threshold. The
singular values are in descending order, {σi} (σ1 > σ2 > · · · ).
We seek the smallest I , Imin for which

Imin∑

i=0
σ2RY−i > Q, (9)

where RY is the rank of Yi. Following this method, we also
seek the largest J , Jmax for which

Jmax∑

i=1
σ2i < P, (10)

where Q and P are the SSE threshold values. Q is related to
the higher power of reverberation. The sum of Q and P is
related to the whole power of reverberation [4]. The rank is
then chosen as r = Jmax and s = RY − Jmax − Imin. From real
cases studied, usually Q is simplified to the higher power of
reverberation, since Q � P. Hence, the first step of SSE is
the same as the PCI procedure including the threshold. And
s approximates to the number of target echoes since for target
echoes k ≤ min(p,N− p+1) in the matrix, if the transmitted
signal is CW, and the target echo is present in the block.

The SSE thresholds used here are based upon the
background reverberation power and may be set using prior
knowledge or derived from the data. If Imin + Jmax ≥ RY , SSE
does not treat this block. And only when Imin + Jmax ≤ RY ,
the SVD is required to determine the signal subspace.

A hypothesis is necessary for a correct running of SSE:
the rank r1 of Yr1

i must be small. This hypothesis is the same
to PCI and indicates that SSE will fail when SRR is extremely
low.

3.1. Experiments. The experiments are performed by com-
parison. They are based on the real data taken from a sea
trial in South China Sea. The transmitted signal is CW. Data
is received by active sonar. A moving target presents in this
trial. The sampling frequency fs is 5 kHz. The normalized
Doppler frequency fd/ fs due to the moving target is 0.049.
Here we use the normalized Doppler frequency to plot the
detection/estimate results. Reverberation is mainly caused by
bottom echoes. The BNMF algorithm is applied after PCI
and SSE to see the detection improvement. The time series
is cut into 0.1 s in each block.

Three experiments are performed with different SRRs.
We add weighted adjacent block without target echoes into
the block in which target echo is present to obtain data with
different SRRs. This is reasonable based on the temporally
local stationarity [14]. The results are shown in Figures 1-
3. Here we only plot the result of the block in which the
target echo is present. We observed that without PCI or SSE,
the target echo could hardly be detected. The detection and
estimation are improved by PCI and SSE.
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Figure 1: Adapted active sonar data, BNMF outputs without
processing, and after PCI and SSE with SSR= −12 dB, fd/ fs =
0.049.

Figure 1 shows the results of BNMF outputs without
processing and after PCI and SSE with SRR −12 dB. For PCI
and SSE, they both detect the target and give right estimation
of normalized Doppler frequency fd/ fs of the target echo
which is 0.049. However, many false alarms appear with PCI
while no false alarm is present with SSE in this experiment.

Figure 2 shows the results of BNMF outputs without
processing and after PCI and SSE with SRR −17 dB. It is
observed that the target would not be detected with the PCI
if only the largest peak is chosen. The false alarms are the
consequence of a lack of lower reverberation removal.

Figure 3 shows the results of BNMF outputs without
processing and after PCI and SSE with SRR −22 dB. When
SRR is lower, the detection becomes worse: both PCI and SSE
give false alarms. But the false alarms are still less and lower
with SSE than PCI. The target would not be detected with the
PCI if only the largest peak is chosen.

4. Two-Dimensional Signal Subspace Extraction

4.1. Sensor Array BNMF. Consider that the signal is received
on a linear array of M sensors. The detectionproblem is
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Figure 2: Adapted active sonar data, BNMF outputs without
processing, and after PCI and SSE with SSR= −17 dB, fd/ fs =
0.049.

described as follows:

H0: xn,m = nn,m + rn,m,

H1: xn,m = sn,m + nn,m + rn,m,
(11)

where xn,m is the received signal on the mth sensor at time
sample n. Let us consider a linear array of M sensors with
equally interelement spacing d. The signal emitted by the
active sonar is CW. Then each element of sn,m is written as

sn,m = Ae(nT − τ) exp

(

2π j

((
fd
fs

)

n +
md cosβ

λ

))

, (12)

where β is the direction of target and λ is the wavelength.
e(t) is the emitted signal. τ is the time delay. fd is the
Doppler shift. fs is the sampling frequency. Hence fd/ fs is the
normalized Doppler frequency.

The detection and estimation are also performed block
by block. The temporal length of each block is N , and the
spacial length is M which is equal to the number of sensors.
We use the classical generalized likelihood ratio test (GLRT)
to build the algorithms. GLRT does not only choose H0
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and H1 but also estimates the Doppler frequency fd and
azimuth β. The estimation of the delay τ is quantified by the
shift between two blocks. For the ith block, the statistic test
of the BNMF for space time GLRT is

Li
(
fd,β

)

=
∣∣
∣
∑M

m=1
∑N−1

n=0 s∗n,m
(
fd,β

)
xn,m

∣∣
∣
2

(1/2NM)
∑M

m=1
∑N−1

n=0
∣
∣sn,m

(
fd,β

)∣∣2∑M
m=1

∑N−1
n=0

∣
∣xn,m

∣
∣2

.

(13)

This detector requires the estimation of new parameter β.H1

is chosen if max fd ,βLi( fd,β) > η. η is a given threshold.

4.2. Extension of SSE to Senor Array Data. For the sensor
array problem, the SSE algorithm is the same. Only the
arrangement of matrix Yi changes. Here we propose a block
forward matrix for SSE. The block forward matrix is similar
to the block Hankel matrix [15, 16]. The block forward
matrix of xn,m is defined as

Yi =

⎛

⎜
⎜
⎜
⎜
⎝

Xp Xp−1 · · · X1

Xp+1 Xp · · · X2
...

...
. . .

...
XM XM−1 · · · XM−p+1

⎞

⎟
⎟
⎟
⎟
⎠
, (14)

where form = 1, 2, . . . ,M,

Xm =

⎛

⎜
⎜
⎜
⎜
⎝

xq,m xq−1,m · · · x1,m
xq+1,m xq,m · · · x2,m

...
...

. . .
...

xN ,m xN−1,m · · · xN−q+1,m

⎞

⎟
⎟
⎟
⎟
⎠
, (15)

where p is chosen close to M/2 and q is chosen close to
N/2. If xn,m is composed of one complex exponential, the
block forward matrix has rank one, because each row can
be expressed as a complex scale factor times the first row.
Matrices (14) and (6) share similar structure: for matrix (6),
the shift between two rows or two columns is equal to one
sample, and so it is for matrix (14). Hence the rank analysis
is the same. The additional degree of freedom given by
the spatial dimension leads to easier separation of different
echoes.

We are now interested in the separation of two echoes
issued from the transmitted signal. As we have known, two
different target echoes are represented by different time
delays, different directions, or different Doppler frequencies.
The consideration of different time delays of echoes turns to
the signal present or not after we divide the received data into
short time duration. If time delays of two different echoes are
the same, which means that two target echoes appear in the
same block, it is obvious that two echoes have to be described
by different singular values in order to separate them. We
have shown that rank of signal subspace is related to number
of target echoes differed by frequencies and directions since
for CW the target echo vector is composed of different
complex exponentials. Then it is easy to separate different
target echoes.
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Figure 3: Adapted active sonar data, BNMF outputs without
processing, and after PCI and SSE with SSR= −22 dB, fd/ fs =
0.049.

Here we also present the matrix derived in [4]. It is built
from the data received on all sensors and has the general
form:

Yi =
{
xn,m

}
(i×N+1≤n≤(i+1)×N ,1≤m≤M), (16)

where N is the block length, andM is the number of sensors.
Every column corresponds to the output of one sensor. The
algorithm described in this section is applied to this matrix.
We present the arrangement of the first block to illustrate the
structure of this matrix. Thematrix is then written as follows:

Yi =

⎛

⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 · · · x1,M
x2,1 x2,2 · · · x2,M
...

...
. . .

...
xN ,1 xN ,2 · · · xN ,M

⎞

⎟
⎟
⎟
⎟
⎠
. (17)

In matrix (17), the shift between two rows is the same
and so is between two columns.

The comparison between these two matrices will be
presented by experiments in the next section. We analyze
them theoretically in this section. First, the dimension of
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Figure 4: PCI and SSE outputs on simulated space-time reverberation.

the block forward matrix is higher than the second matrix.
Hence for the full-rank matrix, echoes could be represented
by more singular values in block forward matrix. The
separation of echoes will be easier. Then, the lengths of the
column and the row are nearly the same in block forward
matrix but can be quite different in the second matrix in
which they completely depend on the number of the sensors
and the block length. The number of singular values depends
on the shorter one, whichmeans that the data cannot be used
in the most efficient way in (16), if the lengths of column and
row are different.

4.3. Experiments. Simulations are performed to check the
proposed algorithms in array data in this section. We first
consider the reverberation containing one target echo with
block forward matrix. Then, reverberation with two target
echoes will be used to perform the separation. Finally, the
comparison of different matrices will be presented.

4.3.1. Space Time Reverberation Model. Consider a nar-
rowband, M element linear sonar array with a constant
intersensor spacing d towed along the x-direction with a
velocity v. The complex envelope of the Doppler-shifted
reverberation data received at the mth sensor at (xm, ym) =
((m − 1)d, 0), (x0, y0) = (0, 0) at time tn = τ0 + nT , can be
written as [17]

rmn =
∑

θiφl

α
(
θi,φl

)
e j(2π/λ) cosφl(sin θi(m−1)d+2v sin θinT), (18)

where T = 1/ fs is the the sampling interval, azimuth −π ≤
θi < π, 1 ≤ i ≤ Mθ , and elevation angle |φl| ≤ φmax,
where φmax is the multipath elevation angle spread defined
by the critical angle of the ocean acoustic channel. α(θi,φl)
is the complex scatter amplitude from a reverberation patch
at range cτ0/2, where c is the propagation speed of sound in
water. The total number of reverberation patches MθNφ �
MN .

4.3.2. Signal Extraction. In this experiment, suppose that
there is one target echo with an SRR of −18 dB, normalized
Doppler frequency fd/ fs = 0.05, and azimuth β = π/4.
The number of sensors is M = 16 and number of time
samples is N = 64 in each block. The results of the detector
in which block the target is detected are shown in Figure 4.
The target is detected after both PCI and SSE. Both show
right estimates of the true parameters. However, a lot more
false alarms appear with PCI. The superiority of SSE is easily
shown.

4.3.3. ROC. The superiority of the proposed detection
scheme is demonstrated from the experiments above.
However, to make this claim more precise, we evaluate
the experimental performance of the detectors by receiver
operating characteristic (ROC) curve where the detection
rate is plotted versus the false alarm probability in Figure 6.
Monte Carlo simulations were performed comprising 1500
realizations with one target echo present with an SRR of
−12 dB and equally many with reverberation and noise only.
The number of sensors is M = 16 and number of time
samples is N = 16 in each block. The ROC curves are shown
in Figure 6 for the detectors using PCI and for the proposed
detectors using SSE. Comparing the two curves, we see that
SSE has a higher probability of detection when probability of
false alarm is low.

4.3.4. Separation. In the following experiments, the separa-
tion performance of SSE will be demonstrated.

In the first experiment of separation, suppose that there
are two target echoes in one block. They are one target echo
with normalized Doppler frequency 0.05 and azimuth π/4,
and the other with normalized Doppler frequency−0.05 and
azimuth 3π/8. The amplitude of two target echoes is slightly
different with 1 : 0.97 ratio. The SRR is −16 dB. The result of
the detector after SSE is shown in Figure 5(a). The targets are
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Figure 5: Separation performance via SSE with signal power ratio 1 : 0.97.

clearly detected. After we perform a separation on the signal
subspace via SVD with different singular values, Figures 5(b)
and 5(c) show a good separation of the two target echoes with
different power. And results show good estimates of both
target echoes.

In the second experiment of separation, the ratio of
amplitude of two target echoes is changed into 1 : 0.5. The
result of the detector after SSE is shown in Figure 7(a). When
we apply SSE, a few false alarms appear. The echo with higher
power is easy to detect, but the less powerful echo is no
stronger than the false alarms. However, after the separation
performance in Figures 7(b) and 7(c), the two target echoes
are well detected and estimated. This step of performance
requires the preknowledge of the power level of each target
echo.

4.3.5. Matrix Comparison. We use the conventional matrix
in (16) with the same data as in the first experiment for
Section 4.3.4 above. Results are shown in Figure 8. False
alarms appear with PCI in Figure 8(a). Even with SSE,
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Figure 6: Experimental ROC curves for PCI and SSE with an SRR
of −12 dB.
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(b) One echo of separation outputs with fd/ fs = 0.05 and β =
π/4
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(c) One echo of separation outputs with fd/ fs = −0.05 and β =
3π/8

Figure 7: Separation performance via SSE with signal power ratio 1 : 0.5.

the detection in Figure 8(b) is not improved much. The
separation of the echoes in Figures 8(c) and 8(d) fails.

We also show the result of PCI with the three-mode array
[10] in Figure 9. The experiment is arranged in the same
condition with Section 4.3.2. Comparing with Figure 4, the
detection/estimation capability is equally the same with the
block forward matrix using PCI. And since the three-mode
array is a three-dimension matrix, SSE is too complicated
to be applied to it and so is the echo separation which [10]
is not mentioned either. Hence block forward matrix still
performs the best among the three matrices in efficiency and
detection/estimation capability.

5. Conclusions

In this paper, we present a new algorithm Signal Subspace
Extraction to extract the signal subspace from reverberation.
SSE is tested by adapted real signal-channel data and shows
good results. Then we derive a block forward matrix and

extend the method to the sensor array problem. Experiments
by simulations show the block forward matrix works well
with the new algorithm not only in detection of target echoes
but also in separation of target echoes.

Appendices

A. Singular Value Decomposition

Given a matrix Am×n whose rank is r and m × n, there
exist two orthogonal matrixes Um×m = (u1,u2, . . . ,un) and
Vn×n = (v1, v2, . . . , vn):

A = UΣVT

=
r∑

i=1
ui · σi · vTi ,

(A.1)

where Σ = diag(σ1, σ2, . . . , σn) ∈ Rm×n and σi is the singular
value of A and the singular values are in descending order,
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Figure 8: PCI, SSE, and separation via SSE with conventional matrix.
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Figure 9: PCI output with the three-mode array.

{σi} (σ1 > σ2 > · · · ). (A.1) is called the Singular Value
Decomposition (SVD) of A.

B. Eckart-Young Theorem

Let the SVD of A be given by (A.1) with r = rank(A) ≤ p =
min{m,n} and the singular values are in descending order,
{σi} (σ1 > σ2 > · · · ), and define

Ak = UkΣkV
T
k =

k∑

i=1
ui · σi · vTi , (B.2)

where k < p; then Ak is the optimal approximation of A in
the view of

min
rank(B)=k

‖A− B‖
F

= ‖A− Ak‖F =
√
√√
√
√

p∑

i=k+1
σ2i ,

min
rank(B)=k

‖A− B‖
2
= ‖A− Ak‖2 = σk+1.

(B.3)
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