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Abstract. We study the relationship between synchronization and the rate with which
information is exchanged between nodes in a spatio-temporal network that describes the
dynamics of classical particles under a substrate Remoissenet–Peyrard potential. We also
show how phase and complete synchronization can be detected in this network. The
difficulty in detecting phase synchronization in such a network appears due to the highly
non-coherent character of the particle dynamics which unables a proper definition of the
phase dynamics. The difficulty in detecting complete synchronization appears due to the
spatio character of the potential which results in an asymptotic state highly dependent
on the initial state.
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1. Introduction

The sine-Gordon potential and similar others have been used to model the dy-
namics of many systems in physics, biology and engineering [1–8]. However, in
real physical systems, the shape of the substrate potential can deviate from the
standard one with a direct incidence on the stability properties of the system. In
physical situations, such as charge-density waves, Josephson junctions, or crystals
with dislocations, the application of the standard sine-Gordon model becomes too
restrictive. In recent years, a number of potentials whose shapes can be turned at
wish have appeared in the literature of nonlinear dynamical systems [2–8]. These
more realistic potentials certainly provide richer insights into the physics of real
systems than what is predicted using the conventional, rigid models such as the
sine-Gordon, double-sine-Gordon and φ4 potentials. In particular, we can expect a
more rich and complex synchronization phenomena in models of nonlinear oscilla-
tors involving them.
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The purpose of the present paper is to study networks formed by oscillators
under realistic shape deformable potentials. To model the network, we use the
Remoisnet–Payrar potential, which has been extensively used in the literature to
describe the disturbance of the sinusoidal shape of the substrate periodic potential
of the sine-Gordon equation [1–3].

We are mainly interested in the complex relationship between synchronization
and transmission of information. By synchronization, we mean complete synchro-
nization (CS) [9–12] and chaotic phase synchronization (PS) [13]. The information
point-of-view will be provided by the procedure described by Baptista et al in refs
[14]. We shall show that synchronization and information are directly related in
such an active network. The larger the synchronization is, the larger is the rate
with which information is exchanged between nodes in the network, the so-called
mutual information rate (MIR).

Such a relationship can be experimentally explored when one needs to observe
how nodes are attached to each other in a real network. For situations where the
nodes of the network are neither completely synchronous nor phase synchronous,
the MIR provides the level of connectivity. In addition, the MIR limits the amount
of information that can be retrieved in some point of the network about an arbitrary
external stimulus.

Due to the spatio character of the studied network, both approaches, the ones in
refs [9–12] and the ones in refs [14] might face difficulties to be implemented and
this work resolves many of them. In particular, we study networks which have node
trajectories departing from randomly initial conditions. That creates a situation
similar to the one observed in networks constructed with nodes presenting different
parameters, when the methods in ref. [10] should be used with precaution.

Note that quite a number of physical objects allowing a model description with
the aid of the sine-Gordon equation are known: arrays of forced damped pendula,
vortices in long Josephson junctions, charge-density waves in quasi-one-dimensional
conductors etc. [1,2]. For real physical systems, the account of various disturbances
and of a more complex character of atomic interactions breaks the exact integra-
bility of the initial sine-Gordon equation, leaving the possibility for describing the
system dynamics in terms of the same quasi-particles which now interact with each
other.

The rest of the paper is organized as follows: In §2 we explore the dynamics of
the network in consideration and analyze the effect of the deformability parameter
in the substrate potential on the stability synchronization of the network. In §3 we
analyze phase synchronization in such networks, and §4 is devoted to the study of
information transmission within the nodes of the network. Finally, we present the
conclusions in §5.

2. Synchronization dynamics of the networks

2.1 Description of the networks

We first investigate the dynamical properties of a single particle in a deformable
substrate potential. If we define the variable x as the displacement of the particle
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in the potential well, then the equation of motion describing its dynamics reads

ẍ + λẋ + ω2 ∂V (x, r)
∂x

= η0 cos Ψt. (1)

In this work we consider the following fixed set of parameters: λ = 0.01, ω = 1, η0 =
0.19. The parameters Ψ and r will be varied.

Recall that x is the coordinate variable which characterizes the behavior of the
particle in the potential well V (x, r). The new issues of our model under considera-
tion are the following: we apply an AC force η(t) = η0 cos Ψt to the particle and as-
sume also the external viscous damping with a coefficient λ. In this work, V (x, r) is
a nonlinear potential with a deformable shape introduced by Remoissenet–Payrard
to study the coherent structure in a network formed by a similar system. There
are many versions of this potential, but we concentrate our analyses on the most
general case defined as [2–8]

V (x, r) = (1 − r)2
1 − cos x

1 + r2 + 2r cos x
, (2)

where the deformability parameter r fulfills the condition |r| < 1.
The advantageous feature of this potential can be summarized by the fact that

it reproduces the sine-Gordon (r = 0) while avoiding most of its shortcomings. A
shape of broad wells separated by narrow barriers can be obtained for r > 0 and
for r < 0, a shape of deep narrow wells separated by broad gently sloping barriers
can be obtained.

Figure 1 shows the form of the potential and the corresponding phase plane as
a function of the parameter r, for r > 0. One can observe that the larger the
parameter r is, the flatter the bottom of the potential.

In real physical systems, such potential can be produced by the interaction of
an adatom with substrate atoms, where the parameter r could account for the
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Figure 1. Form of the potential as a function of r and the corresponding
periodic orbits for a free particle (η0 = 0 and λ = 0). The pictures in the left
(right) column shows x vs. V (x, r) (x vs. ẋ).
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Figure 2. Parameter space plot of the frequency Ψ and the deformability
parameter r. Points represent chaotic behavior (positive KS-entropy and con-
tinuous Fourier spectrum).

temperature or pressure dependence, or for the geometry of the surface of the
metallic surface. It can be calculated from the first principles as described in
refs [1,2,4] and references therein. However, it is more reliable to determine the
parameter r from experimental data. Estimates for e.g., a H/W adsystem (hydrogen
atoms absorber on a tungsten surface), yield r ≈ −0.3 [1,2,4]

Typically, if periodic oscillators are subjected to a periodic force, different phase-
locking phenomena as well as chaos may be observed. And chaotic oscillators when
subjected to a periodic force give rise to a series of bifurcation phenomena.

Figure 2 shows the parameter space diagram of the oscillator in eq. (1). Points
(blank space) indicate values of the frequency Ψ and the deformability parameter
r for which the oscillator in eq. (1) is chaotic (periodic).

The (r, Ψ) space is characterized by the predominance of periodic solutions. The
chaotic solutions appear only for the value of the deformability parameter approach-
ing the limit 1. However, for high frequency, the chaotic motion appears earlier,
that is at r � 0.4. For larger r and Ψ the parameter space presents a complex
pattern whose chaotic regions appear side-by-side with periodic regions. For the
specific narrow band of frequency Ψ around 0.70 and 0.75 a deep band of chaotic
motion can be found for r between 0.1 and 0.4. This confirms the chaotic behavior
of deformable model systems as first suggested in refs [4,7,8].

We now consider a network of N dynamical units of oscillators described by eqs
(1) and (2). The governing equation for the network is given by

ṗi = ni,

ṅi = −λni − ω2 ∂V (pi, r)
∂pi

+ η0 cos Ψt

+gl(pi+1 − 2pi + pi−1) with i = 1, 2, ..., N (3)
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where V (pi, r) is given by eq. (2). The constant parameter gl determines the
strength of the coupling and N is the number of oscillators coupled. This equation
is known as the Frenkel–Kontorova (FK) model with harmonic interaction and non-
sinusoidal substrate potential. It has been extensively studied in the research of sta-
tic characteristics of kinks (topological solitons) such as the effective mass, shape,
and amplitude of the Peierls potential, the interaction energy of kinks, and the
creation energy of kink–antikink pairs. The applicability of the extended Frenkel–
Kontorova model for describing diffusion characteristics of a quasi-one-dimensional
layer adsorbed on a crystal surface has also been discussed in ref. [1]. For real
physical systems, the account of various disturbances and of a more complex char-
acter of atomic interactions break the exact integrability of the initial sine-Gordon
equation, leaving the possibility for describing the system dynamics in terms of the
same quasi-particles which interact with each other. This interaction, which is due
to the departure from complete integrability, results in the following effects. The
Kolmogorov–Sinai entropy becomes nonzero and the Fourier spectrum of excited
states of the system becomes continuous. Both are characteristics of chaos.

2.2 Stability of the synchronization

Our analysis will be limited to networks of identical units. Since the N systems
are identical, it exists in an exactly synchronized solution of eq. (3), and the
synchronization manifold is defined by M = {p1 = p2 = · · · = pN = ps; n1 = n2 =
· · · = nN = ns}.

In the study of synchronization, a very relevant problem is to assess the conditions
for the stability of the synchronous behavior for the networks and for the coupling
configuration. The master stability function approach was originally introduced for
arrays of coupled oscillators [10], and later extended to the case of complex networks
of dynamical systems [9,12]. To use this, let us consider N coupled dynamical units,
each of them giving rise to the evolution of two-dimensional vector fields xi ruled by
a local set of ordinary differential equations ẋi = F(xi). The equations of motion
using the new variable can be written as

ẋi = F(xi) + gl

N∑

j=1

GijH(xj), i = 1, 2, ..., N, (4)

where ẋi = F(xi) governs the local dynamics of the ith node. xi = [pi, ni]T , and

F(xi) =
[
ni,−λni − ω2 ∂V (pi,r)

∂pi
+ η0 cos Ψt

]T

with V (pi, r) as in eq. (2), the output

function H(xi) is a vectorial function defined through the matrix E=
(

0 0
1 0

)
by

H(xi) = Exi, and G(t) is a symmetric Laplacian matrix (
∑

j Gij = 0) describing
the network connection and given by
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G =

⎛

⎜⎜⎜⎜⎝

−2 1 0 . . . 1
1 −2 1 . . . 0
0 1 −2 . . . 0
...

...
...

. . . 1
1 0 . . . 1 −2

⎞

⎟⎟⎟⎟⎠
.

The stability of the synchronization state can be determined from the variational
equations obtained by considering an infinitesimal perturbation δxi from the syn-
chronous states, pi = δpi + ps, ni = δni + ns. The equations of motion for the
perturbation δxi can be obtained in a straightforward manner by expanding eq.
(4) in a Taylor series of first order around the synchronized state which gives

δẋi = DF(xs)δxi + gl

N∑

j=1

GijDH(xs)δxi, i = 1, 2, ..., N,

=
N∑

j=1

[DF(xs)δij + glGijDH(xs)] · δxi, i = 1, 2, ..., N, (5)

where DF and DH are the Jacobians of the vector field and the output function
respectively.

Equation (5) is referred to as the variational equation and is often the start-
ing point for stability determination. This equation is rather complicated since
the given arbitrary coupling G can be high dimensional. However, we can sim-
plify the problem by noticing that the arbitrary state δxi can be written as
δxi =

∑N
i=1 vi

⊗
ξi(t) with ξi(t) = (ξ1,i, ξ2,i) where γi and vi are the set of real

eigenvalues and the associated orthogonal eigenvector of the matrix G respectively,
such that Gvi = γivi and vT

i vi = δij . By applying vT
i (t) (and vi) to the left (right)

side of each term in eq. (5) one finally obtains a set of N blocks for the coefficients
ξi(t). The first term with the Kronecker delta remains the same. This results in a
variational equation in the eigenmode form

ξ̇k = [DF(xs) + glγkDH(xs)] ξk, k = 0, 1, 2, ..., N − 1. (6)

We recall that γk are the eigenvalues of G, and are given by γk = −4 sin2(πk/N)
for the diffusive coupling [10]. Note that each equation in eq. (6) corresponds to
a set of two conditional Lyapunov exponents λj

k (j = 1, 2) along the eigenmode
corresponding to the specific eigenvalue γk. For k = 0, we have the variational
equation for the synchronization manifold (γ0 = 0) and its maximum conditional
Lyapunov exponent λ1

0 corresponds to one of the isolated dynamical unit. The
remaining variations ξk, k = 1, 2, ..., N − 1 are transverse to M, and describe the
system’s response to small deviations from the synchronization manifold. Any
deviation from the synchronization manifold will be reflected in the growth of one
or more of these variations. The stability of the synchronized state is ensured if
arbitrary small transverse variations decay to zero. So, CS exists if λ1

k < 0, for
k ≥ 1.

We also calculate the condition for the synchronization in the network by using
the Lyapunov spectra, calculated directly from eq. (5). Complete synchronization
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in the generalized sense as defined in refs [9,12] exists if the second largest Lyapunov
exponent is negative.

Due to the periodic potential in eq. (2), the active network in eq. (4) is highly
sensitive to initial conditions. As a consequence, networks whose elements have
random initial conditions that differ only slightly completely synchronize for a cou-
pling strength smaller than the coupling strength needed to completely synchronize
networks that have elements whose initial conditions differ moderately. Often, the
network never synchronizes completely, and one can only have |xk − xl| < ϑ, and
so, the trajectory is not perfectly along the synchronization manifold. Even though
ϑ might be small, it is sufficiently large in order to mislead the statement that com-
plete synchronization appears only by checking the conditional exponents. This
discrepancy is due to the fact that, in this system, when the initial conditions are
not too close, the system goes to different attractors and the approximation made
to obtain the conditional Lyapunov exponents (eq. (6)) is no longer completely
valid, though it still provides approximate results. The effect of having nodes with
different initial conditions in the studied network is similar to having networks with
different parameters.

In figure 3, we show the parameter spaces (coupling gl vs. deformability para-
meter r) of the complete synchronization regime. Points show the values of gl and
r for which all the transversal (k ≥ 1) conditional exponents are negative (figures
3A,C) or when the second largest Lyapunov exponent becomes negative (figures
3B,D).

When the initial conditions differ by no more than 0.01 (figures 3A–B) the two
conditions predict complete synchronization provided it is the same surface in the
parameter space. However, when these initial conditions differ by no more than
0.5 (figures 3C–D), the conditional exponents predict the appearance of complete
synchronization for a coupling strength smaller than the strength for which it re-
ally appears, as predicted by the value of the second largest Lyapunov exponents
(figure 3D).

One can also observe from these figures that as the deformability parameter in-
creases, the system becomes more and more unstable. When r > 9.5, it is almost
not possible to find complete synchronization in the network for low values of cou-
pling strength gl. So, when the potential V (Pi, r) has a flat bottom, the particles
are almost nonsynchronizable in the network.

3. Phase synchronization

Phase synchronization [13,15,16] is a phenomenon defined by

|φk − mφl| ≤ ε, (7)

where φk and φl are the phases of the nodes xk and xl in the network (eq. (3))
and m = ωl/ωk, where ωk and ωl are the average frequencies of oscillation of these
nodes, and ε is a finite number. In this work, we have used in eq. (7) m = 1,
which means that we search for ωk : ωl = 1 : 1 (rational) phase synchronization. If
another type of ωk : ωl-PS is present, the methods in ref [15] can detect.
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The phase φ is a function constructed on a good 2D subspace, whose trajectory
projection has proper rotation, i.e., it rotates around a well-defined center of rota-
tion. Often, a good 2D subspace is formed by the velocity space. In the oscillator
considered in this work, one can use the results of [16], and define the phase of the
oscillator xi in eqs (3) as

φ(t) =
∫ t

0

n̈iṗi − p̈iṅi

(ṗ2
i + ṅ2

i )
dt. (8)

However, the oscillators in eqs (3) for the considered parameters is not a well-defined
phase, and even in a state where complete synchronization is achieved, one cannot
use eq. (8) to verify whether PS exists.

In short, if PS exists, in a subspace, then the points obtained from observations
of the position of one node’s trajectory at the time another node makes any physical
event do not visit the neighborhood of a special curve Γ, in this subspace. A curve
Γ is defined in the following way. Given a point x0 in the attractor projected onto
the subspace of one oscillator where the phase is defined, Γ is the union of all
points for which the phase, calculated from this initial point x0 reaches n〈r〉, with
n = 1, 2, 3, . . . ,∞ and 〈r〉 a constant, usually 2π. Clearly an infinite number of
curves Γ can be defined.

Formally, for non-coherent dynamical systems for which phase is still not well-
defined, PS implies localization of the conditional sets [16], but the contrary is not
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Figure 3. Appearance of complete synchronization in a network of N = 5
diffusively coupled oscillators. Points represent gl and r values for which the
conditional exponent λ1

1 is negative (A), (C) and for which the second largest
Lyapunov exponent is negative (B), (D). In (A), (B), the initial conditions
differ by at most 0.01 and in (C), (D) the initial conditions differ by at most
0.5.
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Figure 4. The appearance of phase synchronization in two bidirectionally
coupled oscillators. (A) There is no phase synchronization and the condi-
tional observations are not localized with respect to the curve Γ pictorially
represented in the figure. (B) There is evidence of phase synchronization and
the conditional observations are localized. Simulations are done considering
initial conditions no more than 0.01 apart.

always true. Therefore, finding localized sets should be considered a strong evidence
that PS exists.

As an example, consider eqs (3) with two coupled oscillators, r = 0.9 and φ =
0.08. For a small coupling gl = 0.01, in figure 4A, we show a situation that PS
is not present for gl = 0.01 and in figure 4B, we show an evidence that PS exists,
for gl = 0.05. The curve Γ, a continuous curve transversal to the trajectory, is
pictorially represented by the straight line Γ. In 4A, the conditional observations
are not localized and thus there is no PS in this subspace. The green line represents
the attractor projection on the subspace (pi, ni) of the oscillator x1, and filled red
lines represent the points obtained from the conditional observations of the oscillator
x1 whenever the oscillator x2 makes an event. An event is considered to be the
crossing of the trajectory to the line n2 = 0, for p2 > 0.

To have a general picture of when PS might appear in the two coupled oscillators,
we show in figure 5A the quantity κ with respect to gl defined as

κ =
max (pi

1) − min (pi
1)

max (p1(t)) − min (p1(t))
, (9)

where pi
1 represents the value of p1 at the instant the trajectory of oscillator x2

makes an event. Therefore, κ is related to how broad the conditional observations
visit the attractor. In figure 5B we show few values of pi

1 with respect to gl. For
gl ≥ 0.06, CS takes place.
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Figure 5. The appearance of phase synchronization in two bidirectionally
coupled oscillators. (A) Occupation of the conditional observations with re-
spect to the attractor, κ, and in (B) the position variable pi

1 when the oscillator
x2 makes the ith crossing with the section n2 = 0, for p2 > 0.

For large networks composed of N nodes, this analysis is straightforward and
PS between two nodes can be stated if the conditional observations realized in one
node, whenever the other node makes an event, produces a localized set.

4. Information transmission in the network

In order to study the way information is transmitted in active networks, we in-
troduce quantities and terminologies that assist us to better present our ideas and
approaches.

The mutual information rate (MIR) is the rate with which information is being
exchanged between two oscillation modes or elements in the active network.

The channel capacity, CC , is defined as the maximal possible amount of informa-
tion that two oscillation modes or nodes within the network with a given topology
can exchange, a local measure that quantifies the point-to-point rate with which
information is being transmitted.

The Kolmogorov–Sinai entropy offers an appropriate way of obtaining the entropy
production of a dynamical system. In chaotic systems, the entropy equals the
summation of all the positive Lyapunov exponents [17]. Here, it provides a global
measure of how much information can be simultaneously transmitted among all
pairs of oscillation modes or nodes. Therefore, the KS-entropy, HKS, of an active
network, calculated for a given coupling strength, bounds the MIR between two
oscillation modes, I, calculated for the same coupling strength. Thus,

I ≤ HKS. (10)
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An active network is said to be self-excitable (non-self-excitable) when CC > H
(0)
KS

(when CC ≤ H
(0)
KS), with H

(0)
KS representing the KS entropy of one of the N elements

forming the active network, before they are coupled.
According to [14], the upper bound for the MIR between two oscillation modes

in a non-self-excitable active network, denoted as I, can be calculated by

Ik ≤ λ1
0 − λ1

k, (11)

where λ1
0 and λ1

k (k = 1, . . . , N − 1) are the largest positive conditional exponent
[10], obtained numerically from eq. (6), with the oscillators possessing equal initial
conditions. λ0 measures the exponential divergence of trajectories along the syn-
chronization manifold and λk along the transversal modes. The units used for the
MIR is bits/unit time, which can be obtained by dividing eq. (11) by loge(2).

The networks as in eq. (4) are predominantly of the non-self-excitable type. Only
for a very small coupling strength, and a larger number of nodes, the network has
a negligible increase of the KS-entropy, which we will disregard.

As can be seen from the HKS curve in figure 6, the two coupled oscillators are
of the non-self-excitable type, since H

(0)
KS = HKS(gl = 0)/2 which is approximately

equal to CC . In this figure, we also show the MIR exchanged between the two
coupled oscillators. As typically happens for non-excitable networks, the channel
capacity is reached when the network completely synchronizes. Since the network
is composed of two bidirectionally coupled systems, the MIR between the only two
existing modes is actually the MIR between the two oscillators.

Comparing figures 5A and 6, one can see that there is a direct relationship be-
tween synchronization and information. The larger the amount of synchronization
the larger the MIR, again another typical character of non-excitable networks.

For larger networks with arbitrary topologies, the MIR between oscillation modes
is just a rescaled version of the MIR between two coupled oscillators. Given that
g
(2)
l is the coupling strength for which complete synchronization takes place in two

coupled oscillators, and therefore this coupled system operates with its channel
capacity, the coupling strength for which complete synchronization takes place in
a whole network composed of N nodes with a certain topology is given by

g
(N)
l = 2

g
(2)
l

γ1
1(N)

. (12)

At the parameter g
(N)
l , every pair of oscillators operate with the channel capacity.

Equation (12) means that having the curve for the MIR for two coupled oscillators,
the curve of the MIR for larger networks is rescaled by the second largest conditional
Lyapunov exponent of the Laplacian matrix γ1

1(N).
As an illustration of eq. (12), we show in figure 6, the MIR for a network composed

of five oscillators coupled diffusively. In this figure, we show the quantity 〈I〉 defined
as 〈I〉 = 1/(N − 1)

∑N−1
1 Ik. Note that even though 〈I〉 might change its values

according to the network topology and N , its maximal value is bounded by the
channel capacity, which do not depend on the N and the topology, another typical
characteristic of non-self-excitable networks.
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Figure 6. Circles (green) show the KS-entropy HKS and squares (blue) the
MIR, I1, for two bidirectional coupled oscillators. Diamonds (red) show I1

for a network of N = 5 diffusively coupled oscillators.

5. Conclusion

We study the relationship between synchronization and the rate with which infor-
mation is exchanged between nodes in a spatio-temporal network which describes
the dynamics of classical particles under a substrate Remoissenet–Peyrard poten-
tial. In particular, we study networks formed by Frenkel–Kontorova (FK) oscillators
suffering the action of harmonic interaction and non-sinusoidal substrate potential.

We show that such networks are predominantly of the non-self-excitable type,
i.e. as the coupling strength among the nodes increases the KS-entropy decreases.
Other additional characteristics of non-self-excitable networks are: the mutual in-
formation rate (MIR) and the synchronization level increases simultaneously as the
KS-entropy decreases; the channel capacity, the maximal of the MIR, is achieved
for the same coupling strength for which complete synchronization appears.

We have overcome two difficulties concerning the detection of phase and com-
plete synchronization in this complex spatio-temporal network. Even though the
phase dynamics of each oscillator is not well-defined, we have implemented a tech-
nique which allows to evidence the presence of phase synchronization, by detect-
ing the presence of localized sets obtained by the conditional observations. The
more localized the sets are (which implies larger amount of phase synchrony) the
larger the MIR. Concerning complete synchronization, we show that the master
stability equation which provides the stability of the normal transversal modes
(providing conditions to state complete synchronization) should be used with cau-
tion in such a network. The reason is that the final state is highly dependent
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on the initial conditions, a consequence of the spatio character provided by the
potential. For that reason, in case the nodes have sufficiently different initial
conditions, one should only state complete synchronization using the master stabil-
ity equation in an approximate sense. A more rigorous condition to state complete
synchronization is provided by the verification that the second largest Lyapunov
exponent is negative.

Finally, we have shown how one can calculate the MIR between oscillation modes
in larger networks with different topologies using as the only input information the
curve of the MIR with respect to the coupling strength for two bidirectionally cou-
pled oscillators. Having the curve for the MIR for two coupled oscillators, the
curve of the MIR for larger networks is rescaled by the second largest conditional
Lyapunov exponent of the Laplacian matrix of the larger network, the matrix that
describes the way the nodes are connected in the network. That enables one to con-
struct larger networks based on the dynamical characteristics of only two coupled
oscillators.
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