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1 Introduction

In the vicinity of their horizons, extremal black holes in many dimensions, both in flat and

anti-de Sitter spaces, contain an AdS2 component with a constant electric field.1 Proposed

dualities between AdS2 space and a conformal quantum mechanics [2–8] or a chiral 1+1

dimensional conformal field theory (CFT) [7, 9] have been used to explain the statistical

degeneracy of extremal black holes. In [9, 10] it was shown the AdS2 geometry with a

constant electric field can be understood as the compactification of an orbifold of AdS3

with a null boundary. Systematically applying the rules of the AdS/CFT correspondence

then suggests that the dual theory on the 1+1 dimensional boundary is a Discrete Light

Cone Quantized CFT [8–11]. Because of the highly boosted kinematics of a DLCQ theory,

only one chiral sector of the 2d CFT survives. Such chiral theories thus seem to appear

universally in the dual descriptions of extremal black holes.

In this paper, we develop aspects of this DLCQ - extremal black hole correspondence.

The essential features can be understood by considering the extremal BTZ geometry, which

itself appears in the near-horizon geometry of many asymptotically flat or AdS black holes.

It is well known that the BTZ black holes are dual to thermal ensembles in a 1+1 dimen-

sional CFT. Thermal ensembles in a single chiral sector of this CFT are dual to the extremal

black holes and explain their statistical degeneracy. Taking a limit which focuses on the

vicinity of the BTZ horizon gives a locally AdS3 geometry that is a circle fibration over an

AdS2 base. From the three dimensional perspective this is precisely the self-dual orbifold

of [10, 12]. Dimensionally reducing over the circle fibre gives an AdS2 geometry with an

electric flux — precisely the spacetime appearing in [9]. As we will show in sections 2

1This statement is an actual theorem in four and five dimensions, under certain isometry assumptions

and for extremal black holes with finite area horizons [1].
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and 3, the same focusing limit applied to the CFT dual to BTZ effectively applies a DLCQ

procedure that isolates the chiral sector carrying the extremal black hole entropy. Thus,

one chiral set of Virasoro generators of the CFT is frozen in this limit, in the sense that

there are no physical states charged under them. It turns out that the same chiral sector

also contains the SL(2,R) isometries of the AdS2 geometry, while the surviving SL(2,R)

in the limiting chiral CFT appears as an enhancement of the U(1) symmetry of the circle

fibration. Specifically, we show that there exists a consistent set of boundary conditions on

the fluctuations of the near horizon extremal BTZ metric, as in the Brown-Henneaux anal-

ysis [13], that enhances the U(1) isometry to an asymptotic chiral Virasoro algebra. This

is consistent with recent proposals that the description of extremal black holes in terms of

an AdS2 throat requires asymptotic boundary conditions eliminating AdS2 excitations and

enhancing a U(1) appearing in the geometry to a Virasoro symmetry [14, 15].

Usually in the AdS/CFT duality, the isometries of spacetime are realized in the dual as

global symmetries which then organize the representations of physical states. The surprise

here is that the SL(2,R) symmetry inherited in the CFT from the spacetime isometries

acts trivially on the space of physical states. This has two implications. First, the chiral

duals to the near-horizon geometry of extremal black holes are incapable of describing

non-extremal excitations. Second, even after the addition of an electric field to AdS2, 2d

quantum gravity with this asymptotics has no dynamics. This is consistent with the idea

that finite energy excitations in AdS2 destroy its asymptotic structure [16]. These two

points are related to the fact that non-extremal black holes do not have AdS2 throats.

Similarly, in the classic setting of the D1-D5-string, extremal black holes arise from chiral

excitations, and non-extremality requires excitations of both left and right movers.

The self-dual orbifold and AdS2 with a flux also appear in the near horizon limit of

the extremal Kerr black hole in four dimensions [14] suggesting the appearance of a chiral

CFT dual. However, in this setting (as in [17–19]) the near-horizon AdS geometries appear

in a “warped” way, with their metric multiplied by a function of another angular direction

in the overall spacetime. We suggest that reduction over this additional direction can give

rise to an effective three dimensional gravity with a negative cosmological constant with

the self-dual orbifold as a solution. The dual description of this space as a chiral 2d CFT

then explains the statistical degeneracy of Kerr.

Note added: In the last stage of preparation of this article two papers appeared on the

arXiv [20, 21] arguing that there is no dynamics in the chiral 2d CFT proposed to be dual

to the near horizon extremal Kerr geometry, in agreement with our results.

2 Near horizon extremal BTZ is dual to DLCQ of a 2d CFT

BTZ black holes are three dimensional, asymptotically AdS3 spacetimes with metric [22, 23]

ds2 = −(r2 − r2+)(r2 − r2−)

r2ℓ2
dt2 +

ℓ2r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(

dφ− r+r−
ℓr2

dt

)2

. (2.1)

They have ADM angular momentum and mass

J

2
=
r+r−
ℓ2

, M =
r2+ + r2−
ℓ2

(2.2)
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given in terms of two parameters: the inner and outer horizons r±. These are locally AdS3

spacetimes, differing from global AdS3 by a quotient under a discrete identification. This

is the origin of the periodicity in φ in (2.1), i.e. φ ∼ φ + 2π. Regularity of the metric

requires |J | ≤ M . The BTZ black holes also appear as components in the near-horizon

geometry of black holes in many dimensions with both vanishing and negative cosmological

constants (e.g. see [24, 25]). The extremal BTZ black holes (M = J) have coincident inner

and outer horizons

M = J =⇒ r+ = r− ≡ rh . (2.3)

Globally, the generator of the discrete quotient of AdS3 giving rise to the extremal black

hole lies in a different conjugacy class from the generator giving rise to the non-extremal

black hole [26].

According to the AdS/CFT correspondence, quantum gravity in AdS3 is dual to a 2d

conformal field theory (CFT) with equal left and right central charges c [13]

c =
3ℓ

2G3
, (2.4)

where G3 is Newton’s constant in three dimensions. The BTZ black holes are thermal

states in this CFT having left and right-moving temperatures

TR =
1

4π

r+ − r−
ℓ

, TL =
1

4π

r+ + r−
ℓ

, (2.5)

with energy and angular momentum:

L0 −
c

24
= M − J, L̄0 −

c

24
= M + J. (2.6)

(In our conventions M and J are both dimensionless; their natural units are given by

the AdS3 radius ℓ.) In the extremal (M = J) black hole the right-movers are in the

ground state2

L0 =
c

24
; TR = 0 (2.7)

while the left moving temperature TL = 1
2π

rh
ℓ and L̄0 are arbitrary. The extremal BTZ

entropy (and that of higher dimensional black holes of which it is the near horizon limit) is

accounted for by the statistical degeneracy of such a chiral CFT sector with L̄0−c/24 = 2M ,

at least when L̄0 ≫ c/24.

We will see that the chiral sector that is responsible for the extremal entropy can be

isolated by taking a near-horizon limit of the extremal BTZ black hole [9]. It is convenient

to do this in another set of coordinates [27]

û = t/ℓ− φ , v̂ = t/ℓ+ φ, r2 − r2+ = ℓ2e2ρ , (2.8)

2In theories with supersymmetry these are indeed the obvious ground states in the RR sector. This

condition can even correspond to ground states in the NS sector, because in many examples the quantum

numbers L0 and L̄0 are not exactly identical to the standard CFT quantum numbers but can e.g. receive

contributions from gauge fields which make them spectral flow invariant, in which case this condition really

implies that the states have to be chiral primary. Although we have no proof that L0 = c/24 always implies

that the states have to be ground states of some sort, we will continue to refer to these states as ground

states and hope that this will not cause any confusion.
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in which the metric takes the form3

ds2 = r2+ dû
2 + ℓ2 dρ2 − ℓ2e2ρ dû dv̂ . (2.10)

The variables û, v̂ have a periodicity

{û, v̂} ∼ {û− 2π, v̂ + 2π} . (2.11)

On the cylindrical boundary of AdS3 (ρ→ ∞), dû and dv̂ become null directions. Thus the

two chiral Virasoro algebras of the dual conformal field theory are associated to asymptotic

reparameterizations û→ f(û) and v̂ → g(v̂).

Since the horizon is located at ρ→ −∞, we take the near horizon limit

ρ = ρ0 + r, u = û
r+
ℓ
, v =

e2ρ0ℓ

r+
v̂, {u, v} ∼

{

u− 2π
r+
ℓ
, v+ 2π

ℓ

r+
e2ρ0

}

(ρ0 → −∞)

(2.12)

while keeping r, u, v and r+ fixed.4 (See [9] for the first discussion of this limit.) The

resulting metric, which describes the geometry in the vicinity of the extremal horizon,

ds2 = ℓ2(du2 + dr2 − e2r du dv) (2.13)

is identical in form to (2.10) but there is a crucial difference. In the ρ0 → −∞ limit, the

identification (2.11) becomes

{u, v} ∼
{

u− 2π
r+
ℓ
, v

}

. (2.14)

Thus, the boundary of (2.13) (r → ∞) is a “null cylinder” — it has a metric conformal to

du dv, the standard lightcone metric on a cylinder, but has a compact null direction (u).

The periodicity of u encodes the temperature of the left-moving thermal state that gave

the original extremal BTZ black hole its statistical degeneracy.

Rewriting the radial coordinate as y = e2r gives

ds2 =
ℓ2

4

(

−y2 dv2 +
dy2

y2

)

+ ℓ2
(

du− 1

2
y dv

)2

. (2.15)

This is an S1 fibration over AdS2 which arises as a discrete identification of AdS3. The

generator of this discrete group sits inside the SL(2,R)L subgroup of the initial SL(2,R)L×
SL(2,R)R isometry group of AdS3 [9, 10]. To be precise, the parametrization of SL(2,R)

(i.e. AdS3) that is relevant for the metric (2.15) is

G =

(

1 0
v
2 1

)( √
y

√
y

−1
2
√
y

1
2
√
y

)(

eu 0

0 e−u

)

, (2.16)

3For later use note that a generic BTZ metric in the û, v̂, ρ coordinate system takes the form [27]

ds2 = ℓ2
ˆ

L+dû2 + L−dv̂2 + dρ2
− (e2ρ + L+L−e−2ρ)dûdv̂

˜

. (2.9)

where L± = 1

4ℓ2
(r+ ± r−)2. Recalling (2.5), L+ = (2πTL)2, L− = (2πTR)2.

4Despite the resemblance of the limit (2.12) and the coordinate changes one makes in taking the Penrose

limit, (2.12) is not a Penrose limit, as the geometry we obtain after the limit is not a plane-wave.

– 4 –



J
H
E
P
0
2
(
2
0
1
0
)
0
1
7

in terms of which the metric (2.15) is

ds2 =
ℓ2

2
tr(G−1 dG)2 (2.17)

Under u→ u− 2πr+/ℓ, G is identified by the right action of

(

e−2πr+/ℓ 0

0 e2πr+/ℓ

)

. (2.18)

The isometry group is SL(2,R)R×U(1)L, the first factor corresponding to the isometries of

the AdS2 base.5 On the boundary of the spacetime these isometries act to reparameterize

the non-compact coordinate v. In fact, this geometry is precisely the self-dual orbifold of

Coussaert and Henneaux [12]. The present coordinate system covers only part of the global

spacetime described in [10, 12].

Since (2.13) is asymptotically locally AdS3, we expect the dual field theory to still

be a two dimensional conformal field theory, but defined on a boundary null cylinder. To

understand what that means, we can follow [10] and regulate the CFT by cutting off the

self-dual orbifold at a fixed, large radius. Following the usual AdS/CFT reasoning, this

implements a UV cutoff in the field theory. We will remove the cutoff by sending r → ∞.

At any fixed r, the metric (2.13) is conformal to

ds2 = du2 − e2r du dv (2.19)

Now consider a standard cylinder with its usual Cartesian metric ds2 = −dt20 + dφ2
0 and

{φ0, t0} ∼ {φ0 − β, t0}. We will use coordinates

u1 = t0 − φ0 ; t1 = 2t0 =⇒ ds2 = du2
1 − du1 dt1 ; {u1, t1} ∼ {u1 + β, t1} . (2.20)

We now boost the cylinder with a rapidity 2γ (ũ1 = e2γu1) and then reparameterize the

boosted cylinder so that the identification is still occurring at fixed t1. The metric then

becomes

ds2 = e−4γ
(

dũ2
1 − e2γdũ1 dt1

)

; {ũ1, t1} ∼ {ũ1 + βe2γ , t1} (2.21)

Rescaling the coordinates as ũ1 → e−2γ ũ1 and t1 → e−2γt1 gives the metric

ds2 = dũ2
1 − e2γdũ1 dt1 ; {ũ1, t1} ∼ {ũ1 + β, t1} . (2.22)

Thus, metrics on fixed r surfaces of the near-horizon BTZ metric (2.19) are conformal to a

boosted cylinder. As r → ∞ the boost becomes infinite, precisely realizing the procedure

defined by Seiberg [28] for realizing the Discrete Light Cone Quantization (DLCQ) of a

field theory. In section 3 we will show that following the usual kinematics of DLCQ, only

one chiral sector of the CFT dual to AdS3 will survive at finite energies.

We can also see the latter by directly examining the near-horizon limit (2.12). Acting

in the CFT dual to AdS3, the near horizon limit of the extremal BTZ black hole focuses

5Strictly speaking, these SL(2, R) transformations include U(1) gauge transformations compensating the

transformation of the gauge field on AdS2.
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in on energies so low that they lie below the black hole mass gap, thus eliminating all non-

extremal dynamics [9] (also see [8]). This will isolate one chiral sector (the left-movers),

since non-extremal, finite energy excitations necessarily involve excitations of the right-

movers also. Explicitly, the infinite rescaling in the coordinate v̂ relates translations as

∂v ∼ e−2ρ0 ∂v̂ . (2.23)

Thus, recalling the ∂v̂ is the right-moving Hamiltonian in the CFT dual to AdS3, any finite-

energy right-moving excitation, i.e. any excitation |s〉 with ∂v̂|s〉 = (L0 − c/24)|s〉 6= 0, will

be infinitely blue shifted in the Hamiltonian ∂v that is well defined in the ρ0 → −∞ limit.

In other words, we should only be keeping the states satisfying

∂v̂|s〉 = (L0 − c/24)|s〉 = 0 (2.24)

which are the ground states in the right-moving sector.

We can also directly follow how the near-horizon limit (2.12) acts on the left and right

moving Virasoro generators of the CFT dual to AdS3. These generators are

Ln −
c

24
δn,0 = einv̂

∂

∂v̂
, L̄n −

c̄

24
δn,0 = einû

∂

∂û
. (2.25)

As ρ0 → −∞ in the near-horizon limit (2.12), it is evident that L̄n are essentially unchanged

while the Ln annihilate all the finite energy states because of the condition (2.24).

3 DLCQ of a 2d CFT is a chiral CFT

In the previous section we reviewed how the near-horizon geometry of extremal BTZ is dual

to the DLCQ of a 2d CFT. We now examine how such theories are quantized. Consider a

2d CFT on a cylinder

ds2 = −dt2 + dφ2 = −du′ dv′ ; u′ = t− φ, v′ = t+ φ (3.1)

where φ is a circle with radius R. Here

{φ, t} ∼ {φ+ 2πR, t} ; {u′, v′} ∼ {u′ − 2πR, v′ + 2πR} (3.2)

Let P u
′

and P v
′

denote momentum operators in the v′ and u′ directions respectively. Their

eigenvalues

P v
′

=
(

h+ n− c

24

) 1

R
, P u

′

=
(

h− c

24

) 1

R
, n ∈ Z (3.3)

are given in terms of the quantized momentum n along the S1, the 2d central charge c and

an arbitrary value of h with h ≥ 0 and h+ n ≥ 0. These are related to the eigenvalues of

the standard operators L0, L̄0 used in radial quantization on the plane by L̄0 = h+ n and

L0 = h. We will assume that the 2d CFT is non-singular, and therefore that the spectrum

is discrete.
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Following Seiberg [28], consider a boost with rapidity γ

u′ → eγu′, v′ → e−γv′ . (3.4)

The boost leaves metric (3.1) invariant.6 However the identifications are now

{u′, v′} ∼ {u′ − 2πReγ , v′ + 2πRe−γ} . (3.5)

We want to match the boundary structure appearing in the boundary of the near horizon

geometry with the DLCQ of the starting boundary cylinder. To do so, consider the limit

γ → ∞ with Reγ fixed. This describes a null cylinder geometry with metric ds2 =

−du′ dv′ and u′ a compact null direction. The same infinite boost was presented in different

coordinates in (2.20)–(2.22). However, notice that since v′ → e−γv′ = e−γ(t + φ) and

0 ≤ φ ≤ 2π R, as γ → ∞ any finite changes in v′ come from changes in t. Thus, in the

limit, dv′ ∝ dt and ds2 = −du′ dv′ ≈ −e−γdu′ dt which is conformal to the dominant piece

of the metric in (2.22).

More explicitly, the periodicities of the boundary coordinates under the limit γ → ∞
with R− ≡ Reγ fixed are

(

φ

t

)

∼
(

φ

t

)

+

(

2πR

0

)

− infinite boost →
(

u′

v′

)

∼
(

u′

v′

)

+

(

2πR−
2πR−e

−2γ

)

(3.6)

We can now identify {u′, v′} with the lightcone boundary coordinates of AdS3 in (2.12)

via u′ = u(ℓ/r+)R− and v′ = v(r+/ℓ)R−. Then, comparing (2.12) and (3.6), it is evident

that the action of the near horizon limit on u, v precisely reproduces the identifications

induced by the infinite boost in DLCQ. Thus, from this perspective also, the dual to the

near-horizon geometry of the extremal BTZ black hole should be the DLCQ of the 1+1

dimensional CFT dual to AdS3.

Because of the kinematics of the DLCQ boosts,

P v
′

=
(

h+ n− c

24

) e−γ

R
, P u

′

=
(

h− c

24

) eγ

R
. (3.7)

Keeping P u
′

(momentum along v′) finite in the γ → ∞ limit requires h = c/24. This

leads to

P v
′

= n · e
−γ

R
=

n

R−
. (3.8)

Thus the DLCQ limit (3.7) freezes the right moving sector. Equivalently, it generates an

infinite energy gap in this sector, while the gap in the left-moving sector (whose energy is

measured by P v
′

) is kept finite. All physical finite energy states in this limit only carry

momentum along the compact null direction u′. Therefore, the DLCQ γ → ∞ limit defines

a Hilbert space H

H = {|anything〉L ⊗ |c/24〉R} . (3.9)

6In our previous analysis the cylinder in coordinates (2.20) was boosted but also reparameterized — this

is why the metric transformed to (2.21).
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It is worth noting that the extremal D1-D5-p black hole (whose near horizon limit is

the BTZ black hole) is precisely dual to states of this form with the right movers in the

RR ground state, and the left movers in a highly excited state the statistical degeneracy

of which explains the black hole entropy [29].

Since the spectrum of the DLCQ theory is chiral we might wonder what remains in

this limit of the Virasoro algebra of the CFT we started with. Denoting the right moving

Virasoro generators by Lm, all states Lm | c/24〉 (m < 0) have infinite energy in the DLCQ

limit, since their action always changes the right-moving energy. Explicitly, consider the

generators

Lq ∼ eiqv
′ ∂

∂v′
, L̄p ∼ eipu

′ ∂

∂u′
, (3.10)

with L0 − c/24, L̄0 − c/24 being generators of translations along v′ and u′ respectively.

After the boost (3.4) the quantization conditions for p, q become:

q =
k

Re−γ
=

k

R−
e2γ , p = m · 1

Reγ
=

m

R−
, k,m ∈ Z. (3.11)

Thus, there is a single copy of the Virasoro algebra, generated by L̄p, which survives the

limit. This is acting on the left movers, as expected from the spectrum defining the Hilbert

space of the theory. Notice the generators of this algebra are acting on the compact direc-

tion of the DLCQ null cylinder.

Summary. The DLCQ of a non-singular 2d CFT freezes the right moving sector to its

ground states | c/24〉 while keeping the full left moving sector. Hence, the DLCQ limit gives

a chiral 2d CFT with the same central charge as the original one. Applied to the BTZ black

hole (section 2), we learn that the near-horizon geometry of extremal BTZ is dual to one

chiral sector of the 2d CFT with central charge c = 3ℓ/2G3 that is dual to AdS3 gravity.

The surviving chiral sector is in the state in which it was placed to realize the dual to an

extremal black hole, namely a thermal state at a temperature TL = TDLCQ = R−/(2π),

corresponding to the left-moving thermal state | c/24〉⊗ |T = R−/2π〉 in the Hilbert space

of the CFT dual to AdS3.

4 Asymptotic symmetries and the chiral Virasoro algebra

In the AdS/CFT correspondence, the isometries of spacetime manifest themselves as global

symmetries of the dual field theory, and physical states are organized in representations

of the isometry group. For this reason, various authors [10, 30, 31] have considered how

the physical states of fields in the near-horizon BTZ geometry (2.13) or (2.15) transform

under the SL(2,R)×U(1) isometry group. Now recall that the DLCQ analysis of the dual

field theory in the previous section showed that the physical states of this theory must

live in a chiral CFT. It would have been natural to expect that the SL(2,R) isometries

provide the global part of the associated Virasoro algebra. The surprise is that this is not

the case. Specifically, the SL(2,R) isometries are associated to reparameterizations of the

non-compact coordinate v on the boundary, while the physical states only carry momentum

along the compact null direction u on which only the U(1) part of the isometry group acts.

– 8 –



J
H
E
P
0
2
(
2
0
1
0
)
0
1
7

Thus, AdS/CFT is telling us that physical states cannot be charged under the SL(2,R)

isometry group associated to the AdS2 base in (2.15).

Why would a consistent quantum theory of gravity around the near-horizon BTZ

background (2.15) require the absence of excitations in the AdS2 base of this geometry?

Perhaps because any such fluctuations would cause the space to “fragment” leading to

the appearance of multiple boundaries to the spacetime [16]. In the next section we will

compactify (2.15) and examine its stability to excitations in the AdS2 base. Below we will

simply accept the lesson from the analysis of the dual DLCQ field theory and implement

boundary conditions for the spacetime that preserve only the predicted spectrum.

Boundary conditions. To this end, we will follow the asymptotic symmetry group

analysis of Brown and Henneaux [13] by identifying the boundary conditions for “allowed”

metric fluctuations close to the spacetime boundary. First recall the Brown-Henneaux

boundary conditions for AdS3. In the û, v̂, r coordinates [27], where the background AdS3

metric takes the form ds2 = ℓ2(dr
2

r2 −2r2dûdv̂) these boundary conditions at large r are [13]

δgûû ∼ δgv̂v̂ ∼ δgûv̂ ∼ O(1), δgrr ∼ O

(

1

r4

)

, δgrû ∼ δgrv̂ ∼ O

(

1

r3

)

. (4.1)

Order one fluctuations in δgûû, δgv̂v̂ correspond to normalizable modes in the dual 2d CFT

and these may be chosen arbitrarily. For example, writing a generic BTZ black hole in the

û, v̂ coordinates, the constant parts of gûû and gv̂v̂ determine the ADM mass and angular

momentum of the black hole (2.9). Thus, order O(1) fluctuations in δgûû, δgv̂v̂ correspond

to changing the mass and angular momentum in the dual 2d CFT. A general deformation

of δgûû, δgv̂v̂ would be non-extremal and would thus excite both chiral sectors of the dual

CFT. By contrast, we want to restrict to extremal excitations. Recalling the form of BTZ

metric (2.9), one may easily observe that imposing the extremality condition L0 = c/24

requires a more stringent boundary condition on the variations in gv̂v̂. The arguments of

section 2 and 3 for taking the DLCQ limit and in particular (3.7) then suggest that we

should replace the boundary condition on gv̂v̂ by

δgv̂v̂ ∼ O

(

1

r2

)

. (4.2)

The remainder of the Brown-Henneaux boundary conditions in (4.1) can be kept intact.

Further analysis shows that these are forming a set of consistent boundary conditions. In

fact this set is equivalent to choosing a subset of (4.1) that preserve the null nature of the

non-compact coordinate v (up to transformations which are trivial at large r).

Asymptotic Symmetry Group. The asymptotic symmetry group (ASG) of a space-

time is the set of symmetry transformations (diffeomorphisms) which preserve the boundary

conditions modulo the set of diffeomorphisms the generators of which vanish (reduce to

a boundary integral) after implementation of the boundary conditions. Equipped with

the above boundary conditions we can compute the ASG for the case of the near horizon

extremal BTZ or the self-dual orbifold of AdS3. We seek diffeomorphisms (vector fields ζ)

whose action on the metric (Lie derivative Lζg) generates metric fluctuations compatible
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with the above boundary conditions. More mathematically, if gαβ = g0
αβ + δgαβ , where g0

αβ

stands for the asymptotic metric, then one is looking for vector fields ζ satisfying

(Lζg)αβ ∼ δgαβ , (4.3)

where the symbol ∼ stands for same order of magnitude in the large r expansion sense.

Since our boundary conditions are closely related but more restrictive than those of

Brown-Henneaux [13], we can use their explicit analysis of the generators of the asymptotic

symmetry group and simply impose the additional constraint on δgvv (4.2) on them. The

allowed diffeomorphisms are

ζu = 2f(u) +
1

2r2
g′′(v) + O(r−4) (4.4a)

ζv = 2g(v) +
1

2r2
f ′′(u) + O(r−4), (4.4b)

ζr = −r
(

f ′(u) + g′(v)
)

+ O(r−1) (4.4c)

g′′′(v) = 0 =⇒ g = A+B v + C v2 . (4.5)

Here, the connection to the Brown-Henneaux diffeomorphisms is made explicit: the diffeo-

morphisms generated by ζ = ζα∂α of (4.4) are exactly those of Brown-Henneaux [13] and

the constraint δgvv = O( 1
r2

) is implemented by (4.5). One set of allowed diffeomorphisms

is specified by a periodic function f(u) = f(u + 2π). The analysis of generators of these

diffeomorphisms follows directly from those of Brown and Henneaux and they lead to a

chiral Virasoro algebra at central charge c = 3ℓ/2G3 (2.4).7 The remaining three parameter

family of diffeomorphisms in (4.5) describes the SL(2,R) isometries of the self-dual orbifold.

The isometries of the original extremal black holes were just a U(1)×U(1). In that case

a Brown-Henneaux analysis with the extremal constraint would have also yielded (4.4) with

the constraint g′′′ = 0. However, in the original geometry g has to be a periodic function

which restricts the solutions to the constraint to g = A only. The process of taking the

near horizon limit led to an identification in u alone, and thus, g need not be periodic,

allowing the three parameter solution above. The isometry generators that appear in this

way, are not simply related to the SL(2,R) generated by L0, L±1 (2.25).

5 AdS2 quantum gravity and dual chiral CFTs

Consider the two-dimensional Einstein-Maxwell-Dilaton theory with a negative cosmolog-

ical constant:

S =
ℓ

8G3

∫

d2x
√−g

[

eψ
(

R+
2

ℓ2

)

− ℓ2

4
e3ψFµνF

µν

]

(5.1)

where Fµν is the U(1) field strength. This action has an AdS2 solution with curvature

R = − 8
ℓ2 , constant ψ and constant electric flux:

ds2 = − ℓ
2

r2
(−dt2 + dr2), Ftr =

2Q

r2
, e−ψ = Q . (5.2)

7Our analysis here suggests that the Left and Right CFT’s introduced in [32] may be identical. This

point deserves further investigation.
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This action may be obtained from the dimensional reduction of the 3d Einstein-Hilbert

action with 3d Newton constant G3 and cosmological constant −1/ℓ2 via restriction to

the massless sector of the Kaluza-Klein tower.8 Likewise the reduction of the near-horizon

BTZ geometry (2.15) to two dimensions is precisely (5.2). The radius of the extremal BTZ

horizon becomes ℓQ. The action (5.1) has another two parameter family of solutions in

which ψ is not a constant [9] — these lift to generic BTZ black holes.

Because of this connection between two and three dimensions, we expect that quantum

gravity around the background (5.2) is dual to a subsector of the DLCQ chiral CFT that is

developed in section 2 and 3, and is only fully consistent when embedded in string theory

with all the resulting additional degrees of freedom. The electric field strength Q is related

to the DLCQ compactification scale R− in (3.6) while the central charge is related to the

2d Newton constant: c = 3ℓ/(2G3) = 3/(4πG2).

Quantum gravity in the AdS2 background (5.2) was explored in [30] from the per-

spective of the spacetime conformal field theory, and in [31] from the perspective of the

boundary stress tensor. Both of the papers consider spectra including states charged under

the SL(2,R) isometry group of AdS2, and analyze a Virasoro algebra which includes this

SL(2,R). However, as shown in previous sections, a consistent quantum theory of gravity

in this background should not have any states charged under the isometry group. The

reason for this is that excitations supported in AdS2 back-react strongly and can modify

the asymptotic structure of the spacetime [16].

To see this, let us write the two dimensional metric in a gauge in which the metric is

conformally flat

ds2 = e2φ(σ+,σ−) dσ+dσ− , 0 ≤ σ± ≤ π , (5.3)

and consider the variation of the action (5.1) with respect to the 2d metric. We find

∇+∇+e
ψ = 8πG2T++ (5.4)

and similarly for the −− component. If we regard (5.1) as arising from compactification of

a three dimensional theory, besides the contributions from ψ and the gauge field, we can

also include all contributions of massive Kaluza-Klein modes in T++. We may now follow

the discussion in section 2.2 of [16] (see eqs. (2.16) and (2.17) there). Integrating (5.4)

against e−2φdσ+, we obtain

e−2φ∂+e
ψ|σ+=0 − e−2φ∂+e

ψ|σ+=π = −8πG2

∫

dσ+e−2φT++ (5.5)

and similarly for T−−. Assuming a null energy condition (T++ ≥ 0), any state with non-

vanishing T++ requires at least one of the two terms on the left hand side of this equation

to be non-zero. Since e−2φ vanishes quadratically near the boundary of AdS2, this implies

that eψ must diverge at one of the AdS2 boundaries. This is inconsistent with the constant

8An analysis of Schwinger pair creation of charged particles in AdS2 in the presence of a constant electric

field was performed in [33]. A bound between the mass of particle excitations and the background electric

field was derived to ensure the stability of these backgrounds. This bound is satisfied in supersymmetric

AdS2 × S2 spacetimes and is also saturated for the two dimensional vacuum solution discussed here.
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value e−ψ = Q in (5.2), which is related from the three dimensional point of view to

the compactification radius. This shows that preserving the boundary conditions requires

T++ = 0 and a similar argument requires T−− = 0. Thus perturbations cannot have any

dependence on σ+, σ−, as their back-reaction would destroy the boundary of the geometry.

The background geometry (5.2) has an SL(2,R) isometry, and if perturbations do not

depend on σ+, σ−, then the perturbation cannot break the SL(2,R) symmetry either. In

other words, all degrees of freedom transform trivially under SL(2,R), in agreement with

the analysis in previous section.9

This argument used the fact that AdS2 has two disconnected boundaries. In section 2

the analysis of the CFT dual was carried out in coordinates that only intersected a single

boundary, but it was shown in [10] that, globally, the self-dual orbifold geometry has two

boundaries, each of which is a null cylinder carrying a DLCQ of a CFT. To see this,

transform the coordinates in (2.15) as

y = cos τ cosh z + sinh z ; v =
sin τ cosh z

cos τ cosh z + sinh z
, (5.6)

so that the self-dual orbifold metric becomes

ds2 =
ℓ2

4

(

− cosh2 z dτ2 + dz2
)

+ ℓ2
(

du+A′)2 (5.7)

where A′ is a gauge field with constant field strength in global AdS2. This is the global

self-dual orbifold of [10]. The entire range of v is covered by a finite range of global time

τ . Thus each patch of the form (2.15) intersects one boundary of the global spacetime at

either z = ±∞.

In view of this, both the near-horizon limit of extremal BTZ (2.13) and the 3d uplift

of (5.2) can be regarded globally as dual to two DLCQ CFTs, each giving rise to one chiral

theory (see [8, 10] for discussion). From this perspective we can presumably view the

description of the self-dual orbifold as a thermal state in a single CFT as emerging from

tracing over the Hilbert space living in one of the boundaries. This is in analogy with the

usual treatment of the eternal BTZ black hole as either an entangled state in two CFTs

defined on the two boundaries of the geodesically complete spacetime, or as a thermal state

in a single CFT [36]. The statistical degeneracy of the thermal state in the chiral CFT

dual to the spacetime (2.15) then measures the area of the familiar Poincare horizon of this

coordinate patch (see [4] for a similar perspective). One difference between BTZ and the

self-dual orbifold is that while the BTZ boundaries are causally disconnected, a light ray

can travel between the two boundaries of the global self-dual orbifold [10]. The possible

interactions that this seeds between the two boundaries have not been studied.

In this global context there is another piece of evidence that the AdS2 base of the self-

dual orbifold cannot be consistently excited. It was shown in [31] that the most general

9The fact that AdS2 “fragments” in this way has led to the suggestion [16] that the dual of a one-

dimensional conformal field theory should involve a sum over tree-like geometries with many different

asymptotic AdS2 boundaries. While some partial progress has been made in developing this picture [34, 35],

it is still unclear whether this is the right way to think about AdS2, or whether it eventually will lead to

connection with the fuzzball proposal, and we will not further pursue this possibility in this paper.
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solution of the dimensional reduction of 3d gravity with a negative cosmological constant

in a particular gauge can be put in the form

gµνdx
µdxν = dη2 − 1

4
(h0(t)e

2η/L + h1(t)e
−2η/L)2dt2. (5.8)

At the boundary η → ∞, the boundary metric is determined by h0(t). One can choose

a coordinate t such that h0 = 1. The subleading behavior is determined by h1(t). The

diffeomorphisms that preserve this gauge and leave h0 unchanged were determined by [31].

However it turns out that while these are normalizable deformations of the boundary at

η → +∞, they are not normalizable deformations at the other boundary η → −∞ — i.e.

they change h1. In fact, there are no deformations at all which both preserve the gauge

and are normalizable at both boundaries, except the isometries. This again suggests that

it is not possible to deform AdS2 without disrupting the spacetime boundary.

6 Extremal Kerr black hole and its dual chiral CFT

The extremal 4d Kerr black hole is given by

ds2 = − ∆

R2

(

dt̂− a sin2 θdφ̂
)2

+
sin2 θ

R2

(

(r̂2 + a2)dφ̂− adt̂
)2

+
R2

∆
dr̂2 +R2dθ2 , (6.1)

where

R2 = r̂2 + a2 cos2 θ, ∆ = (r̂ − a)2 . (6.2)

Its ADM mass and angular momentum are function of the horizon size a

M = a, J =
a2

G4
. (6.3)

In the quantum theory, J is quantized (to half integers) in units of ~. This black hole has

zero Hawking temperature and its Bekenstein-Hawking entropy is

SBH =
2πM2

~G4
=

2π

~
J . (6.4)

In the near horizon ǫ→ 0 limit

r̂ = a+ ǫ r, t̂ =
2at

ǫ
, φ̂ = φ+

t

ǫ
, (6.5)

while keeping the un-hatted parameters and coordinates fixed, we obtain the near horizon

extremal Kerr (NHEK) geometry [14, 37]

ds2 = 2G4J Ω(θ)2
[

−r2dt2 +
dr2

r2
+ dθ2 + Λ(θ)2 (dϕ+ rdt)2

]

, (6.6)

where ϕ ∈ [0, 2π], 0 ≤ θ ≤ π and

Ω(θ)2 =
1 + cos2 θ

2
, Λ(θ) =

2 sin θ

1 + cos2 θ
. (6.7)
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This metric at a given θ has the form of a warped circle fibration over AdS2 in which the

fiber radius depends on the angle θ. If Λ and Ω were constants this would be precisely

the self-dual orbifold of (2.15) times a circle. Indeed, as emphasized in [14], constant θ

slices look like squashed self-dual orbifolds. The coordinates in (6.6) cover only part of the

spacetime, with a boundary at r → ∞ — globally, like the self-dual orbifold, there are two

boundaries. One sees similar squashed geometries with AdS2 and AdS3 factors in decou-

pling limits of near-extremal black holes in anti-de Sitter space [17–19]. (Also see [38–47].)

The Kerr black hole is invariant under time and angular φ̂ translations. This isometry

group is enhanced to SL(2,R) × U(1) in the near horizon, just as in the self-dual orbifold.

The U(1) is generated by ∂ϕ, whereas the SL(2,R) acts both on the AdS2 subspace and

along the fiber to preserve the form of dϕ+ rdt [14].

In [14], the asymptotic symmetry group preserving certain boundary conditions for the

fluctuations of the NHEK was calculated. The corresponding diffeomorphisms they found

were of the form

ζλ = λ(ϕ)∂ϕ − rλ(ϕ)′∂r . (6.8)

These generate a chiral Virasoro algebra. In [14] it was proposed that this Virasoro al-

gebra should be understood as the symmetry group of a chiral 2d CFT dual to quantum

gravity around the near horizon Kerr geometry. The central charge of this chiral CFT was

computed to be

cExt. Kerr = 12J . (6.9)

The NHEK is then associated with a thermal state of the chiral 2d CFT at temperature

TNHEK = 1/2π. Upon applying the Cardy formula for the entropy of 2d CFTs, the

Bekenstein-Hawking entropy of the extremal Kerr black hole (6.4) is reproduced. The

consistency of the boundary conditions proposed in [14] required the vanishing of the

charge of the U(1)τ ∈ SL(2,R), i.e.

ER = 0 (6.10)

in the notation used in [14], for all physical states. Thus, like for the self-dual orbifold,

there are no physical excitations of the AdS2 factor in the geometry. The ER = 0 condition

acts like the restriction to extremality in the BTZ black hole that we studied in section 2.

The analogies between the Kerr-CFT construction [14] and the analysis of the self-

dual orbifold in previous sections suggests that chiral CFT of [14] is the DLCQ of an

ordinary two dimensional conformal field theory. Ideally, we would like to find a consistent

Kaluza-Klein reduction of gravity in the NHEK geometry to the three-dimensional self-

dual orbifold. As a first step, we make a connection between the NHEK geometry and 3d

gravity with a negative cosmological constant. For the NHEK geometry we consider then

the four dimensional metric reduction ansatz:

ds2 = L2 Ω2
[

−∂σβ(t, σ)
(

−dt2 + dσ2
)

+ dθ2 + Λ2 (dϕ+ β(t, σ)dt)2
]

, (6.11)

where Ω2 = (1 + cos2 θ)/2 and Λ = 2 sin θ/(1 + cos2 θ). The equation of motion derived

for β using this ansatz and the four dimensional Einstein equation without a cosmological
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constant is identical to the equation of motion obtained from the three-dimensional ansatz

ds2 =
ℓ2

4

[

−∂σβ(t, σ)
(

−dt2 + dσ2
)

+ (dϕ+ β(t, σ)dt)2
]

. (6.12)

and Einstein’s equation with a cosmological constant

R3µν +
2

ℓ2
g3µν = 0. (6.13)

Here R3 is the Ricci tensor computed for the 3d metric. Although this obviously does not

show that there should exist a Kaluza-Klein reduction from four to three dimensions which

reduces the NHEK geometry to the self-dual orbifold of AdS3, it does show that the two

theories share some dynamics.

We can also derive the central charge derived in [14] from the 4d NHEK geometry, by

matching parameters with the three-dimensional reduction ansatz. To do this, note first

that the above 3d equation of motion can be obtained from the Lagrangian

L3 =
√

− det g3

(

R3 +
2

ℓ2

)

, (6.14)

which describes 3d gravity in the presence of a negative cosmological constant. The 3d

Newton constant is then computed by integrating over the compact direction θ in our

reduction ansatz
1

G3
=

2L2
∫ π
0 dθ Ω2Λ

G4 ℓ
=

4L2

G4 ℓ
. (6.15)

Thus the 3d action is

S3 =
1

16πG3

∫

d3x L3 , (6.16)

Note that its vacuum solution is an AdS3 with radius RAdS = ℓ. Since L2 = 2G4J , using

the Brown-Henneaux formula for the central charge, we have

c =
3RAdS

2G3
= 12J . (6.17)

This matches (6.9). We earlier showed that the AdS3 central charge also matches the

central charge of the chiral CFT that is dual to self-dual orbifold.

This suggests the proposed chiral 2d CFT dual to extremal Kerr [14] is the DLCQ of

a 2d CFT with the following identifications: (a) The DLCQ compactification radius R− is

an arbitrary physical scale and has been set equal to one in the Kerr/CFT analysis [14],

(b) The ER = 0 condition in [14] is mapped to L0 = c/24 DLCQ condition, (c) The ex-

tremal Kerr ADM angular momentum J is equal to the light-cone momentum P+ of the

DLCQ description.

One should note that identifying the chiral 2d CFT duals proposed for extremal black

holes [14, 15] as the DLCQ of a 2d CFT also explains why we can use Cardy’s formula to

count the number of states. If we only knew that the states had to form representations of

a single Virasoro algebra, we would not be able to use modular invariance, and unitarity

alone does not determine the asymptotic growth of the number of states. Still, there are
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to our knowledge no general statements about the asymptotic growth of the number of

states of the form |c/24〉R⊗|anything〉 in an arbitrary CFT. If the left-movers are Ramond

ground states, and it is a theory with supersymmetry, one can estimate the number of

states of this form using the elliptic genus and its modular properties [48, 49], and it would

be interesting to establish similar results for more general CFT’s.

While our results have provided some evidence that DLCQ of a CFT is dual to the

near-horizon extremal Kerr, it would have been more satisfactory to have a consistent

and complete reduction of 4d gravity with NHEK boundary conditions [14] to 3d gravity

with a cosmological constant. In a similar setting where squashed AdS3 factors appear in

a decoupling limit of R-charged black holes in AdS4 and AdS5, progress towards such a

reduction has been made [17–19].

7 Discussion

In this paper we have shown that the near-horizon limit of the extremal BTZ black hole,

which leads to the so-called self-dual orbifold geometry, is dual to the DLCQ of a non-chiral

2d CFT, which is a chiral 2d CFT with the same central charge. We have also provided

evidence that various “chiral CFTs” that have appeared in the literature as dual CFTs

to extremal black holes should really be thought of as DLCQ of ordinary two-dimensional

CFTs. This, among other things, justifies the use of Cardy formula to account for the

extremal black hole entropy using this chiral CFT duals. It would be desirable to develop

this picture in more detail. In particular, it would be interesting to study correlation

functions in the DLCQ theory and the corresponding bulk-boundary dictionary. Another

outstanding problem is to establish more rigorously that generic extremal black holes,

upon taking a near-horizon limit, are indeed dual (once suitable boundary conditions are

imposed) to the DLCQ of a conformal field theory. If this is indeed the case, one would

expect that the parent 2d CFT of the DLCQ theory might also have a string theoretic

realization, e.g. in the form of a warped AdS3 solution of string theory. In other words,

one might seek some sort of map from extremal black hole solutions to AdS3 solutions. We

have seen hints of such a map in [17–19], but whether it exists in the general case is unclear.

One curiosity about the self-dual orbifold geometry is that it is dual to thermal state

in a DLCQ CFT. The ground state of the DLCQ theory does not appear to have a bona

fide geometric dual.10 This is unlike AdS3 gravity with a standard cylindrical boundary

where the ground state describes empty AdS and thermal states describe black holes. This

seems to be a general feature of gauge-gravity duality for DLCQ field theories [50–52].
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