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Abstract

Background: The increased accessibility of gene expression tools has enabled a wide variety of experiments
utilizing transcriptomic analyses. As these tools increase in prevalence, the need for improved standardization in
processing and presentation of data increases, as does the need to guard against interpretation bias. Gene
Ontology (GO) analysis is a powerful method of interpreting and summarizing biological functions. However, while
there are many tools available to investigate GO enrichment, there remains a need for methods that directly
remove redundant terms from enriched GO lists that often provide little, if any, additional information.

Findings: Here we present a simple yet novel method called GO Trimming that utilizes an algorithm designed to
reduce redundancy in lists of enriched GO categories. Depending on the needs of the user, this method can be
performed with variable stringency. In the example presented here, an initial list of 90 terms was reduced to 54,
eliminating 36 largely redundant terms. We also compare this method to existing methods and find that GO
Trimming, while simple, performs well to eliminate redundant terms in a large dataset throughout the depth of
the GO hierarchy.

Conclusions: The GO Trimming method provides an alternative to other procedures, some of which involve
removing large numbers of terms prior to enrichment analysis. This method should free up the researcher from
analyzing overly large, redundant lists, and instead enable the concise presentation of manageable, informative GO
lists. The implementation of this tool is freely available at: http://lucy.ceh.uvic.ca/go_trimming/cbr_go_trimming.py

Background
Transcriptomic experiments conducted using high-den-
sity microarrays or RNA-seq often compare two or
more states and can generate differentially expressed
gene lists comprising hundreds or thousands of genes.
These datasets generally require further analysis to iden-
tify reliable patterns in expression profiles, such as
developmental changes at certain time points, and vari-
able biological processes, such as metabolic pathways.
Further analyses such as Gene Ontology (GO) enrich-
ment, pathway enrichment, or clustering methods [1,2]
can aid in both the discovery and summarization of
important large-scale expression patterns.
GO vocabularies are structured as directed acyclic

graphs with a clearly defined hierarchical structure.
However, this hierarchy contains an added complexity

by allowing terms to have multiple parents, or ascen-
dants [3]. An ascendant and a descendant exist in a
defined parent-child relationship and constitute a path
through the GO hierarchy, connected by zero or more
intermediate GO terms. A gene annotated with any
term is also annotated with every term that is an ascen-
dant, or parent term, of the more specific term; each
GO category will contain all of the genes from each of
its children categories. As a gene will be annotated by a
term and every ancestor of this term, terms at a variety
of depths in the hierarchy will appear in an enriched
GO list, given that the GO tool being used recognizes
all levels of annotation for an input gene. In most cases,
multiple terms from the same hierarchical path will
appear in a significant GO list. These multiple categories
of differing specificities are not necessarily problematic.
On the contrary, they allow for several levels of inter-
pretation, ranging from specific terms that encompass
few genes, to higher-level categories that may describe
large-scale effects on the system being studied.
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A current area of study to improve GO analysis
focuses on the issue of interdependence between terms
in the GO hierarchy, the problem being that many tools
used to investigate GO enrichment search for enrich-
ment on a term-for-term basis and do not account for
correlations among terms along a path in the hierarchy
[4]. Due to the detailed structure and incremental speci-
ficity of the GO database, as well as the correlation
among enriched terms in a path, there will often be
instances in which multiple categories from the same
path appear in a list and differ only slightly, or not at all
in gene content. When this occurs, often the parent
term provides no additional information to the
researcher or reader, especially when the terms them-
selves differ only in a small qualifier. An incorrect
assumption can be made by the researcher that the mul-
tiplicity of similar categories increases the importance of
the function or process to which they relate, whereas it
is more likely that one group of genes is causing the
inclusion of multiple terms. Accordingly, it makes analy-
sis and presentation clearer when closely related terms
containing the same genes are removed. However, this
term removal can introduce another issue if the subset
of terms to be presented is selected mainly due to the
specific interest of the researcher. Reducing the size of
GO lists in this manner typically uses arbitrary criteria
and can be misleading, as the selected subset may not
adequately reflect the entire dataset.
Several tools and databases have been developed for

the purpose of reducing the inclusion of terms of vary-
ing specificity. One type of method proposed to address
this issue involves reducing the size of the input data-
base. The Gene Ontology Consortium has produced the
GO Slim database, which is a subset comprising more
general GO terms [5]. Alternatively, the GO Fat data-
base, developed as part of the Annotation Tool of the
DAVID suite of bioinformatics resources, is a subset
comprising more specific terms [6]. Both of these meth-
ods function by limiting information prior to the enrich-
ment test and therefore do not fully utilize the complete
GO database.
An alternative method to reduce the resulting amount

of enriched terms is through the use of multiple test
corrections (MTC) during GO enrichment tests. These
methods not only reduce the output dataset, but can
also reduce false positives. Goeman and Mansmann [7]
present a method that uses the structure of the GO
hierarchy to perform MTC in a top-down, bottom-up,
or bi-directional ‘focus level’ manner (working in both
directions from a user-defined level of the hierarchy),
depending on the desired objective of the researcher.
Other methods use the full GO database for enrich-

ment analysis and remove terms or modify relationships
between terms during the enrichment test to address

the interdependency issue [4,8]. Alexa et al. [8] present
iterative bottom-up algorithms that either remove genes
from parent categories when a child in the same path is
significantly enriched (elim), or reduce the weight of
genes in categories that have more significant neigh-
bours in its path (weight). Grossman et al. [4] present
the parent-child intersection/union algorithms to reduce
the inheritance problem by investigating enrichment in
the context of parent-child relationships; a term is sig-
nificant only if the enrichment is due to its own
enriched gene set, rather than due to genes inherited
from other categories.
Alterovitz et al. [9] have provided a method to investi-

gate categories across a specified information level of
the GO hierarchy by generating a numerical value of the
“information content” of each GO term and thus could
be used to reduce the size of the output dataset.
Clustering GO terms with similar content has also

been implemented in both the GOstat and DAVID tools
[10,11]. Clustering GO terms using these tools increases
an understanding of commonalities between terms due
to containment of similar sets of genes. However, these
methods do not select or remove terms from the total
list of enriched terms, and therefore the large dataset
remains. Additionally, these clusters do not use the GO
hierarchy or follow the parent-child path, but rather
cluster based on gene content alone.
We have developed a simple, systematic method called

GO Trimming for removal of redundancy from a GO
category list after enrichment scores are given to terms,
and is independent of any statistical package or analysis
method. This method consists of an algorithm that is
executed in two phases. We present an example of this
process performed on a sample GO dataset, and high-
light the categories that would be removed by the GO
Trimming process according to different levels of strin-
gency. Additionally, we compare GO Trimming to sev-
eral of the aforementioned approaches performed on a
second published dataset.

Algorithm
The GO Trimming algorithm is fully described by the
flowchart in Figure 1 and is outlined here. GO Trim-
ming consists of two phases, each requiring one pass
through the list of significant GO terms. In the first
phase, terms are connected to all other terms that share
a common path by labelling with common identifiers
(Figure 1A). In the second phase, terms are removed
from the list based on levels of redundancy between
terms found in a given path (Figure 1B).
The list of significantly enriched GO terms is retrieved

by the researcher (Figure 1A) from any tool that per-
forms statistical testing on GO categories (e.g. Gene-
Spring GX (Agilent, Santa Clara, CA); GOstat [10]). In
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Figure 1 GO Trimming algorithm flowchart. A) Phase 1 of GO Trimming: identification of parent-child relationships in GO hierarchy. B) Phase
2 of GO Trimming: strict and soft trimming using 0% and 40% uniqueness thresholds. Green boxes represent start and endpoints for the
algorithm. Blue parallelograms represent input and output steps. Red rectangles represent an action required by the user and yellow diamonds
represent questions that determine the flow of the algorithm. Input for the algorithm is the query list (list of enriched GO terms) and the GO
tree (hierarchy of all GO terms). Output is a list of GO terms with soft and strict trimmed terms removed.
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addition, each term must have the following associated
information: the number of differentially regulated genes
annotated with the term (labelled “Diff. Genes” in Table
1) and the total number of genes annotated with the
GO term (e.g. all genes on a microarray annotated with
the term; labelled “Total Genes” in Table 1). Since these
are the numbers used to test for enrichment, these
values should be available from the same tool used to
generate the list of significant terms. The hierarchical
relationships of these categories are then obtained from
the GO tree whether from within a software package
like GeneSpring GX, or from the web platform AmiGO
[12] or a downloadable database [13]. GO categories are
considered query terms and are sorted in ascending
order of “Total Genes”. This order of query terms is
maintained throughout both phases. Care should be
taken after sorting to ensure that in cases of equal totals
for a pair of terms in a parent-child relationship, parents
are ranked after children in the list to avoid missed
identification.
For any set of genes annotated with a common GO

term, it can be said that this GO category contains this
set of genes. For each term in the list of GO categories,
all ancestors of the term (i.e. having parent-child rela-
tionships with the term) are examined, again starting
with the term containing the fewest genes and moving
towards broader terms. All parent-child paths are
labelled with unique identifiers to mark the hierarchical
connections between terms. Two terms may have a
common parent, so each of these two children will be
labelled with different identifiers, and the parent will be
labelled with both identifiers. A term may have no par-
ents present in the GO list, and therefore will have no
identifier.
Once the entire list has been processed in the first

phase, two types of trimming can be applied (Figure
1B). The first more strict approach removes terms that
are entirely redundant. The second approach, soft trim-
ming, uses more relaxed stringency, and terms that are
largely redundant can be removed. A uniqueness thresh-
old was designed to filter terms based on the respective
gene sets contained by the parent and child categories.
A value of 0% is used for the strict approach and a
value of 40% is used for the soft trimming approach. If
the parent category contains the same set of genes as
the child category (i.e. parent contains 0% unique
genes), it is deemed fully redundant and removed from
the strict list (and soft list). With respect to the soft
trimming threshold, if the parent term contains 40% or
fewer additional genes than the child term (e.g. the child
term contains ten genes; the parent term contains these
ten plus an additional four), the parent term is removed
from the soft trimmed list. In both of these examples,
the more specific child category is retained.

If a category is involved in multiple paths in the list
and so has more than one identifier, it can only be
removed if a descendant shares all identifiers (i.e. has
the same ID set) and indicates that the parent category
is redundant. When both soft and strict trimming are
performed concurrently, soft trimmed terms should not
be removed from the list until the end of the process as
they may still be used in the strict trimming approach.
Note that some IDs may be processed multiple times
through the course of the list with different untrimmed
terms as the child. This allows for broader terms to be
trimmed based on the representation of intermediate
terms. During the second phase, it is still important to
check for ancestry before trimming, since the structure
of the GO hierarchy (i.e. a term can have multiple par-
ents) may allow two terms to have the same ID set, yet
not be in a parent-child relationship. As a final note, the
40% value is somewhat arbitrary, and can be raised or
lowered, but provides a cut-off that can be used to elim-
inate terms that seem to be generally unworthy of sepa-
rate discussion from related terms. Once trimming is
complete, all terms that were soft or strict trimmed can
be fully removed from the GO list and the reduced list
can be presented as fully processed.

Testing
We present here an example of the use of this method
in removing redundant terms from an enriched Gene
Ontology term list. This sample dataset was taken from
a recent experiment exploring the transcriptional effects
of sea lice (Lepeophtheirus salmonis) on pink salmon
(Oncorhynchus gorbuscha) [14]. Although the para-
meters for the data presented here are slightly different
from those for the GO lists shown in this earlier experi-
ment, the biological question and the majority of the
information remains the same. An initial list of 90 GO
terms (Table 1) were enriched from an input list of
3388 differentially regulated entities. GeneSpring GX
11.0 was used to determine GO enrichment and the
hierarchical relationships between enriched terms; the
GO database used was from November 04, 2010.
Transcriptomic analysis can typically result in many

enriched Gene Ontology terms, and in an attempt to
reduce the number of terms enriched by chance, and to
present a more manageable example dataset, only GO
terms containing 5 or more differentially expressed
genes were retained. This pre-filtering was done simply
by imposing a threshold on the “Diff. Genes” value in a
spreadsheet. This is an independent step from GO
Trimming and should not have a substantial influence
on the procedure. The DAVID tool [11] for finding
enrichment offers a gene count threshold as well
(default is 2) for the reason that terms with very few
genes are less trustworthy as real trends.
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Table 1 Sample Gene Ontology terms and GO Trimming results

ID GO Accession GO Term p-value Diff. Genes Total Genes

1 GO:0031532 actin cytoskeleton reorganization 0.00338 5 12

2 GO:0009620 response to fungus 3.04E-09 10 12

3 GO:0006037 cell wall chitin metabolic process 3.04E-09 10 12

3 GO:0044036 cell wall macromolecule metabolic process 3.04E-09 10 12

3 GO:0010383 cell wall polysaccharide metabolic process 3.04E-09 10 12

4 GO:0003796 lysozyme activity 3.04E-09 10 12

GO:0001101 response to acid 3.04E-09 10 12

5 GO:0046578 regulation of Ras protein signal transduction 6.77E-04 6 13

5 GO:0051056 regulation of small GTPase mediated signal transduction 6.77E-04 6 13

6 GO:0008061 chitin binding 1.21E-08 10 13

7 GO:0006032 chitin catabolic process 1.21E-08 10 13

3 GO:0006030 chitin metabolic process 1.21E-08 10 13

8 GO:0004568 chitinase activity 1.21E-08 10 13

9 GO:0003746 translation elongation factor activity 0.00727 5 14

3 GO:0071554 cell wall organization or biogenesis 3.86E-08 10 14

GO:0008643 carbohydrate transport 0.0226 5 18

10 GO:0005885 Arp2/3 protein complex 0.0226 5 18

9 GO:0006414 translational elongation 0.00485 6 18

11 GO:0045165 cell fate commitment 0.0284 5 19

GO:0035091 phosphoinositide binding 0.00652 6 19

7 GO:0006026 aminoglycan catabolic process 2.29E-06 10 19

12 GO:0030126 COPI vesicle coat 0.0140 6 22

12 GO:0030663 COPI coated vesicle membrane 0.0140 6 22

7 GO:0000272 polysaccharide catabolic process 1.36E-06 11 22

13 GO:0003007 heart morphogenesis 0.0175 6 23

12 GO:0030660 Golgi-associated vesicle membrane 0.0215 6 24

12 GO:0030137 COPI-coated vesicle 0.0215 6 24

14 GO:0005859 muscle myosin complex 0.0215 6 24

14 GO:0016460 myosin II complex 0.0215 6 24

15 GO:0001725 stress fiber 0.00546 7 24

15 GO:0032432 actin filament bundle 0.00546 7 24

15 GO:0042641 actomyosin 0.00697 7 25

3, 7 GO:0006022 aminoglycan metabolic process 1.04E-05 11 26

16 GO:0030239 myofibril assembly 0.0134 7 28

16 GO:0031032 actomyosin structure organization 0.00441 8 29

17 GO:0016363 nuclear matrix 0.00134 9 30

17 GO:0034399 nuclear periphery 0.00174 9 31

18 GO:0007586 digestion 4.24E-06 13 33

19 GO:0001726 ruffle 0.0146 8 35

20 GO:0005529 sugar binding 6.58E-06 14 39

3, 7 GO:0005976 polysaccharide metabolic process 2.20E-04 12 40

GO:0005938 cell cortex 0.0407 8 42

16 GO:0010927 cellular component assembly involved in morphogenesis 0.0174 9 43

21 GO:0022627 cytosolic small ribosomal subunit 1.20E-05 15 46

22 GO:0004322 ferroxidase activity 4.18E-07 17 46

22 GO:0016724 oxidoreductase activity, oxidizing metal ions, oxygen as acceptor 4.18E-07 17 46

6 GO:0030247 polysaccharide binding 7.26E-05 14 47

6 GO:0001871 pattern binding 7.26E-05 14 47

22 GO:0016722 oxidoreductase activity, oxidizing metal ions 1.18E-06 17 49

23 GO:0022625 cytosolic large ribosomal subunit 0.0428 9 50

7 GO:0016052 carbohydrate catabolic process 6.10E-05 15 52
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Through the GO Trimming process with 0%, 40%, and
50% uniqueness thresholds, the list was substantially
reduced (Table 1), with 19 of 90 terms identified as com-
pletely redundant (0% threshold; bolded text). With the
use of a 40% soft trimming threshold, another 15 terms
were found to be largely redundant (bolded and italicized
text). To show the relative flexibility of the threshold
value, we also performed the procedure with a threshold

of 50% (bolded, italicized and underlined text). With this
reduced stringency, only two additional terms were
removed from the list when compared with the list after
the use of the 40% threshold. Note that several of the
most specific and the most general terms are retained,
and many of intermediate specificity are discarded.
Looking at the list trimmed using the conservative

approach (0% threshold), 19 of 90 terms were shown to

Table 1 Sample Gene Ontology terms and GO Trimming results (Continued)

4, 8 GO:0004553 hydrolase activity, hydrolyzing O-glycosyl compounds 5.05E-05 16 57

21 GO:0015935 small ribosomal subunit 1.58E-05 17 58

24 GO:0005200 structural constituent of cytoskeleton 0.0210 11 59

23 GO:0015934 large ribosomal subunit 0.0328 11 63

19 GO:0031252 cell leading edge 0.0364 11 64

4, 8 GO:0016798 hydrolase activity, acting on glycosyl bonds 2.74E-04 16 65

6, 20 GO:0030246 carbohydrate binding 1.64E-04 18 75

2 GO:0051707 response to other organism 0.00451 15 76

21, 23 GO:0022626 cytosolic ribosome 9.78E-06 24 98

25 GO:0016791 phosphatase activity 0.0314 17 111

16 GO:0032989 cellular component morphogenesis 0.0160 18 111

25 GO:0016311 dephosphorylation 0.0365 17 113

26 GO:0003735 structural constituent of ribosome 3.52E-06 28 118

21, 23 GO:0033279 ribosomal subunit 5.92E-06 28 121

1, 16 GO:0030036 actin cytoskeleton organization 0.00597 21 124

21, 23 GO:0044445 cytosolic part 3.27E-05 27 125

7 GO:0009057 macromolecule catabolic process 0.0131 21 133

25 GO:0042578 phosphoric ester hydrolase activity 0.0457 20 142

GO:0006955 immune response 0.0486 20 143

1, 16 GO:0030029 actin filament-based process 0.0189 22 146

27 GO:0005615 extracellular space 0.00507 24 146

21, 23 GO:0005840 ribosome 8.61E-05 29 146

19 GO:0042995 cell projection 0.00775 24 151

10, 14, 15 GO:0015629 actin cytoskeleton 0.0282 24 169

1, 16 GO:0007010 cytoskeleton organization 0.0115 29 198

3, 7 GO:0005975 carbohydrate metabolic process 0.0121 31 216

9 GO:0006412 translation 4.07E-04 38 229

27 GO:0044421 extracellular region part 0.0135 33 235

21, 23 GO:0030529 ribonucleoprotein complex 0.00101 43 281

24, 26 GO:0005198 structural molecule activity 2.31E-05 53 316

21, 23 GO:0005829 cytosol 0.00275 47 330

27 GO:0005576 extracellular region 0.00841 46 341

9 GO:0003723 RNA binding 5.39E-04 53 356

9 GO:0003676 nucleic acid binding 0.00866 73 588

13, 28 GO:0007275 multicellular organismal development 0.0203 89 764

10, 14, 15, 21, 23 GO:0043232 intracellular non-membrane-bounded organelle 0.0186 95 819

10, 14, 15, 21, 23 GO:0043228 non-membrane-bounded organelle 0.0186 95 819

11, 13, 16, 28 GO:0032502 developmental process 0.0307 105 934

18, 28 GO:0032501 multicellular organismal process 0.0273 119 1067

List of experimentally-derived Gene Ontology terms significantly enriched (p-value ≤ 0.05; no MTC) by the differential gene list. Columns show identifiers for
hierarchical connections, GO accession numbers, GO term descriptors, enrichment p-values, numbers of genes in differentially regulated gene list annotated with
GO term, and total numbers of genes on microarray annotated with GO term. Terms in plain text are retained after GO Trimming with all uniqueness threshold
values. Bolded terms are removed with a 0% threshold. Bolded and italicized terms are additionally removed when 40% is used as uniqueness threshold for GO
Trimming, and bolded, italicized and underlined terms are additionally removed with a 50% threshold.
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be redundant. For example, “oxidoreductase activity,
oxidizing metal ions” and “oxidoreductase activity, oxi-
dizing metal ions, oxygen as acceptor” are removed and
the term “ferroxidase activity” is retained.
With slightly less stringency, we can remove a number

of terms that offer little additional information to the
analysis. For example, “polysaccharide catabolic process”
adds only one gene to the set of those annotated with
the term “chitin catabolic process”.
Highly similar terms that remain in the list are often a

result of being from different GO domains, such as Bio-
logical Process and Molecular Function, the top-level
categories of “chitin catabolic process” and “chitinase
activity”, respectively. Also “sister” terms that appear
quite similar but are not in a parent-child relationship
(e.g. “cell wall chitin metabolic process” and “chitin cata-
bolic process”) cannot be eliminated because they are
from different hierarchical paths, and therefore may
refer to distinct processes or functions.
In addition to this sample dataset, we performed a

comparison of GO Trimming with other methods that
attempt to ease interpretation or take into account the
interdependencies in the hierarchy during enrichment
testing. For this comparison, zebrafish (Danio rerio) was
deemed to be a suitable organism of study because each
of the methods we wished to compare provided the abil-
ity to use a ZFIN identifier [15] in annotating genes
with GO terms. Accordingly, we found a microarray
experiment studying hypoxia in D. rerio [16] that
resulted in a large number of differentially expressed
genes using a well annotated array [17]. Of 1520 signifi-
cantly differentially regulated entities, 1017 had official
gene symbols which were used to link to ZFIN IDs in
the GO Consortium’s ZFIN annotation file (May 27,
2011) [18]. 617 genes had a corresponding ZFIN ID
with GO annotation. This set of 617 ZFIN IDs was the
sample dataset or the list of differentially regulated
genes. In the same manner, of 42990 entities on the
whole array, 24888 had a gene symbol, of which 12674
had a linked ZFIN ID associated with GO annotation.
This was the population or total set of genes.
It is apparent that level of annotation and choice of sta-

tistical test have a large influence on the results of enrich-
ment testing. For example, GOstat uses a c2 test and
does not permit custom annotation files [10]. Therefore,
the default ZFIN annotation database was used, which
appeared to have annotation for all but 17 terms in the
sample list. This resulted in a large difference in signifi-
cant terms when compared to the traditional term-for-
term method employed in the Ontologizer (175 vs. 236
terms; p-value ≤ 0.1) [19]. Additionally, GOstat did not
include an option for a 0.05 p-value cut-off. The DAVID
tool also used its own associations with ZFIN IDs, result-
ing in a different list of enriched terms.

Due to the differences in statistical tests and annota-
tion, we restricted the formal comparison to those tests
which could be performed using the Ontologizer [19],
including elim, weight, and the parent-child methods
[4,8]. The traditional term-for-term method was also
included, and the output of this method was used as the
input list for the GO Trimming process. A p-value cut-
off of 0.05 was employed, and no MTC was used, as the
impact of MTC may differ between methods. In this
sample dataset, no gene count threshold was used.
The significantly enriched terms (p-value ≤ 0.05)

resulting from each method are presented in Additional
file 1. Any term enriched through one or more methods
is listed in the table, and the enrichment is represented
by a p-value. In summary, the term-for-term method
resulted in the largest number of enriched terms (147),
followed by elim (137), weight (86), GO Trimming (80),
parent-child union (78), and parent-child intersection
(46). The term-for-term output included all but 24
terms; the elim, parent-child intersection and parent-
child union methods resulted in the inclusion of some
additional terms.
We used the D. rerio dataset on two other methods:

GOstat clustering [10] and DAVID clustering [11] (data
not shown). Instead of reducing the number of terms
produced by enrichment testing, the significant terms
are clustered into groups that aim to improve interpre-
tation of the results.

Discussion
GO Trimming was designed with the idea of reducing
redundancy while fully utilizing the size and detail of
the GO database. We believe this method is versatile
and can be tailored to the needs of researchers while
still being systematic by nature so that it can be easily
integrated into an analysis workflow.
The first sample dataset (Table 1) provides a good

example of what GO Trimming does and does not do.
In this example, there is no real biological information
lost to the researcher through the trimming process.
Nor in fact, is there any biological information added
that was not already present. The p-value of individual
terms is not adjusted. Neither does GO Trimming serve
to intentionally eliminate false positives. In fact this pro-
cess is independent of MTC, as MTC can be applied
during the enrichment testing, and GO Trimming may
be performed on the output list.
After trimming, the information in Table 1 becomes

more focused and balanced, making interpretation
easier. Redundant terms no longer overwhelm the list as
in the cases of IDs 3 and 12. Terms in a unique path,
such as “immune response”, a biologically important
term, do not become lost in long lists [20]. Once redun-
dant terms are removed, such as the terms related to
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polysaccharide, actin, and oxidoreductase functions, it
becomes easier to consider and present the entire list,
and terms such as “ruffle”, which was important in the
context of the experiment [14], can come to the fore-
front. Additionally, it becomes more feasible to present
the list in the manuscript, instead of picking out only a
select few to discuss. Ultimately it is up to the
researcher how to interpret and discuss results, however
GO Trimming provides a way to assist in this process.
Although the GO Trimming output list is easier to

manage and interpret than an untrimmed list, it is
important to use a non-destructive workflow where the
full list of terms is retained for potential further explora-
tion of specific results. We encourage researchers to
append the full GO category list to published articles as
supplemental documents, but for general table and text
presentation, the trimmed list should be used.
Furthermore, working with GO lists in this way can

familiarize the researcher to the general patterns and
functions present in the data. Adding identifiers to par-
ent-child relationships in the GO lists not only assists
with the trimming process, but also connects terms with
related functions and properties, allowing for ease in
locating reoccurring themes. For example in the sample
dataset above (Table 1), “actin cytoskeleton reorganiza-
tion” and “myofibril assembly” share the parent “actin
cytoskeleton organization and biogenesis”.
Terms with multiple identifiers represent a synthesis

of information, as they represent the union of multiple
paths in the GO hierarchy. Alternatively, terms without
identifiers are those that have no parents or children
present in the list. This in itself provides some informa-
tion about the term and the associated genes. Increased
understanding of the connections between terms will
allow for increased comprehension of the processes
under investigation.
Understanding these connections between terms is a

similar benefit to that offered by GOstat or DAVID
clustering [10,11]. These clustering methods cannot be
directly compared to GO Trimming, primarily due to
the structure of the output. Instead of reducing terms in
the output lists, terms are organized into categories that
share information. One benefit of GO Trimming is the
more manageable presentation. With clustering, either
the researcher can present all terms, which can result in
very sizeable lists, or the researcher can select a repre-
sentative from each cluster to present. If a representative
is selected, such as the most significant term, a main
function or process may be preserved, but other valu-
able information could be lost.
With respect to GOstat specifically, the clustering

method is highly inclusive while creating clusters. Any
term containing a subset of genes annotated to another
term will be clustered together. This does not take into

account the GO hierarchy, which in some cases may be
beneficial, in that closely related terms under difference
roots (e.g. “biological process” and “molecular function”)
can be clustered together. However, this can also result
in more disparate terms being grouped into a cluster,
simply by containing common genes. Regarding the
clustered output of DAVID, non-significant terms
appear to be included, which could be removed after
clustering. Also, clusters can consist entirely of terms
that are essentially redundant. Overall, these clustering
methods can aid in interpretation of results, however
the problem of redundancy is not addressed, the GO
hierarchy is not taken into account, and clusters can be
too inclusive.
The comparison between GO Trimming and methods

employed by the Ontologizer [19] provides insight into
benefits and drawbacks of each method. There are a few
trends identifiable based on specificity of enriched terms
(Additional file 1). It is apparent that elim and weight
methods produce more specific enriched terms and
fewer general terms. This is not necessarily negative,
since specific terms are arguably more interesting and
informative to a researcher, although it can be informa-
tive to examine higher level terms. One major benefit of
Gene Ontology is the ability to identify functions and
processes at different depths [21]. Furthermore, there
appear to be many redundant terms enriched using the
elim and weight methods through the Ontologizer (e.g.
many parents of “negative regulation of neutrophil
chemotaxis”).
The parent-child union method seems to result in a

much lower level of redundancy and provides a lighter
but still informative set of terms. The method behind it
appears to be strong, in checking for enrichment of a
term in the context of its parent(s), but it too results in
some redundancy in the list (e.g. “branching morpho-
genesis of a tube”, “morphogenesis of branching epithe-
lium”, “morphogenesis of a branching structure";
Additional file 1). The parent-child intersection method
seems to result in much fewer terms being enriched,
and may be too stringent, resulting in information being
lost. These methods are more directed towards decorre-
lating terms from each other so as to minimize the
effect of genes being inherited through the hierarchy
and to reduce false positives [4].
Compared to these other methods, GO Trimming is

highly effective at reducing redundancy at both specific
and general levels. For example, regarding the parents of
“negative regulation of neutrophil chemotaxis”, GO
Trimming removes 10-12 closely related terms, many of
which are included in the results of the other methods
(with the exception of parent-child intersection). At the
general level, many parent terms of “ATP binding” are
removed by GO Trimming. While it does not address
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the issue of false positives, GO Trimming specifically
targets and reduces redundancy without losing informa-
tion, which may occur through more stringent methods.

Conclusion
We have a developed a novel and important method for
systematically reducing redundancy in Gene Ontology
datasets. The simplicity of this method allows for ease
of incorporation into a typical transcriptomic workflow,
while still using the full structure of the GO hierarchy.
It focuses on improving interpretation and presentation,
and compares well against other GO enrichment meth-
ods that take into consideration interdependencies in
the GO hierarchy. With the exception of the stringent
parent-child intersection method, the resulting list of
terms contains the least redundancy, offering a cleaner,
more focused representation of the dataset. With this
method, researchers are able to analyze and present
terms in a way that will provide the most information
about the genes and systems being studied.

Additional material

Additional file 1: Supplementary Table 1. Comparison of GO
Trimming and enrichment methods on D. rerio dataset. Using the
Ontologizer tool, a number of methods produce statistically enriched GO
terms (p-value ≤ 0.05; no MTC) from a set of 617 differentially regulated
genes. The union of GO terms enriched by one or more methods is
presented, along with the p-values each method produced for enriched
terms, sorted by “Total Genes” from specific terms to general terms. GO
Trimming was performed on the output of the traditional term-for-term
method using a 40% soft trimming threshold. P-values from the term-for-
term method are presented for those terms retained by the GO
Trimming method.
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