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Abstract
In this paper, we study a class of parametric generalized vector mixed quasivariational
inequality problems (in short, (MQVIP)) in Hausdorff topological vector spaces. The
upper semicontinuity, closedness, the outer-continuity and the outer-openness of
the solution set are obtained. Moreover, a key assumption is introduced by virtue of a
parametric gap function. Then, by using the key assumption, we establish that the
condition (Hh(γ0,μ0)) is a sufficient and necessary condition for the lower
semicontinuity, the Hausdorff lower semicontinuity, the continuity and Hausdorff
continuity of solutions for (MQVIP). The results presented in this paper are new and
extend some main results in the literature.
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1 Introduction
Let X, Y be two Hausdorff topological vector spaces and let �, M be two topological
vector spaces. Let L(X,Y ) be the space of all linear continuous operators from X to Y .
Let K : X × � → X , T : X × M → L(X,Y ) be set-valued mappings and let C : X → Y

be a set-valued mapping such that C(x) is a closed pointed convex cone with intC(x) �= ∅.
Let � : X × X × � → X, � : X × X × � → Y be two continuous vector-valued functions
satisfying �(y, y,γ ) =  and �(y, y,γ ) =  for each y ∈ X, γ ∈ �. And let Q : L(X,Y ) →
L(X,Y ), ψ : X → X be continuous single-valued mappings. Denoting by 〈z,x〉 the value of
a linear operator z ∈ L(X;Y ) at x ∈ X, we always assume that 〈·, ·〉 is continuous.
For γ ∈ �, μ ∈M, we consider the following parametric generalized vector mixed qua-

sivariational inequality problem (in short, (MQVIP)).
(MQVIP) Find x̄ ∈ K(x̄,γ ) and z̄ ∈ T(x̄,μ) such that

〈
Q(z̄),�

(
y,ψ(x̄),γ

)〉
+�

(
y,ψ(x̄),γ

)
/∈ – intC(x̄), ∀y ∈ K(x̄,γ ).

For each γ ∈ �, μ ∈M, we let E(γ ) := {x ∈ X|x ∈ K(x,γ )} and � :� ×M → X be a set-
valued mapping such that �(γ ,μ) is the solution set of (MQVIP). Throughout this paper,
we always assume that �(γ ,μ) �= ∅ for each (γ ,μ) in the neighborhood (γ,μ) ∈ � ×M.
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Special cases of the problem (MQVIP) are as follows:
(a) If we let K(x,γ ) = K(x), �(y,ψ(x),γ ) = �(y,ψ(x)), �(y,ψ(x),γ ) = �(ψ(x), y), then

the problem (MQVIP) is reduced to the following generalized vector mixed general
quasi-variational-like inequality problem:
Find x̄ ∈ X such that x̄ ∈ K(x̄) and for each y ∈ K(x̄), there exists z̄ ∈ T(x̄) satisfying

〈
Q(z̄),�

(
y,ψ(x̄)

)〉
+�

(
ψ(x̄), y

)
/∈ – intC(x̄).

This problem was studied in [].
(b) If Q, ψ are identity mappings and �(y,ψ(x),γ ) = �(y,x), �(y,ψ(x),γ ) = �(y,x),

K(x,γ ) = K(γ ), then the problem (MQVIP) is reduced to the following parametric
generalized vector quasi-variational-like inequality problem (in short,
(PGVQVLIP)):
(PGVQVLIP) Find x̄ ∈ K(γ ) and z̄ ∈ T(x̄,μ) such that

〈
z̄,η(y, x̄)

〉
+ψ(y, x̄) /∈ – intC(x̄), ∀y ∈ K(γ ).

This problem was studied in [].
(c) If Q, ψ are identity mappings and K(x,γ ) = X , T(x̄,μ) = T(x̄),

�(y,ψ(x),γ ) =�(y,x), �(y,ψ(x),γ ) = �(y,x) and C(x) = C with C ⊆ Y is a pointed,
closed and convex cone in Y with intC �= ∅, then the problem (MQVIP) is reduced
to the following generalized vector variational inequality problem:
Find x̄ ∈ X and z̄ ∈ T(x̄) such that

〈
z̄,η(y, x̄)

〉
+ψ(y, x̄) /∈ – intC, ∀y ∈ K(γ ).

This problem was studied in [].
(d) If Q, ψ are identity mappings and �(y,η(x),γ ) = y – x, �(y,ψ(x),γ ) = , � =M,

then the problem (MQVIP) is reduced to the following generalized vector
quasivariational inequality problem (in short, (PGVQVI)):
(PGVQVI) Find x̄ ∈ K(x̄,γ ) and z̄ ∈ T(x̄,γ ) such that

〈z̄, y – x̄〉 ∈ Y \ – intC(x̄), ∀y ∈ K(x̄,γ ).

This problem was studied in [].
(e) If Q, ψ are identity mappings and �(y,η(x),γ ) = y – x, �(y,ψ(x),γ ) = ,

K(x,γ ) = K(γ ), � =M and C(x) = C with C ⊆ Y is a pointed closed and convex
cone in Y with intC �= ∅, then the problem (MQVIP) is reduced to the following
parametric set-valued weak vector variational inequality (in short, (PSWVVI)):
(PSWVVI) Find x̄ ∈ K(γ ) and z̄ ∈ T(x̄,γ ) such that

〈z̄, y – x̄〉 /∈ – intC, ∀y ∈ K(γ ).

This problem was studied in [].
(f ) If Q, ψ are identity mappings and �(y,η(x),γ ) = , �(y,ψ(x),γ ) = �(x, y, z), � =M,

then the problem (MQVIP) is reduced to the following parametric generalized
vector quasiequilibrium problem (in short, (PGVQEP)):

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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(PGVQEP) Find x̄ ∈ K(x̄,γ ) and z̄ ∈ T(x̄,γ ) such that

�(x, y, z) ∈ Y \ – intC(x̄), ∀y ∈ K(x̄,γ ).

This problem was studied in [].
(g) If Q, ψ are identity mappings and Y =Rn, C(x) =Rn

+, � =M, K(x,γ ) = K(γ ),
�(y,η(x),γ ) = y – x, �(y,ψ(x),γ ) =  and T : X × � → L(X,Rn), then the problem
(MQVIP) is reduced to the parametric weak vector variational inequality problem
(in short, (PWVVI)):
(PWVVI) Find x̄ ∈ K(γ ) such that

〈
T(x̄,γ ), y – x

〉
/∈ – intRn

+, ∀y ∈ K(γ ).

This problem was studied in [].
Stability of solutions for the parametric generalized vector mixed quasivariational in-

equality problem is an important topic in optimization theory and applications. Recently,
the continuity, especially the upper semicontinuity, the lower semicontinuity and the
Hausdorff lower semicontinuity of the solution sets for parametric optimization problems,
parametric vector variational inequality problems andparametric vector quasiequilibrium
problems have been studied in the literature; see [, –] and the references therein.
The structure of our paper is as follows. In the first part of this article, we introduce

the model parametric generalized vector mixed quasivariational inequality problems. In
Section , we recall definitions for later uses. In Section , we establish the upper semi-
continuity, closedness, the outer-continuity and the outer-openness, and in Section , we
establish that the condition (Hh(γ,μ)) is a sufficient and necessary condition for the
lower semicontinuity, the Hausdorff lower semicontinuity, the continuity and Hausdorff
continuity of the solution set for the parametric generalized vectormixed quasivariational
inequality problem in Hausdorff topological vector spaces.

2 Preliminaries
In this section, we recall some basic definitions and some of their properties.
First, we recall two limits in [, ]. Let X and Y be two topological vector spaces and

G : X → Y be a multifunction. The superior limit and the superior open limit of G are
defined as

lim sup
x→x

G(x) :=
{
y ∈ Y | ∃xν → x,∃yν ∈G(xν) : yν → y,∀ν

}
,

limsupo
x→x

G(x) :=
{
y ∈ Y | there are an open neighborhood U of y and a net

{xν} ⊆ X,xν �= x converging to x such that U ⊆G(xν),∀ν
}
.

Definition . ([, , ]) Let X and Y be topological vector spaces and G : X → Y be
a multifunction.

(i) G is said to be outer-continuous at x ∈ X if lim supx→x G(x)⊆G(x). G is said to
be outer-continuous in X if it is outer-continuous at each x ∈ X .

(ii) G is said to be outer-open at x ∈ X if limsupox→x G(x)⊆ G(x). G is said to be
outer-open in X if it is outer-open at each x ∈ X .

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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(iii) G is said to be lower semicontinuous (lsc) at x ∈ X if G(x)∩U �= ∅ for some open
set U ⊆ Y implies the existence of a neighborhood N of x such that G(x)∩U �= ∅,
∀x ∈N . G is said to be lower semicontinuous in X if it is lower semicontinuous at
each x ∈ X .

(iv) G is said to be upper semicontinuous (usc) at x ∈ X if for each open set
U ⊇G(x), there is a neighborhood N of x such that U ⊇G(x), ∀x ∈N . G is said
to be upper semicontinuous in X if it is upper semicontinuous at each x ∈ X .

(v) G is said to be Hausdorff upper semicontinuous (H-usc) at x ∈ X if for each
neighborhood B of the origin in Z, there exists a neighborhood N of x such that
G(x) ⊆G(x) + B, ∀x ∈N . G is said to be Hausdorff upper semicontinuous in X if
it is Hausdorff upper semicontinuous at each x ∈ X .

(vi) G is said to be Hausdorff lower semicontinuous (H-lsc) at x ∈ X if for each
neighborhood B of the origin in Y , there exists a neighborhood N of x such that
G(x) ⊆G(x) + B, ∀x ∈N . G is said to be Hausdorff lower semicontinuous in X if
it is Hausdorff lower semicontinuous at each x ∈ X .

(vii) G is said to be continuous at x ∈ X if it is both lsc and usc at x and to be
H-continuous at x ∈ X if it is both H-lsc and H-usc at x. G is said to be
continuous in X if it is both lsc and usc at each x ∈ X and to be H-continuous in
X if it is both H-lsc and H-usc at each x ∈ X .

(viii) G is said to be closed at x ∈ X if and only if ∀xn → x, ∀yn → y such that
yn ∈G(xn), we have y ∈G(x). G is said to be closed in X if it is closed at each
x ∈ X .

Lemma . ([, ]) Let X and Y be topological vector spaces and G : X → Y be a mul-
tifunction.

(i) If G is usc at x, then G is H-usc at x. Conversely if G is H-usc at x and if G(x) is
compact, then G is usc at x;

(ii) If G is H-lsc at x then G is lsc at x. The converse is true if G(x) is compact;
(iii) If Y is compact and G is closed at x, then G is usc at x;
(iv) If G is usc at x and G(x) is closed, then G is closed at x;
(v) If G has compact values, then G is usc at x if and only if, for each net {xα} ⊆ X

which converges to x and for each net {yα} ⊆G(xα), there are y ∈G(x) and a
subnet {yβ} of {yα} such that yβ → y.

Lemma . ([, ]) Let e : X → Y be a vector-valued mapping and for any x ∈ X, e ∈
intC(x). The nonlinear scalarization function ξe : X × Y → R defined by ξe(x, y) := inf{r ∈
R : y ∈ re(x) –C(x)} has the following properties:

(i) ξe(x, y) < r ⇔ y ∈ re– intC(x);
(ii) ξe(x, y) ≥ r ⇔ y /∈ re– intC(x).

Lemma . (See [, ]) Let X and Y be two locally convex Hausdorff topological vector
spaces, and let C : X → Y be a set-valued mapping such that, for each x ∈ X,C(x) is a
proper, closed, convex cone in Y with intC(x) �= ∅. Furthermore, let e : X → Y be the contin-
uous selection of the set-valued map intC(·). Define a set-valued mapping V : X → Y by
V (x) = Y \ intC(x) for x ∈ X.We have

(i) If V (·) is usc in X , then ξe(·, ·) is upper semicontinuous in X × Y ;
(ii) If C(·) is usc in X , then ξe(·, ·) is lower semicontinuous in X × Y .

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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From Lemma ., we know that if V (·) and C(·) are both usc in X, then ξe(·, ·) is contin-
uous in X × Y .
Now we suppose that K(x,γ ) and T(x,μ) are compact sets for any (x,γ ) ∈ X × � and

(x,μ) ∈ X ×M. We define a function h : X × � ×M →R as follows:

h(x,γ ,μ) = min
z∈T(x,μ)

max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}
.

Since K(x,γ ) and T(x,μ) are compact sets, h(x,γ ,μ) is well defined.

Lemma .
(i) h(x,γ ,μ)≥  for all x ∈ E(γ );
(ii) h(x,γ,μ) =  if and only if x ∈ �(γ,μ).

Proof We define a function h : X × L(X,Y )→R as follows:

h(x, z) = max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}
.

(i) It is easy to see that h(x, z) ≥ . Suppose to the contrary that there exists x ∈ E(γ )
and z ∈ T(x,μ) such that h(x, z) < , then

 > h(x, z) = max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}

≥ –ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))
.

When ψ(x) = y, we have

ξe
(
x,

〈
Q(z),�(y, y,γ )

〉
+�(y, y,γ )

)

= ξe(x, )

= inf
{
r ∈R :  ∈ re(x) –C(x)

}

= inf
{
r ∈R : –re(x) ∈ –C(x)

}

= inf{r ∈R : r ≥ } = ,

which is a contradiction. Hence,

h(x, z) = max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))} ≥ ,

x ∈ E(γ ), z ∈ T(x,γ ).

Thus, since z ∈ T(x,μ) is arbitrary, we have

h(x,γ ,μ) = min
z∈T(x,μ)

max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))} ≥ .

(ii) By definition, h(x,γ,μ) =  if and only if there exists z ∈ T(x,μ) such that
h(x, z) = , i.e.,

max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}
= , x ∈ E(γ)

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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if and only if, for any y ∈ K(x,γ),

–ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)) ≤ ,

or

ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)) ≥ .

By Lemma .(ii), if and only if

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
) /∈ – intC(x), ∀y ∈ K(x,γ),

that is, x ∈ �(γ,μ). �

We may call the function h(·, ·, ·) a parametric gap function for (MQVIP) if the prop-
erties of Lemma . are satisfied. Many authors have studied the gap functions for vector
equilibriumproblems and vector variational inequalities; see [, –] and the references
therein.

Example . Let ψ , Q be identity mappings and X = Y = R, � = M = [, ], C(x) = R+,
K(x,γ ) = [, ], T(x,γ ) = {γ +}, �(y,ψ(x),γ ) = �(y,ψ(x),γ ) = y – x. Now we consider
the problem (MQVIP) of finding x ∈ K(x,γ ) and z ∈ T(x,γ ) such that

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
= γ +(y – x) + y – x /∈ – intR+.

It follows from a direct computation �(γ ,μ) = {} for all γ ∈ [, ]. Now we show that
h(·, ·, ·) is a parametric gap function of (MQVIP). Indeed, taking e =  ∈ intR+, we have

h(x,γ ,μ) = min
z∈T(x,μ)

max
y∈K (x,γ )

{
–ξe

(
x
〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}

= max
y∈K (x,γ )

((
 + γ +)(x – y)

)

=

⎧⎨
⎩
 if x = ,

( + γ +)x if x ∈ (, ].

Hence, h(·, ·, ·) is a parametric gap function of (MQVIP).

The following lemma gives a sufficient condition for the parametric gap function h(·, ·, ·)
is continuous in X × � ×M.

Lemma . Consider (MQVIP). If the following conditions hold:
(i) K(·, ·) is continuous with compact values in �;
(ii) T(·, ·) is continuous with compact values in X × �;
(iii) C(·) is upper semicontinuous in X and e(·) ∈ intC(·) is continuous in X .

Then h(·, ·, ·) is continuous in X × � ×M.

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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Proof First we prove that h(·, ·, ·) is lower semicontinuous in X × � × M. Indeed, we let
r ∈R. Suppose that {(xα ,γα ,μα)} ⊆ X × � ×M satisfies

h(xα ,γα ,μα) ≤ r, ∀α

and

(xα ,γα ,μα) → (x,γ,μ) as α → ∞.

It follows that

h(xα ,γα ,μα)

= min
z∈T(xα ,μα )

max
y∈K (xα ,γα )

{
–ξe

(
xα ,

〈
Q(z),�

(
y,ψ(xα),γα

)〉
+�

(
y,ψ(xα),γα

))} ≤ r.

We define the function g : X × L(X,Y )× � ×M →R by

g(x, z,γ ,μ) = max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}
, x ∈ E(γ ).

By the continuity of ψ(·), �(·, ·, ·), �(·, ·, ·), ξe(·, ·) and since K(·, ·) is continuous with com-
pact values in X×�, thus, by Proposition  in Section  of Chapter  [], we can deduce
that g(x, z,γ ,μ) is continuous with respect to (x, z,γ ,μ). By the compactness of T(xα ,μα),
there exists zα ∈ T(xα ,μα) such that

h(xα ,γα ,μα) = min
z∈T(xα ,μα )

max
y∈K (xα ,γα )

{
–ξe

(
xα ,

〈
Q(z),�

(
y,ψ(xα),γα

)〉
+�

(
y,ψ(xα),γα

))}

= g(xα , zα ,γα ,μα)

= max
y∈K (xα ,γα )

{
–ξe

(
xα ,

〈
Q(zα),�

(
y,ψ(xα),γα

)〉
+�

(
y,ψ(xα),γα

))} ≤ r.

Since K(·, ·) is lower semicontinuous in X × �, for any y ∈ K(x,γ), there exists yα ∈
K(xα ,γα) such that yα → y. For yα ∈ K(xα ,γα), we have

–ξe
(
xα ,

〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉
+�

(
yα ,ψ(xα),γα

)) ≤ r. (.)

Since T(·, ·) is upper semicontinuous with compact values in X × M, there exists z ∈
T(x,μ) such that zα → z (taking a subnet {zβ} of {zα} if necessary) as α → ∞. From the
continuity of ξe(·, (Q(·,ψ(·), ·) +�(·,ψ(·), ·))), taking the limit in (.), we have

–ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)) ≤ r. (.)

Since y ∈ K(x,γ) is arbitrary, it follows from (.) that

g(x, z,γ,μ) = max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))} ≤ r.

And so, for any z ∈ T(x,μ), we have

h(x,γ,μ) = min
z∈T(x,μ)

max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))} ≤ r.

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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This proves that, for r ∈R, the level set {(x,γ ,μ)|h(x,γ ,μ)≤ r} is closed. Hence, h(·, ·, ·) is
lower semicontinuous in X ×X × �.
Next, we need to prove that h(·, ·, ·) is upper semicontinuous in X × � ×M. Indeed, let

r ∈R. Suppose that {(xα ,γα ,μα)} ⊆ X × � ×M satisfies

h(xα ,γα ,μα) ≥ r, ∀α

and

(xα ,γα ,μα) → (x,γ,μ) as α → ∞,

then

min
z∈T(xα ,μα )

max
y∈K (xα ,γα )

{
–ξe

(
xα ,

〈
Q(z),�

(
y,ψ(xα),γα

)〉
+�

(
y,ψ(xα),γα

))} ≥ r,

and so, for any z ∈ T(xα ,μα), we have

max
y∈K (xα ,γα )

{
–ξe

(
xα ,

〈
Q(z),�

(
y,ψ(xα),γα

)〉
+�

(
y,ψ(xα),γα

))} ≥ r. (.)

Since T(·, ·) is lower semicontinuous in X × M, for any z ∈ T(x,μ), there exists zα ∈
T(xα ,μα) such that zα → z as α → ∞. Since zα ∈ T(xα ,μα), it follows (.) that

max
y∈K (xα ,γα )

{
–ξe

(
xα ,

〈
Q(zα),�

(
y,ψ(xα),γα

)〉
+�

(
y,ψ(xα),γα

))} ≥ r. (.)

By the compactness of K(·, ·), there exists yα ∈ K(xα ,γα) such that

–ξe
(
xα ,

〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉
+�

(
yα ,ψ(xα),γα

)) ≥ r. (.)

Since K(·, ·) is upper semicontinuous with compact values, there exists y ∈ K(x,γ) such
that yα → y (taking a subnet {yβ} of {yα} if necessary) as α → ∞. From the continuity of
ξe(·, (Q(·,ψ(·), ·) +�(·,ψ(·), ·))), taking the limit in (.), we have

–ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)) ≥ r.

For any y ∈ K(x,γ), we have

max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))} ≥ r. (.)

Since z ∈ T(x,γ) is arbitrary, it follows from (.) that

h(x,γ,μ) = min
z∈T(x,μ)

max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))} ≥ r.

This proves that, for r ∈R, the level set {(x,γ ,μ)|h(x,γ ,μ)≥ r} is closed. Hence, h(·, ·, ·)
is upper semicontinuous in X × � ×M. �
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Remark . In special cases as those in Section  (d), (e) and (f ),
(i) Lemma . extends Proposition . of Chen et al. in [] and Lemma . of

Zhong-Huang in [].
(ii) Lemma . extends Lemma . of Chen et al. in [], Lemma . of Zhong-Huang in

[] and Lemma . of Zhong-Huang in [].

3 Upper semicontinuity of a solution set
In this section, we establish the upper semicontinuity, closedness, outer-continuity and
outer-openess of the solution set for the parametric generalized vector mixed quasivaria-
tional inequality problem (MQVIP).

Theorem . Assume for the problem (MQVIP) that
(i) E(·) is upper semicontinuous with compact values in � and K(·, ·) is lower

semicontinuous in X × �;
(ii) T(·, ·) is upper semicontinuous with compact values in X ×M;
(iii) W (·) = Y \ – intC(·) is closed in X .

Then �(·, ·) is upper semicontinuous in � ×M. Moreover, �(γ,μ) is a compact set and
�(·, ·) is closed in � ×M.

Proof First we prove that �(·, ·) is upper semicontinuous in � × M. Indeed, we sup-
pose that �(·, ·) is not upper semicontinuous at (γ,μ), i.e., there is an open subset V
of �(γ,μ) such that for all nets {(γα ,μα)} convergent to (γ,μ), there is xα ∈ �(γα ,μα),
xα /∈ V , ∀α. By the upper semicontinuity of E(·) in � and the compactness of E(γ ),
one can assume that xα → x ∈ E(γ) (taking a subnet if necessary). Now we show that
x ∈ �(γ,μ). If x /∈ �(γ,μ), then ∀z ∈ T(x,μ), ∃y ∈ K(x,γ) such that

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

) ∈ – intC(x). (.)

By the lower semicontinuity of K(·, ·) at (x,γ), there exists yα ∈ K(xα ,γα) such that
yα → y. Since xα ∈ �(γα ,μα), there exists zα ∈ T(xα ,μα) such that

〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉
+�

(
yα ,ψ(xα),γα

)
/∈ – intC(xα). (.)

Since T(·, ·) is upper semicontinuous and with compact values in X × M, one has z ∈
T(x,μ) such that zα → z (can take a subnet if necessary) and since Q(·), �(·,ψ(·), ·) are
continuous, we have

〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉 → 〈
Q(z),�

(
y,ψ(x),γ

)〉
.

It follows from the continuity of �(·,ψ(·), ·) that
〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉
+�

(
yα ,ψ(xα),γα

)

→ 〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
.

By the condition (iii), we have

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
/∈ – intC(x). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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We see a contradiction between (.) and (.), and so we have x ∈ �(γ,μ) ⊆ V , which
contradicts the fact xα /∈ V , ∀α. Hence, �(·, ·) is upper semicontinuous in � ×M.
Nowwe prove that�(γ,μ) is compact.We first show that�(γ,μ) is a closed set. In-

deed, we supposed that�(γ,μ) is not a closed set, then there exists a net {xα} ∈ �(γ,μ)
such that xα → x, but x /∈ �(γ,μ). The further argument is the same as above. And so
we have �(γ,μ) is a closed set. Moreover, as �(γ,μ) ⊆ E(γ) and E(γ) is compact, it
follows that �(γ,μ) is compact. Hence, by Lemma .(iv), it follows that �(·, ·) is closed
in � ×M. �

Remark . In the special case as that in Section  (d), Theorem . extends Theorem .
of Chen et al. in [].

Theorem . Assume for the problem (MQVIP) that
(i) E(·) is outer-continuous in � and K(·, ·) is lower semicontinuous in X × �;
(ii) T(·, ·) is upper semicontinuous with compact values in X ×M;
(iii) W (·) = Y \ – intC(·) is closed in X .

Then �(·, ·) is outer-continuous in � ×M.

Proof Let x ∈ lim supγ→γ,μ→μ �(γ ,μ). There are nets {(γα ,μα)} converging to (γ,μ)
and {xα} converging to x with xα ∈ �(γα ,μα). By the outer continuity of E(·), we have
x ∈ E(γ). Now we show that x ∈ �(γ,μ). Indeed, by the lower-semicontinuity of K(·, ·)
in X × �, for any y ∈ K(x,γ), there exists yα ∈ K(xα ,γα) such that yα → y. As xα ∈
�(γα ,μα), there exists zα ∈ T(xα ,μα) such that

〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉
+�

(
yα ,ψ(xα),γα

)
/∈ – intC(xα). (.)

Since T(·, ·) is upper semicontinuous with compact-values in X × M, there exists z ∈
T(x,μ) such that zα → z (can take a subnet if necessary). Since Q(·), �(·,ψ(·), ·) are
continuous, we have

〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉 → 〈
Q(z),�

(
y,ψ(x),γ

)〉
.

It follows from the continuity of �(·,ψ(·), ·) that
〈
Q(zα),�

(
yα ,ψ(xα),γα

)〉
+�

(
yα ,ψ(xα),γα

)

→ 〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
.

By the condition (iii) and (.), we have

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
/∈ – intC(x).

Hence, x ∈ �(γ,μ). Thus, �(·, ·) is outer-continuous in � ×M. �

Theorem . Assume for the problem (MQVIP) that
(i) E(·) is outer-open in � and K(x, ·) is lower semicontinuous in � for all x ∈ E(γ);
(ii) for all x ∈ E(γ), T(x, ·) is upper semicontinuous with compact values inM;

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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(iii) for all x ∈ E(γ),W (x) = Y \ – intC(x) is closed.
Then �(·, ·) is outer-open in � ×M.

Proof Let x ∈ limsupoγ→γ,μ→μ �(γ ,μ). There are a neighborhood V of x and nets
{γα} ⊆ �, γα �= γ converging to γ and {μα} ⊆ M, μα �= μ converging to μ such that
V ⊂ �(γα ,μα), ∀α. By V ⊂ E(γα), we have x ∈ limsupoγ→γ E(γ ). It follows from (i) that
x ∈ E(γ). Now we show that x ∈ �(γ,μ). Indeed, by the lower-semicontinuity of
K(x, ·) in �, for any y ∈ K(x,γ), there exists yα ∈ K(x,γα) such that yα → y. As
x ∈ �(γα ,μα), there exists zα ∈ T(x,μα) such that

〈
Q(zα),�

(
yα ,ψ(x),γα

)〉
+�

(
yα ,ψ(x),γα

)
/∈ – intC(x). (.)

Since T(x, ·) is upper semicontinuous with compact-values in M, there exists z ∈
T(x,μ) such that zα → z (can take a subnet if necessary). Since Q(·), �(·,ψ(·), ·) are
continuous, we have

〈
Q(zα),�

(
yα ,ψ(x),γα

)〉 → 〈
Q(z),�

(
y,ψ(x),γ

)〉
.

It follows from the continuity of �(·,ψ(·), ·) that
〈
Q(zα),�

(
yα ,ψ(x),γα

)〉
+�

(
yα ,ψ(x),γα

)

→ 〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
.

By the condition (iii) and (.), we have

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
/∈ – intC(x).

Hence, x ∈ �(γ,μ). Thus, �(·, ·) is outer-open in � ×M. �

The following example shows that all assumptions of Theorem . are fulfilled. But the
outer-continuity in Theorem . is not satisfied. Thus, Theorem . cannot be applied.

Example . Let X = Y = R, � = M = [, ], γ = , C = [,+∞), let ψ , Q be identity
mappings, and T(x,γ ) = [, x+y+γ+], K(x,γ ) = (–,γ ) and �(y,x,γ ) =  and

�(y,x,γ ) =

⎧⎨
⎩
 if γ = ,

[ 
γ+ , ] otherwise.

We have E(γ ) = (–,γ ), ∀γ ∈ [, ]. We show that the conditions (i), (ii) and (iii) of The-
orem . are easily seen to be fulfilled. And so �(·, ·) is outer-open at (, ) (in fact,
�(, ) = (–, ) and �(γ ,μ) = (–,γ ) for all γ ∈ (, ]), but E(·) is not outer-continuous
at . Hence �(·, ·) is not outer-continuous at (, ).

The following example shows that all assumptions of Theorem . and Theorem . are
fulfilled. But Theorem . cannot be applied.

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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Example . Let Q, X, Y , �, M, T , C, ψ , �, γ as in Example ., and let K(x,γ ) =
{(ζ ,γ ζ ) : ζ ∈R} and

�(y,x,γ ) =

⎧⎨
⎩
 if λ = ,

[ 
ecos λ+ , ] otherwise.

Then, we have E(γ ) = {(ζ ,γ ζ ) : ζ ∈R} for all γ ∈ [, ]. Hence, E is outer-open and outer-
continuous at . It is not hard to see that (i)-(iii) in Theorem . and Theorem . are
satisfied. Hence, �(·, ·) is outer-open and outer-continuous at (, ) (in fact, �(γ ,μ) =
{(ζ ,γ ζ ) : ζ ∈R} for all γ ∈ [, ]). We see that E(·) is not upper semicontinuous at . Thus,
�(·, ·) is not upper semicontinuous at (, ). Hence, we cannot apply Theorem ..

The following example shows that the assumptions in Theorem ., Theorem . and
Theorem . may be satisfied in every case.

Example . Let X, Y , �, M, ψ , Q, C, γ be as in Example ., and let T(x,γ ) = { e },
�(y,x,γ ) = γ +sin x+, K(x,γ ) = [, ] and

�(y,x,γ ) =

⎧⎨
⎩
 if γ = ,

[  , ] otherwise.

We see that the conditions (i), (ii) and (iii) in Theorem ., Theorem . and Theorem .
are satisfied. And so, �(·, ·) is outer-open, outer-continuous and upper semicontinuous at
(, ) (in fact, �(γ ,μ) = [, ], ∀γ ∈ [, ]).

4 Lower semicontinuity of a solution set
In this section, we establish that the condition (Hh(γ,μ)) is a sufficient and necessary
condition for the lower semicontinuity, theHausdorff lower semicontinuity, the continuity
and Hausdorff continuity of the solution set for the parametric generalized vector mixed
quasivariational inequality problem (MQVIP).
Motivated by the hypothesis (H) of [, ] and the assumption (Hg ) in [, ], by virtue

of the parametric gap function h(·, ·, ·), now we introduce the following key assumption.

(Hh(γ,μ)) Given (γ,μ) ∈ � × M. For any open neighborhood N of the origin in X,
there exist α >  and a neighborhood V (γ,μ) of (γ,μ) such that for all (γ ,μ) ∈
V (γ,μ) and x ∈ E(γ ) \ (�(γ ,μ) +N), one has h(x,γ ,μ) ≥ α.

Asmentioned in Zhao [] and Kien [], the above hypothesis (Hh(γ,μ)) is character-
ized by a common theme used in mathematical analysis. Such a theme interprets a propo-
sition associated with a set in terms of other propositions associated with the complement
set. Instead of imposing restrictions on the solution set, the hypothesis (Hh(γ,μ)) lays
a condition on the behavior of the parametric gap function on the complement of the
solution set.
Geometrically, the hypothesis (Hh(γ,μ)) means that, given a small open neighbor-

hood N of the origin in X, we can find a small positive number α >  and a neighborhood
V (γ,μ) of (γ,μ), such that for all (γ ,μ) in the neighborhood of (γ,μ), if a feasible
point x is not in the set �(γ ,μ) +N , then a ‘gap’ by an amount of at least α will be yielded.

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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The following Lemma . is modified from Proposition . in Kien [].

Lemma . Suppose that all conditions in Lemma . are satisfied. For any open neigh-
borhood N of the origin in X, let

�(γ ,μ) := inf
x∈E(γ )\(�(γ ,μ)+N)

h(x,γ ,μ).

Then (Hh(γ,μ)) holds if and only if for any open neighborhood N of the origin in X, one
has

lim
γ→γ,μ→μ

inf�(γ ,μ) > .

Proof If (Hh(γ,μ)) holds, then for any open neighborhood N of the origin in X, there
exist α >  and a neighborhood V (γ,μ) of (γ,μ) such that for all (γ ,μ) ∈ V (γ,μ)
and x ∈ E(γ ) \ (�(γ ,μ) +N), one has h(x,γ ,μ)≥ α.
This implies that �(γ ,μ) ≥ α for every (γ ,μ) ∈ V (γ,μ), hence

lim
γ→γ,μ→μ

inf�(γ ,μ) ≥ α > .

Conversely, for any open neighborhood N of the origin in X,

π = lim
γ→γ,μ→μ

inf�(γ ,μ) > ,

then there exists a neighborhood V (γ,μ) of (γ,μ) such that

�(γ ,μ) = inf
x∈E(γ )\(�(γ ,μ)+N)

h(x,γ ,μ)≥ α > 

for all (γ ,μ) ∈ V (γ,μ), where α := 
π . Hence, for any x ∈ E(γ ) \ (�(γ ,μ) +N), we have

h(x,γ ,μ)≥ α > ,

which shows that (Hh(γ,μ)) holds. �

Remark . ([])
(i) Let a set A⊂ X , A is said to be balanced if λA⊂ A for every λ ∈ R with |λ| ≤ ;
(ii) For each neighborhood N of the origin in X , there exists a balanced open

neighborhood U of the origin in X such that U +U +U ⊂N .

Theorem . Suppose that the condition (Hh(γ,μ)) holds and
(i) E(·) is lower semicontinuous with compact values in �;
(ii) K(·, ·) is continuous with compact values in X × �;
(iii) T(·, ·) is continuous with compact values in X ×M;
(iv) C(·) is upper semicontinuous in X and e(·) ∈ intC(·) is continuous in X ;
(v) W (·) = Y \ – intC(·) is closed in X .

Then �(·, ·) is Hausdorff lower semicontinuous in � ×M.

http://www.journalofinequalitiesandapplications.com/content/2013/1/276
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Proof Suppose to the contrary that (Hh(γ,μ)) holds but �(·, ·) is not Hausdorff lower
semicontinuous at (γ,μ) ∈ � × M. Then there exist a neighborhood N of the origin
in X, a net {(γα ,μα)} ⊂ � ×M with (γα ,μα) → (γ,μ) and a net {xα} such that

xα ∈ �(γ,μ) \
(
�(γα ,μα) +N

)
. (.)

By the compactness of�(γ,μ), we can assume that xα → x ∈ �(γ,μ). By Lemma .,
there exists a balanced open neighborhood U of the origin in X such that U + U +
U ⊂N . Hence, for any given ε > , (x +εU)∩E(γ) �= ∅. By E(·) is lower semicontinuous
at γ ∈ �, there exists some k such that (x + εU)∩ E(γk) �= ∅ for all k ≥ k.
For ε ∈ (, ], suppose that ak ∈ (x + εU)∩ E(γk). We claim that ak /∈ �(γk) +U. Oth-

erwise, there exists tk ∈ �(γk) such that ak – tk ∈ U. Without loss of generality, we may
assume that xk – x ∈U whenever k is sufficiently large. Consequently, we get

xk – tk = (xk – x) + (x – ak) + (ak – tk) ∈ U + (–εU) +U ⊂U +U +U ⊂N .

This implies that xk ∈ �(γk ,μk) +N , contrary to (.). Thus,

ak /∈ �(γk ,μk) +U.

By the assumption (Hh(γ,μ)), there exists σ >  such that h(ak ,γk ,μk) ≥ σ . By Lem-
ma ., h(·, ·, ·) is upper semicontinuous in X × � × M. So, for any δ >  and for k suffi-
ciently large, we have

h(ak ,γk ,μk) – δ ≤ h(x,γ,μ).

We can take δ such that σ – δ > . Thus,

h(x,γ,μ)≥ h(ak ,γk ,μk) – δ ≥ σ – δ > .

Hence

h(x,γ,μ) = min
z∈T(x,μ)

max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}
> ,

and so

max
y∈K (x,γ)

{
–ξe

(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))}
> , ∀z ∈ T(x,μ).

Since y ∈ K(x,λ) is arbitrary, we have

–ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))
> 

or

ξe
(
x,

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

))
< .
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By Lemma .(i), we have

〈
Q(z),�

(
y,ψ(x),γ

)〉
+�

(
y,ψ(x),γ

)
) ∈ – intC(x),

which contradicts x ∈ �(γ,μ). Therefore, �(·, ·) is Hausdorff lower semicontinuous in
� ×M. �

Corollary . Suppose that all conditions in Theorem . are satisfied. Then we have
�(·, ·) is lower semicontinuous in � ×M.

Theorem . Suppose that
(i) E(·) is continuous with compact values in �;
(ii) K(·, ·) is continuous with compact values in X × �;
(iii) T(·, ·) is continuous with compact values in X ×M;
(iv) C(·) is upper semicontinuous in X and e(·) ∈ intC(·) is continuous in X ;
(v) W (·) = Y \ – intC(·) is closed in X .

Then �(·, ·) is Hausdorff lower semicontinuous in � ×M if and only if (Hh(γ,μ)) holds.

Proof From Theorem ., we only need to prove the necessity. Suppose to the contrary
that �(·, ·) is Hausdorff lower semicontinuous at (γ,μ) ∈ � × M, but (Hh(γ,μ)) does
not hold. By Lemma ., there exists a neighborhood N of the origin in X such that

lim
γ→γ,μ→μ

inf�(γ ,μ) = .

Then there exists a net {(γα ,μα)} ⊂ � ×M with (γα ,μα) → (γ,μ) such that

lim
α→∞�(γα ,μα) = lim

α→∞ inf
x∈E(γα )\(�(λα ,μα )+N)

h(x,γα ,μα) = . (.)

By E(γα) \ (�(γα ,μα) + N) is a compact set and h(·, ·, ·) is continuous from Lemma .,
there exists xα ∈ E(γα) \ (�(γα ,μα) +N) satisfying �(γα ,μα) = h(xα ,γα ,μα). Clearly, (.)
implies

lim
α→∞h(xα ,γα ,μα) = .

Since E(·) is upper semicontinuous with compact values in�, we can assume that xα → x
with x ∈ E(γ). By the continuity of h(·, ·, ·), we have h(x,γ,μ) =  and so x ∈ �(γ,μ).
For any t ∈ �(γ,μ), since �(·, ·) is Hausdorff lower semicontinuous at (γ,μ) ∈ �×M,
we can find a net {tα} ⊂ �(γα ,μα) such that tα → t, ∀α. By xα ∈ E(γα) \ (�(γα ,μα) +N),
tα – xα � N . Letting α → ∞, we have t – x � N , ∀t ∈ �(γ,μ). Since x ∈ �(γ,μ),
we have a contradiction. Thus, (Hh(γ,μ)) holds. �

The following example shows that (Hh(γ,μ)) in Theorem . is essential.

Example . Let X,�,M, γ,ψ ,Q as in Example ., let Y =R,C =R
+,K(x,γ ) = [–, ],

T(x,μ) = [,γ + x], �(y,ψ(x),γ ) = , �(y,ψ(x),γ ) = y – x. Now we consider the problem
(MQVIP) of finding x ∈ E(γ ) and z ∈ T(x,μ) such that

〈
Q(z),�

(
y,η(x),γ

)〉
+�

(
y,η(x),γ

)
=

(
(y – x),

(
γ + x

)
(y – x)

)
/∈ – intR

+.
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It follows from a direct computation

�(γ ,μ) =

⎧⎨
⎩

{–, } if γ = ,

{–} otherwise.

Hence �(·, ·) is not H-lsc in � × M. Now we show that condition (Hh(γ,μ)) does not
hold at (, ). Taking e = (, ) ∈ intR

+, we have

h(x,γ ,μ) = min
z∈T(x,γ )

max
y∈K (x,γ )

{
–ξe

(
x,

〈
Q(z),�

(
y,η(x),γ

)〉
+�

(
y,η(x),γ

))}

= max
y∈K (x,γ )

((
λ + x

)
(x – y)

)

=
(
γ + x

)
(x + ).

We have h(·, ·, ·) is a parametric gap function of (MQVIP). For given (γ,μ) ∈ � × M,
for any open neighborhood Nε() = (–ε, ε), choose ε such that  < ε < . For any α > ,
taking (γβ ,μβ ) → (, ) with  < γβ < α and xβ =  ∈ E(γβ ) \ (�(γβ ,μβ ) +Nε()), we have
h(xβ ,γβ ,μβ ) = γβ < α. Hence, (Hh(γ,μ)) does not hold at (, ).

Corollary .
(i) Suppose that all conditions in Theorem . are satisfied. Then we have �(·, ·) is lower

semicontinuous in � ×M if and only if (Hh(γ,μ)) holds.
(ii) Suppose that all conditions in Theorem . are satisfied. Then we have �(·, ·) is both

continuous (H-continuous) and closed in � ×M if and only if (Hh(γ,μ)) holds.

Remark .
(i) In special cases as those in Section  (e) and (f ), Theorem . extends Theorem .

in [] and Theorem . in []. Moreover, our assumption (Hh(γ,μ)) is different
from the assumption (Hg ) in [, ]. Besides, our problem (MQVIP) is considered in
Hausdorff topological vector spaces.

(ii) In the special case as that in Section  (d), Theorem . extends Theorem . in [],
and in the special case as that in Section  (b), Corollary .(ii) extends Theorem .
in []. Indeed, our assumption (Hh(γ,μ)) is a sufficient and necessary condition
for the lower semicontinuity, the Hausdorff lower semicontinuity, the continuity and
Hausdorff continuity of the solution set for (MQVIP) while the assumption (Hg ) in
[, ] is only a sufficient condition.
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