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1 Introduction

A well-known check of the AdS/CFT duality [1] is the exact matching of the AdS5 vacuum

energy and the Casimir energy of the large N limit of SU(N), N = 4 super Yang-Mills on

S3 [2, 3]. Technically speaking, this result was implemented by fixing the boundary data,

namely imposing Dirichlet boundary conditions. Indeed, AdS is not globally hyperbolic,

which means that besides initial conditions it is necessary to also provide boundary condi-

tions for the evolution of a given field so that is well-defined. This was analyzed in-extenso

for the linearized dynamics of spin-0, 1, and 2 fields in AdS [4], where, in particular, all

the self-adjoint extensions for the relevant spin-0 Sturm-Liouville operators were found for

scalar fields of mass m, which satisfy

m2
BF +

1

l2
> m2 ≥ m2

BF , m2
BF = −(D − 1)2

4l2
(1.1)

where l is the AdS radius, D is the spacetime dimension, and m2
BF is the Breitenlohner-

Freedman (BF) bound [5, 6]. Furthermore, the backreaction of these generalized boundary

conditions was considered, and its contribution to the spacetime energy has been computed

in different ways [7–14].

One of the interesting outputs of [12] is the existence of logarithmic branches of non-

linear origin at certain values of the scalar field mass. In particular, this occurs when the
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scalar field mass is the one of the scalars of four-dimensional gauged N = 8 supergravity,

namely m2 = −2l−2. It is interesting to note that the interpretation of the AdS invariant

boundary conditions as a multi-trace deformation of the dual theory was given before

this exhaustive analysis in [15] (see, also, the nice work [16]). Some of these theories are

equivalently defined by the requirement of the existence of a soliton with a given value of

the scalar field at the origin. Such constructions go by the name of designer gravity [11].

Techniques for constructing exact hairy black hole solutions that are relevant for our work

can be found in [17–20].

In [3, 21, 22], the energy of the gravitational configuration is connected to the gauge

theory through the quasi-local Brown-York energy momentum tensor [23]. A non-trivial

contribution to the mass when the boundary conditions break the conformal symmetry is

expected to imply a modification of the trace anomaly, as was shown to be the case using

the Hamilton-Jacobi equation in [24]. However, to the best of our knowledge, the same

construction has not been done in the spirit of the work by Balasubramanian and Kraus [3],

neither extended to the logarithmic branches of non-linear origin at m2 = −2l−2, which

is the main objective of this paper.1 We use the Hamiltonian formalism as a guide for

constructing the counterterms.

It is important to emphasize that, when the conformal symmetry is broken in the

boundary, the mass of Ashtekar-Magnon-Das (AMD) [28, 29] does not match the Hamil-

tonian mass [14] and so it also does not match the holographic mass. Therefore, for AdS

black hole solutions when the conformal symmetry is broken in the boundary, e.g [30], the

right mass is not the AMD mass. As a concrete application, we shall consider a relatively

simple family of hairy black hole solutions [31] that, however, is general enough to include

the single scalar field truncations of four-dimensional gauged N = 8 supergravity as well

as its ω-deformation [32] (see, also, [33–35]).

The remainder of the paper is organized as follows: in section 2 we review mixed

AdS boundary conditions in the context of AdS/CFT duality. In section 3 we provide

the counterterms that regularize the action and verify that the variational principle is

well defined when the action is supplemented with these counterterms. We compute the

free energy of a generic hairy black hole solution with mixed boundary conditions of the

scalar field and the relevant thermodynamical quantities. Section 4 contains the general

formalism for computing the regularized quasilocal stress tensor (for both, the logarithmic

and non-logarithmic branches). Using the AdS/CFT duality dictionary, we then compute

the stress tensor of the dual field theory and the anomaly when the boundary conditions

break conformal symmetry. In section 5 we compare different types of constructions of

gravitational mass in AdS for mixed boundary conditions of the scalar field. When the

conformal symmetry is broken the holographic and Hamiltonian mass match, but do not

match the AMD mass. Then, we work out concrete examples of hairy black hole solutions

that are dual to triple trace deformations of the boundary field theory. Finally, we end

with some conclusions and future directions.

1In three dimensions, similar work was done in [25] and for the particular case of Dirichlet boundary

conditions see, e.g., [26, 27].

– 2 –



J
H
E
P
0
3
(
2
0
1
6
)
1
1
7

2 General AdS4 boundary conditions and multi-trace deformations in

the dual theory

In this section, we review the role of AdS boundary conditions in the context of AdS/CFT

duality [1]. According to ‘holographic’ dictionary, imposing mixed boundary conditions on

the scalar field (in the bulk) corresponds to perturbing the large N boundary theory by a

relevant, irrelevant or marginal multi-trace deformation [15].

Let us start by exhibiting some known facts about the AdS/CFT duality [1]. We would

like to describe what kind of boundary conditions preserve the conformal symmetry of the

dual field theory and interpret them in the context of the AdS/CFT duality [10, 12, 15].

First, we describe the AdS4 spacetime and explain how the symmetries of the two dual

theories match. That is, the isometry group SO(3, 2) of AdS4 acts on the (conformal)

boundary as the conformal group2 acting on Minkowski spacetime.

AdS spacetime has the maximal number of isometries in every dimension. Hence, it

has a simple form in a large number of coordinate systems (see, e.g., [36] for a discussion

in the context of AdS/CFT duality). Depending on the choice of the radial coordinate, the

slices at constant radius can have a different geometry or even a different topology. For

example, one can foliate AdS4 with the following slices:

ds̄2 = ḡµνdx
µdxν = −

(
k +

r2

l2

)
dt2 +

dr2

k + r2

l2

+ r2dΣ2
k (2.1)

where k = {+1, 0,−1} for the spherical (dΣ2
1 = dΩ2), toroidal (dΣ2

0 = dx2 + dy2), and

hyperbolic (dΣ−1 = dH2) foliations, respectively. Here, dΩ2 and dH2 are the unit metrics

on the 2-dimensional sphere and hyperboloid, respectively. The radius l of AdS4 is related

to the cosmological constant by Λ = −3/l2.

The conformal boundary is at r →∞, for which the induced metric is

habdx
adxb =

r2

l2
(
−dt2 + l2dΣ2

k

)
(2.2)

and now it is clear that the background geometry where the field theory lives is related

to the boundary geometry by a conformal transformation. Therefore, a bulk metric is

associated with a conformal structure at infinity. The conformal factor is going to play an

important role when we are going to compute the boundary stress tensor.

Even if different foliations of AdS4 are related by local coordinate transformations, the

corresponding dual gauge theories are physically inequivalent (for example, in the k = 1

case there is a Hawking-Page phase transition, but not for k = 0). This is due to the fact

that different spacelike foliations of the background geometry lead to different definitions

of the time coordinate (and so the Hamiltonian) of the dual quantum system.

Starting with k = 0 form of AdS4 metric and using the change of coordinates r = l2/z,

we obtain

ds̄2 =
l2

z2

(
dz2 − dt2 + dx2 + dy2

)
(2.3)

2The conformal group of Minkowski spacetime is the invariance group of the light cone, in other words

all the transformations that leave ds2 = 0 invariant.
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In these coordinates, which cover only part of AdS4 spacetime, the Minkowski spacetime

appears naturally as the conformal boundary. The finite isometries of AdS4 map the

boundary z = 0 to itself and, moreover, act as conformal transformations in the boundary.

In particular, the transformation (z, t, x, y) ← λ(z, t, x, y), which leaves the metric (2.3)

invariant, acts as the dilation (scale transformation) in the boundary. Since the AdS

spacetime is not globally hyperbolic, one has to impose boundary conditions. Within the

AdS/CFT duality, various deformations of the AdS boundary conditions are interpreted as

dual to deformations of the CFT. It is well known [4–6] that a scalar of arbitrary mass in

AdS can have both normalizable and non-normalizable modes. It was shown in [37, 38] that

the normalizable modes describe fluctuations in the bulk and the non-normalizable modes

correspond to operator insertions in the boundary dual field theory. We are interested in

the case when both modes are normalizable:

m2
BF +

1

l2
> m2 ≥ m2

BF , m2
BF = − 9

4l2
(2.4)

where m2
BF is the BF bound (1.1) in four dimensions.

In what follows we briefly review the boundary conditions that accommodate a scalar

field whose mass corresponds to the conformal one. We are interested in the action

I[gµν , φ] =

∫
M
d4x
√
−g
[
R

2κ
− 1

2
(∂φ)2 − V (φ)

]
+

1

κ

∫
∂M

d3xK
√
−h (2.5)

where V (φ) is the scalar potential, κ = 8πG with G the Newton gravitational constant,

and the last term is the Gibbons-Hawking boundary term. Here, h is the determinant of

the boundary metric and K is the trace of the extrinsic curvature. The equations of motion

for the scalar field and metric are

1√
−g

∂µ
(√
−ggµν∂νφ

)
− ∂V

∂φ
= 0 (2.6)

Eµν = Rµν −
1

2
gµνR− κT φµν = 0 (2.7)

where the stress tensor of the scalar field is

T φµν = ∂µφ∂νφ− gµν
[

1

2
(∂φ)2 + V (φ)

]
(2.8)

We work with the general ansatz

ds2 = −N(r)dt2 +H(r)dr2 + S(r)dΣ2
k (2.9)

As it was shown first in three dimensions [7], and then generalized in four and higher

dimensions [9, 10, 12, 13], in the presence of the scalar fields the standard AdS boundary

conditions are modified. One can obtain the right fall-off for the grr component of the

metric by considering the equations of motion and using the fall-off of the scalar field. A

general discussion for any mass of the scalar field in the range (1.1) can be found in [12],
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but in this work we focus on the concrete case of the conformal mass in four dimensions

m2 = −2l−2. We start with the potential

V (φ) = − 3

κl2
− φ2

l2
+O

(
φ4
)

(2.10)

The fall-off of the scalar field in this case is

φ(r) =
α

r
+
β

r2
+O

(
r−3
)

(2.11)

In order to accommodate the black hole of section 5.4 we consider the following asymptotic

behavior for the N(r) and S(r) metric coefficients

N(r) = −gtt =
r2

l2
+ k − µ

r
+O

(
r−2
)

(2.12)

S(r) = r2 +O
(
r−2
)

(2.13)

Now, we use the combination of the equations of motion (2.7), Ett − Err = 0, from which

we obtain

NS
′2H − 2NS

′′
HS + (NH)

′
S
′
S − 2κNHS2φ

′2 = 0 (2.14)

and then

H(r) = grr =
l2

r2
+
l4

r4

(
−k − α2κ

2l2

)
+
l5

r5

(
µ

l
− 4καβ

3l3

)
+O

(
r−6
)

(2.15)

The reason we would like to obtain the fall-off of grr in this way is because the Hamiltonian

mass can be read off from it — if there is a contribution of the scalar field to the mass, one

should be able to identify it in grr.

From now on, we use the generic notation for the expansion of grr as

grr =
l2

r2
+
al4

r4
+
bl5

r5
+O

(
r−6
)

(2.16)

where a = −k − κα2

2l2
and b = µ

l −
4καβ
3l3

. At this point, it is interesting to investigate when

the asymptotic conditions are AdS invariant and the Hamiltonian is well defined. It seems

that, for some special functional relationship on the coefficients α and β of the modes of

the scalar field, both conditions are satisfied. This was explicitly done in [10, 12] and here

we just present the result:

β = Cα2 (2.17)

Interestingly enough, one can also obtain a finite Hamiltonian when the boundary confor-

mal symmetry is broken.

A similar analysis can be done for the so-called logarithmic branch [9]. In what follows

we would like to carefully analyze this case and present details we are going to use in the

next sections.

It is well known that a second order differential equation has two linearly independent

solutions. When the ratio of the roots of the indicial equation is an integer, the solution

may develop a logarithmic branch. This is exactly what happens when the scalar field
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saturates the BF bound, in which case the leading fall-off contains a logarithmic term [9].

However, we are interested in a scalar field with the conformal mass m2 = −2l−2. To

obtain the logarithmic branch, a cubic term in the asymptotic expansion of the scalar field

potential is necessary [12]

V (φ) = − 3

κl2
− φ2

l2
+ λφ3 +O

(
φ4
)

(2.18)

so that the fall-off of the scalar field to be considered is

φ(r) =
α

r
+
β

r2
+
γ ln(r)

r2
+O

(
r−3
)

(2.19)

To obtain the fall-off of grr we use the same fall-off for the other components of the metric

and the same combination of the equations of motion as in the non-logarithmic branch,

Ett − Err = 0. We get

H(r) = grr =
l2

r2
+
l4

r4

(
−k−κα

2

2l2

)
+
l5

r5

(
µ

l
−4καβ

3l3
+

2καγ

9l3

)
+
l5 ln r

r5

(
−4καγ

3l3

)
+O

[
ln (r)2

r6

]
(2.20)

Using again the generic notation for the asymptotic expansion of grr

H(r) =
l2

r2
+
l4a

r4
+
l5b

r5
+
l5c ln r

r5
+O

[
ln (r)2

r6

]
(2.21)

we identify the relevant coefficients as

a = −k − α2κ

2l2
; b =

µ

l
− 4καβ

3l3
+

2καγ

9l3
; c = −4κγα

3l3
(2.22)

Now, let us check when the fall-off of the scalar field we have considered is compatible with

its equation of motion:

∂r

(
φ
′
S
√
N√

H

)
− S
√
NH

∂V

∂φ
= 0 (2.23)

In the asymptotic region, r →∞, this equation becomes

3α2l2λ+ γ

l2
+O

(
r−1
)

= 0 (2.24)

and so the coefficient γ is fixed by α as γ = −3l2λα2 (or, using the notation that we shall

use below, γ = Cγα
2, where Cγ = −3l2λ). This result is important because, as we will

see shortly, is also part of the conditions that preserve the conformal symmetry of the

boundary.

The last step in our derivation is to investigate when the boundary conditions are

preserved under the asymptotic AdS symmetry. The corresponding asymptotic Killing

vector ξµ = (ξr, ξm) is

ξr = rηr(xm) +O
(
r−1
)

(2.25)

ξm = O(1)

– 6 –
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where {m} is an index that run over the time an angular coordinates. The fall-off of the

scalar field should be invariant under the asymptotic AdS symmetries and so we obtain:

φ′(x) = φ(x) + ξµ∂µφ(x) =
ᾱ

r
+
β̄

r2
+
γ̄ ln(r)

r2
+O

(
r−3
)

(2.26)

where

ᾱ = α− ηrα+ ξm∂mα (2.27)

β̄ = β − ηr(2β − γ) + ξm∂mβ

γ̄ = γ − 2γηr + ξm∂mγ

If the coefficients in the series (2.26) are functionally related, the conformal symmetry on

the boundary fixes the functional relation between the coefficients so that the equations

above are compatible. Hence, one performs a Taylor expansion of γ̄ and β̄ to linear order

in ηr and ξm to obtain:

ηr
(

2γ − α∂γ
∂α

)
+ ξm

(
∂α

∂xm
∂γ

∂α
− ∂γ

∂xm

)
= 0 (2.28)

and

ηr
(

2β − γ − α∂β
∂α

)
+ ξm

(
∂α

∂xm
∂β

∂α
− ∂β

∂xm

)
= 0. (2.29)

Using the fact that ηr and ξm are independent, we get from (2.28) that 2γ = α ∂γ∂α ,

which implies that γ = Cγα
2. This is the result obtained before from the equation of

motion for the scalar field. From the integration of (2.29) we obtain

β(α) = (−Cγ ln(α) + C)α2 (2.30)

When Cγ = 0 this result matches the condition found for the non-logarithmic branch (2.17).

Again, one can obtain a finite Hamiltonian even if the conformal invariance is broken.

A precise formulation of the AdS/CFT duality [1] was proposed in [39, 40] and de-

veloped for multi-trace deformations in [15]. The observables in the field theory side of

the duality are the correlation functions of gauge invariant operators, which are compos-

ites of the elementary fields. Any supergravity field φ corresponds to an operator O in

the (boundary) field theory. The duality relates the generating functional for correlation

functions of the operator O with the string/gravity partition function on AdS space with

the boundary conditions that are imposed on the excitations in the bulk. In our case, the

relevant fields in the bulk are the graviton (metric perturbations) and scalar field. The

corresponding operators in the dual field theory are the stress-energy tensor Tµν of the

dual field theory and a scalar operator of dimension ∆, respectively.

Let us consider a massive scalar field. By solving the equation of motion close to the

boundary, we obtain:

φ(r) =
α

r∆−
+

β

r∆+
+ . . . (2.31)

where α and β are the leading and sub-leading components of the asymptotic expansion of

the scalar field and ∆± = 3
2 ±

√
9
4 +m2l2.
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Depending of the value of the mass, the two modes (on the Lorentzian section) can

be divergent or finite. For example, for a positive squared-mass m2 > 0 the mode β is

divergent in the interior and finite at the boundary and the mode α is divergent at the

boundary but finite in the interior. Then, the mode β corresponds to source currents

in the boundary dual theory. On the other hand, by turning on the mode α, the bulk

geometry is modified while the AdS structure near the boundary may be preserved — this

is the type of deformation we are interested in this work. Since the bulk gravity solution is

changed, one has to perform a linearized analysis around the new background to calculate

the correlation functions. This is exactly what happens when the ‘vacuum’ around which

one expands to obtain the physical quantities is changed. Then, in the dual theory, there

is a similar situation: the dual field theory is expanded around a vacuum with non-trivial

vacuum expectations values (VEV) for the appropriate operators. Indeed, in the standard

AdS/CFT dictionary [37, 38], a bulk gravity solution with a non-trivial dilaton corresponds

in the dual field theory to the insertion of a source for an operator with conformal dimension

∆−, VEV α, and current β = J(x).

The spectrum of operators in the dual field theory include all the gauge invariant

quantities, namely product of traces of products of fields (or the sum of such products).

Single-trace operators in the field theory may be identified with single-particle states in

AdS, while multiple-trace operators correspond to multi-particle states. The significance

of the multi-trace deformations from a point of view of the gravity side was investigated

in [10, 15]. The mixed boundary conditions play an important role because they correspond

to a deformation of the field theory action by

ICFT → ICFT −
∫
d3xW [O(x)] (2.32)

where β(x) = dW
dα(x) , and W is fixed by the boundary conditions of the string theory side.

In section 5 we are going to apply this general framework to concrete analytic hairy

black hole solutions.

3 Counterterms and regularized action

The usual approach to computing thermodynamic quantities of black holes is to analyti-

cally continue in the time coordinate in order to obtain a Euclidean solution of the Einstein

equations (with negative cosmological constant). In this way, the periodicity of the Eu-

clidean time is related to the temperature of the black hole and the Euclidean action to

the thermodynamical potential (in our case, the free energy). In this section we explicitly

construct counterterms that cancel the divergences of the action for both logarithmic and

non-logarithmic branches and check that the variational principle is well possed. We apply

the counterterm method to compute the free energy of hairy black holes with a scalar field

with the conformal mass m2 = −2l−2.

3.1 Variational principle

Our goal is to construct counterterms (boundary terms) that regularize the action so that

the variational principle is well-posed. The boundary terms do not change the equations

– 8 –
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of motion and so they can be incorporated in the action. To make our point, let us first

consider the action (2.5) when the scalar field is turned off. In this case, the action has

just two terms: the bulk action and the Gibbons-Hawking surface term necessary to ensure

that the Euler-Lagrange variation is well-defined. The gravitational action computed in this

way (even at tree-level) contains divergences that arise from integrating over the infinite

volume of spacetime. In the AdS/CFT context, the infrared (IR) divergences of gravity

are interpreted as ultraviolet (UV) divergences of the dual CFT. A well understood way of

computing the bulk action without introducing a background is to add local counterterms

into the action, which remove all divergences, leading to a finite action corresponding to

the partition function of the CFT. For pure AdS gravity in four dimensions, the action

should be supplemented with the following counterterm [3]:

Ictg = −1

κ

∫
∂M

d3x
√
−h
(

2

l
+
Rl
2

)
(3.1)

Here, hab is the induced metric on the boundary and R is its Ricci scalar.

In the presence of the scalar field, this counterterm is not sufficient to cancel the

divergences in the action. For this case, an additional boundary term that depends on

the scalar is needed, namely Iφ. We are going to study the variational principle of the

following action:

I=

∫
d4x
√
−g
(
R

2κ
− (∂φ)2

2
− V (φ)

)
+

1

κ

∫
∂M

d3x
√
−hK− 1

κ

∫
∂M

d3x
√
−h
(

2

l
+
Rl
2

)
+Ictφ

(3.2)

for a scalar field with the conformal mass m = −2l−2. In some previous work (for example,

see [41, 42]), the following counterterm that produces a finite action for the non-logarithmic

branch was proposed:
1

6κ

∫
∂M

d3x
√
−h
(
φnν∂νφ−

φ2

2l

)
(3.3)

However, it is problematic because it is not intrinsic to the boundary and also, for mixed

boundary conditions, the variational principle is not satisfied. Instead, we propose new

counterterms for both, the logarithmic and non-logarithmic branches, so that the action

is finite and there is a well-posed variational principle. These intrinsic counterterms are

constructed to be compatible with the Hamiltonian method in the sense that the results

match for any boundary conditions.

Let us start with the non-logarithmic branch with the boundary term associated to

the scalar field given by

Ictφ = −
∫
∂M

d3x
√
−h
[
φ2

2l
+
W (α)

lα3
φ3

]
(3.4)

Then, by using the boundary expansion of the metric and scalar field, the variation of the

action yields a boundary term evaluated at the cutoff r:

δI=

∫
d3x
√
−h
[

1

r

(
−
√
grrφ

′ − φ

l
− 3W (α)φ2

lα3

)(
1+

1

r

d2W (α)

dα2

)
+

(
3W (α)

α
− β

)
φ3

lα3

]
δα

(3.5)
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It is easy to show then that the variational principle is well defined when the cutoff goes

to infinity:

lim
r→∞

δI = 0 (3.6)

For the logarithmic branch we should work with the following counterterm for the scalar field:

Ictφ + Īctφ = −
∫
∂M

d3x
√
−h
[
φ2

2l
+
φ3

lα3

(
W − αγ

3

)
− φ3Cγ

3l
ln

(
φ

α

)]
(3.7)

where Īctφ is the counterterm necessary to provide a well possed acction principal in the

case of the logartithmic branch. Using the asymptotic expansions of the metric and scalar

field we also obtain that the variational principle is well-defined for arbitrary boundary

conditions when the cut-off surface is send to infinity. As we shall show below, the same

counterterms provide a finite on-shell action and the right free energy.

3.2 Regularized action and free energy

Evaluating the action leads to a formally divergent result. Now, we would like to show

that, indeed, all the divergences can be eliminated by using the counterterms proposed in

the previous section and so the action is finite. We use the standard technique of Wick

rotating the time direction t = iτ . Then, the temperature is related to the periodicity of

the Euclidean time τ (∆τ = β = 1/T ) and the leading contribution to the free energy is

determined by evaluating the Euclidean action.

The action has four terms, the bulk part IEbulk, Gibbons-Hawking surface term IEGH ,

and two boundary counterterms (Ictg , Ictφ ): I = IEbulk + IEGH + Ictg + Ictφ . Let us compute

these contributions for the non-logarithmic branch first.

Since we are going to study the properties of a large family of exact hairy black hole

solutions, let us start with the following generic metric ansatz

ds2 = Ω(x)

[
−f(x)dt2 +

η2dx2

f(x)
+ dΣ2

k

]
(3.8)

Concrete expressions for the functions Ω(x) and f(x) are presented in section 5.4.

The computations in the (t, x,Σ) coordinate system (3.8) are related by a simple

coordinate transformation to (t, r,Σ) system (2.9). In what follows, xb and rb denote the

boundary, and x+ and r+ the horizon. The on-shell Euclidean bulk action can be written as

IEbulk =

∫ 1/T

0
dτ

∫ xb

x+

d3x
√
gEV (φ) =

σk
2ηκT

d(Ωf)

dx

∣∣∣∣xb
x+

(3.9)

where σk is the area of Σk (e.g., for k = 1 σ1 = 4π) and gE is the metric on the Euclidean

section. The two coordinate systems (t, x,Σk) and (t, r,Σk) are related by

Ω(x)→ S(r); f(x)→ N(r)

S(r)
; dx→

√
NH

ηS
dr (3.10)

and so we can rewrite the bulk integral result in the coordinates (t, r,Σk) as

IEbulk =
σk

2κT

S√
NH

dN

dr

∣∣∣∣rb
r+

(3.11)
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Let us now compute the Gibbons-Hawking term. Consider a timelike hypersurface x = x0,

then the induced metric hµν = gµν − nµnν , normal, extrinsic curvature, and its trace

K = hµνKµν are

ds2 = habdx
adxb = Ω(x0)

[
−f(x0)dt2 + dΣk

]
(3.12)

na =
δxa√
gxx

∣∣∣∣
x=x0

; Kab =

√
gxx

2
∂xgab

∣∣∣∣
x=x0

; K =
1

2η

(
f

Ω

)1/2
[

(Ωf)
′

Ωf
+

2Ω
′

Ω

]∣∣∣∣∣
x0

(3.13)

and using the transformation equations (3.10) the contribution of this term can be rewrit-

ten as

IEGH = − σk
κT

Ωf

2η

[
(Ωf)

′

Ωf
+

2Ω
′

Ω

]∣∣∣∣∣
xb

= − σk
2Tκ

(
S√
NH

dN

dr
+

2N√
NH

dS

dr

)∣∣∣∣
rb

(3.14)

The contribution from the gravitational counterterm is

Ictg =
2σk
κT l

(
Ω3/2f1/2 +

l2k

2
f1/2Ω1/2

)∣∣∣∣
xb

=
2σk
κT l

S
√
N

(
1 +

l2k

2S

)∣∣∣∣
rb

(3.15)

Using the general formula for the temperature

T =
N
′

4π
√
NH

∣∣∣∣
r+

(3.16)

one can write the sum of these three contributions in the total action as

IEbulk + IEGH + Ictg = − 1

T

[
σkS(r+)T

4G

]
− σk

2κT

[
2N√
NH

dS

dr
− 4

l
S
√
N

(
1 +

l2k

2S

)]∣∣∣∣
rb

(3.17)

which, for a scalar field with the conformal mass m2 = −2l−2 as in (2.11) and with the

metric fall-off (2.12) and (2.16), becomes

IEbulk + IEGH + Ictg = − A
4G
− σk
T

(
−µ
κ

+
4αβ

3l2
+
rα2

2l2

)∣∣∣∣
rb

(3.18)

Here, A = σkS(r+) is the horizon area.

It is clear now that the gravitational counterterm is not sufficient to remove the diver-

gences at the boundary rb → ∞, but this new linear divergence can be regularized with

the following counterterm that depends on the scalar field:

Ictφ =

∫
∂M

d3x
√
hE
[
φ2

2l
+
W (α)

lα3
φ3

]
=
σk
T

(
W

l2
+
αβ

l2
+
rα2

2l2

)∣∣∣∣
r∞

(3.19)

The renormalized Euclidean action can be rewritten then using β = dW/dα as

IE = IEbulk + IEGH + Ictg + Ictφ = − A
4G

+
σk
T

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(3.20)
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and so the free energy becomes

F = IET = M − TS (3.21)

The thermodynamic relations will provide the same mass and entropy for the black holes:

M = −T 2∂I
E

∂T
= σk

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(3.22)

and

S = −∂(IET )

∂T
=
A
4G

(3.23)

A similar computation can be done for the logarithmic branch. We work again with a

scalar field with the conformal mass m2 = −2l−2 with a fall-off (2.19) for which the metric

fall-off is (2.20). If we work with the counterterm (3.4), we obtain

IEbulk + IEGH + Ictg + Ictφ = − A
4G

+
σk
T

{
µ

κ
+

1

l2

[
W (α)− α

3

dW

dα
+

2αγ

9
− αγ

3
ln r

]}
(3.24)

and we see that there is still a logarithmic divergence. Therefore, one consider a new

contribution from the scalar field that will also cancel that divergence (3.7):

Ī ctφ =

∫
∂M

d3x
√
hE
{
φ3γ

3α2l

[
ln

(
α

φ

)
− 1

]}
=
σk
T

[
−αγ

3l2
+
αγ ln r

3l2
+O(r−1 ln r)

]
(3.25)

We also obtain a finite action for the logarithmic branch

IE = IEbulk + IEGH + Ictg + Ictφ + Ī ctφ = − A
4G

+
σk
T

[
µ

κ
+

1

l2

(
W − α

3

dW

dα
− αγ

9

)]
(3.26)

where γ = Cγα
2 and Cγ = −3l2λ.

The thermodynamic relations provide the right results:

M = −T 2∂I
E

∂T
= σk

[
µ

κ
+

1

l2

(
W − α

3

dW

dα
− αγ

9

)]
(3.27)

and

S = −
∂
(
IET

)
∂T

=
A
4G

(3.28)

The conformal symmetry of the boundary is preserved when W (α) = α3(C + l2λ lnα).

4 Regularized Brown-York stress tensor

Within the AdS/CFT duality, the AdS graviton couples to the stress-energy tensor of the

CFT [43, 44]: ∫
∂M

d3xhab Tab (4.1)

Then, from a holographic point of view, the Brown-York stress tensor is interpreted as the

stress-energy tensor of the dual field theory. In this section we work in the coordinates
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(t, r,Σ)k for which the metric was given in (2.9). For the bulk geometry we use the foliation

with the surfaces r = R = constant and the induced metric is

ds2 = habdx
adxb = −N(R)dt2 + S(R)dΣ2

k (4.2)

The Brown-York (quasilocal) stress tensor is defined as [23]

τab ≡ 2√
−h

δI

δhab
(4.3)

where I is the total action including the counterterms.

Since the metric where the dual field lives is related to the boundary metric by a

conformal factor, it is very important to emphasize that the CFT stress tensor is also

related to the Brown-York stress tensor up to a conformal factor. As an warm up exercise,

let us describe this method for the 4-dimensional Schwarzschild-AdS black hole — we are

going to follow the analysis of [45].

The black hole metric is

ds2 = −
(

1− m

r
+
r2

l2

)
dt2 +

(
1− m

r
+
r2

l2

)−1

dr2 + r2dΩ2 (4.4)

and if we consider the foliation r = R the induced metric hab of any ‘slice’ is

ds2 = −
(

1− m

R
+
R2

l2

)
dt2 +R2dΩ2 (4.5)

As we have pointed out before, the boundary metric is

ds2
boundary =

R2

l2
(
−dt2 + l2dΩ2

)
(4.6)

but the background metric where the dual quantum field theory lives is γab defined as

ds2
dual = γabdx

adxb = −dt2 + l2dΩ2 (4.7)

The metric γab is not dynamical and it is related by a conformal factor to the boundary

metric. The corresponding dual stress tensor is

〈τdual
ab 〉 = lim

R→∞

R

l
τab =

m

16πGl2
[
3δ0
aδ

0
b + γab

]
(4.8)

Written in this way [45] it has the form of a thermal gas of a massless particles and, as

expected, its trace vanishes 〈τdual〉 = 〈τdual
ab 〉γab = 0.

A similar procedure can be used for the hairy black holes, but one should add the

boundary counterterms related to the scalar field. In the case of the non-logarithmic

branch, the complete action is (3.2) and the scalar counterterm was given in (3.3), where

Gab is the Einstein tensor for the foliation (4.2) given by Gab = δtaδ
t
bNk/S. The regularized

stress tensor is

τab = −1

κ

(
Kab − habK +

2

l
hab − lGab

)
− hab

l

[
φ2

2
+
W (α)

α3
φ3

]
(4.9)
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Thus, the stress tensor components are

τtt =
l

R

[
µ

8πGl2
+

1

l4

(
W − αβ

3

)]
+O

(
R−2

)
(4.10)

τθθ =
l

R

[
µ

16πG
− 1

l2

(
W − αβ

3

)]
+O

(
R−2

)
τφφ =

l sin2 θ

R

[
µ

16πG
− 1

l2

(
W − αβ

3

)]
+O

(
R−2

)
The stress tensor of the dual field theory can be put in a similar form as for the Schwarzschild-

AdS black hole:

〈τdual
ab 〉 =

3µ

16πGl2
δ0
aδ

0
b +

γab
l2

[
µ

16πG
− 1

l2

(
W (α)− αβ

3

)]
(4.11)

The trace can be easily computed and we get

〈τdual〉 = − 3

l4

[
W (α)− αβ

3

]
(4.12)

Unlike the Schwarzschild-AdS black hole, for the hairy black holes there are two different

types of boundary conditions, namely that preserve or not the conformal symmetry. As

expected, when the conformal symmetry is preserved W = Cα3 the trace of the dual stress

tensor vanishes 〈τdual〉 = 0.

A similar, but more complicated, procedure can be applied for the logarithmic branch.

The action (3.2) has a new contribution (3.25) that cancel the logarithmic divergence, and

the new regularized quasilocal stress tensor is

τab = −1

κ

(
Kab−habK+

2

l
hab−lGab

)
−hab

l

[
φ2

2
+
φ3

α3

(
W−αγ

3

)
+
φ3γ

3α2
ln

(
α

φ

)]
(4.13)

with the following components

τtt =
l

R

[
µ

8πGl2
+

1

l4

(
W − αβ

3
− αγ

9

)]
+O

[
(lnR)3

R2

]
(4.14)

τθθ =
l

R

[
µ

16πG
− 1

l2

(
W − αβ

3
− αγ

9

)]
+O

[
(lnR)3

R2

]
τφφ =

l sin2 θ

R

[
µ

16πG
− 1

l2

(
W − αβ

3
− αγ

9

)]
+O

[
(lnR)3

R2

]
and so the stress tensor of the dual field theory becomes

〈τdual
ab 〉 =

3µ

16πGl2
δ0
aδ

0
b +

γab
l2

[
µ

16πG
− 1

l2

(
W (α)− αβ

3
− αγ

9

)]
(4.15)

Its trace is

〈τdual〉 = − 3

l4

(
W − αβ

3
− αγ

9

)
(4.16)

and, as expected, it vanishes for the boundary conditions that preserve the conformal

symmetry:

〈τdual〉 = 0⇒ γ = −3l2λα2; W (α) = α3
[
C + l2λ lnα

]
(4.17)
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5 Hamiltonian mass and holographic mass

In AdS spacetime there exist different methods of computing the gravitational mass and

a comparison between them is going to be useful — for Dirichlet boundary conditions this

was done in great detail in [46] and up to some ambiguities related to constant boundary

terms, the Hamiltonian formalism, AMD mass, and holographic method produce the same

result. Though, as was pointed out in [14], when the conformal symmetry is broken in

the boundary the AMD mass is not the correct physical mass and one should compute

the Hamiltonian mass of the system. In this section we provide details of computing the

Hamiltonian mass and show that it matches the holographic mass even when the conformal

symmetry in the boundary is broken.

5.1 Hamiltonian formalism

We consider the Regge-Teitelboim approach [47] to compute the mass of static scalar hairy

asymptotically locally AdS spacetimes. A summary of this method is provided below. We

are considering the action (2.5) for which the Hamiltonian constraints H⊥ and Hi, with

i = 1, 2, 3, contain contributions from the gravitational term and from the matter sector

that in this case corresponds to a minimally coupled scalar field with a self-interaction

potential V (φ). These constraints are functions of the canonical variables: the three-

dimensional metric gij and the scalar field φ, and their corresponding conjugate momenta

πij and πφ. The Hamiltonian constraints are given by

H⊥ =
2κ
√
g

[
πijπ

ij − 1

2

(
πii
)2]− 1

2κ

√
g (3)R

+
1

2

(
πφ

2

√
g

+
√
ggijφ,i φ,j

)
+
√
gV (φ) (5.1)

Hi = − 2πji |j + πφφ,i (5.2)

The three-dimensional metric gij can be recognized from the line element written in its

ADM form

ds2 = −(N⊥)2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
(5.3)

and, g, (3)R and vertical bar | denote the determinant, the scalar curvature, and the

covariant derivative associated to the spatial metric, respectively.

The canonical generator of an asymptotic symmetry defined by the vector ξ = (ξ⊥, ξi)

is a linear combination of the constraints H⊥,Hi plus a surface term Q[ξ]

H[ξ] =

∫
∂M

d3x
(
ξ⊥H⊥ + ξiHi

)
+Q[ξ] (5.4)

Q[ξ] is chosen in order to cancel out the surface terms coming from the variation of the

generator with respect to the canonical variables. In this way, the generator H[ξ] possesses

well-defined functional derivatives [47]. The general form of Q[ξ] for the generator (5.4) [12]
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is given by

δQ[ξ] =

∮
d2Sl

[
Gijkl

2κ

(
ξ⊥δgij |k − ξ⊥,kδgij

)
+ 2ξkδπ

kl

+
(

2ξkπjl − ξlπjk
)
δgjk −

(√
gξ⊥gljφ,j +ξlπφ

)
δφ
]

(5.5)

where

Gijkl ≡ 1

2

√
g
(
gikgjl + gilgjk − 2gijgkl

)
(5.6)

The normal and tangential components of the allowed deformation (ξ⊥, ξi) are related with

the spacetime components (ξ⊥, (3)ξi) in the following way

ξ⊥ = N⊥ξt, ξi = (3)ξi +N iξt (5.7)

The following step is to note that the Hamiltonian generator (5.4) reduces to the surface

term Q[ξ] when the constraints hold. Thus, the value of the generators — the conserved

charges associated the the asymptotic symmetries — are just given by Q[ξ]. Since the

charges are defined by a surface term at the boundary, they need just the behaviour of the

canonical variables and symmetries close to the boundary. i.e. their asymptotic behavior.

Thus, the charges obtained from the Hamiltonian method are appropriate for a holographic

interpretation. Additionally, one can remark that the canonical generators provide the

charges for all the solutions sharing the same asymptotic behaviour.

We focus now in the static case. By definition there is a timelike Killing vector ∂t, and

the corresponding conserved charge associated with this symmetry —time translation—

is from first principles the mass M . In the static case all the momenta vanish and the

expression (5.5), evaluated for ξ = ∂t, reduces to

δM ≡ δQ[∂t] =

∮
d2Sl

[
Gijkl

2κ

(
ξ⊥δgij |k − ξ⊥,kδgij

)
−√gξ⊥gljφ,j δφ

]
(5.8)

We note an explicit contribution of the scalar field in the mass that, in general, yields a

non-vanishing amount. In order to achieve a better understanding of this contribution, it

is convenient to separate it from the usual gravitational contribution by writing δM as

δM = δMG + δMφ (5.9)

where

δMG =

∮
d2Sl

Gijkl

2κ

(
ξ⊥δgij |k − ξ⊥,kδgij

)
(5.10)

and

δMφ = −
∮
d2Sl
√
gξ⊥gljφ,j δφ (5.11)

As mentioned before, the variation of the mass, given by surface integral (5.8), needs

just the asymptotic behavior of the canonical variables and symmetries. However, this

variation usually requires more information to be integrated, and boundary conditions

must be imposed. The necessity of boundary conditions is expected from physical grounds,
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since the mass of a system is well defined after imposing suitable boundary conditions. The

effect of a slow fall-off scalar field on the mass of asymptotically hairy spacetimes have been

studied in [7, 9, 12] using the Hamiltonian formalism described above. Other approaches

and methods [8, 10, 13, 48, 49] have confirmed this effect.

One step further was made in [14] where the computation of the mass of these hairy

configurations was done by considering the additional information provided by the remain-

ing field equations. For this work, we focus on the analysis on the class of potentials having

a mass term corresponding to the conformal mass m2 = −2l−2 in four dimensions. For

completeness and because the boundary conditions and the way the divergences cancel in

the construction of the Hamiltonian mass provide helpful intuition for constructing the

counterterms, in the next subsection we present the details of the analysis of [14].

5.2 Non-logarithmic and logarithmic branches for m2 = −2/l2

Expanding the potential as a power series around φ = 0, it was shown [12] the absence of

logarithmic branches in the asymptotically behavior of the metric and scalar field, provided

the series does not contain a cubic term. This set of asymptotic conditions accommodates

exact scalar black hole solutions [18, 31, 50, 51] whose asymptotic behavior belong the

chosen one. The fall-off of the scalar field and metric at infinity was obtained in section 2.

Now, we evaluate the general expressions (5.10) and (5.11) for static configurations,

using the above asymptotic conditions. We consider a boundary located at r = ∞. Inte-

grating the ‘angular coordinates’, we obtain the gravitational contribution

δMG =
σk
κ

[rδa+ lδb+O(1/r)] (5.12)

and the contribution from the scalar field

δMφ =
σk
l2

[rαδα+ αδβ + 2βδα+O(1/r)] (5.13)

By adding both contributions we have the variation of the mass

δM =
σk
κl2

[
r
(
l2δa+ καδα

)
+ l3δb+ κ(αδβ + 2βδα) +O(1/r)

]
(5.14)

It is important to remind that this expression for δM is meaningful only in the case of

vanishing constraints. In the static case, there is a single nontrivial constraint, H⊥ = 0,

which for the asymptotic conditions displayed above yields

k + a

κ
+
α2

2l2
= 0 (5.15)

The linear divergent piece in (5.14) is removed by replacing (5.15) into (5.14). Then, the

asymptotic variation of the mass becomes finite

δM =
σk
κl2

[
l3δb+ κ(αδβ + 2βδα)

]
(5.16)

In order to integrate the variations in (5.16) boundary conditions on the scalar field

are necessary. In particular, the integration of (5.16) requires a functional relation between

α and β. If we define β = dW (α)/dα, the mass of the spacetime is given by

M = σk

[
lb

κ
+

1

l2

(
α
dW (α)

dα
+W (α)

)]
(5.17)
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We note that the mass in (5.17) is defined up to a constant without variation. This constant

is set to be zero in order to fix a vanishing mass for the locally AdS spacetime because in

four dimensions there is no Casimir energy.

To obtain the logarithmic branch, it is necessary to use the self-interaction poten-

tial (2.18) so that the fall-off of the scalar field to be considered is (2.19). The Hamiltonian

constraint H⊥ = 0 is satisfied if (5.15) and

lc

κ
− 4α3λ = 0 (5.18)

are fulfilled.

Now, we evaluate (5.10) and (5.11). In this case we find

δMG =

{
lδb

κ
+
δa

κ
r +

lδc

κ
ln(r) +O

(
ln(r)2

r

)}
σk (5.19)

and

δMφ =

[
αδβ + 2βδα+ 3α2l2λδα

l2
+ r

αδα

l2

−12λα2δα ln(r) +O

(
ln(r)2

r

)]
σk (5.20)

Both contributions contain linear and logarithmic divergences. Adding (5.19) and (5.20),

the linear divergence cancels out by virtue of (5.15) and the logarithmic divergence vanishes

by considering (5.18). Thus, we obtain a finite expression for the variation of the mass,

δM =

[
lδb

κ
+
αδβ + 2βδα+ 3α2l2λδα

l2

]
σk (5.21)

Again, we need a boundary condition, a functional relation between α and β, in order to

integrate δM . We consider the general relation β = dW
dα , so that the Hamiltonian mass is

given by

M =

[
lb

κ
+

1

l2

(
α
dW

dα
+W (α) + α3l2λ

)]
σk (5.22)

The mass can be related with the first subleading term of gtt by using (2.22). Thus

the mass can be written as

M =

[
µ

κ
+

1

l2

(
W (α)− 1

3
α
dW

dα
+

1

3
α3l2λ

)]
σk (5.23)

Therefore, the expression M = µσkκ
−1 is obtained only for α = 0 or

W (α) = α3
[
C + l2λ ln(α)

]
(5.24)

which correspond to AdS invariant boundary conditions [12].
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5.3 Holographic mass matches Hamiltonian mass

Armed with the Brown-York formalism supplemented with counterterms, one can obtain

the energy of a hairy black holes. The boundary metric can be written, at least locally,

in ADM-like form. Provided the boundary geometry has an isometry generated by the

Killing vector ξa = (∂t)
a , the energy is, as usual, the conserved charge.

Concretely, we are going to use the coordinates (t, r,Σk) with the metric (2.9) and the

foliation (4.2) parametrized as

dΣ2
k =

dy2

1− ky2
+
(
1− ky2

)
dφ2 (5.25)

The energy

E =

∫
dσiτijξ

j =

∫
dydφSuiτijξ

j (5.26)

is associated with the surface t = constant, for which the induced metric is

ds2 = σijdx
idxj = SdΣ2

k (5.27)

with the normal vector ua = N−1/2(∂t)
a.

For the non-logarithmic branch, using the quasilocal stress tensor (4.9), one obtains

E = σk

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(5.28)

With a similar computation for the logarithmic branch, but with the quasilocal stress

tensor (4.13), we obtain the following energy of the hairy black hole:

E = σk

[
µ

κ
+

1

l2

(
W − 1

3
α
dW

dα
− αγ

9

)]
= σk

[
µ

κ
+

1

l2

(
W − 1

3
α
dW

dα
− α3Cγ

9

)]
(5.29)

This shows perfect agreement with the Hamiltonian mass even if the conformal symmetry

is broken in the boundary — with both methods it is possible to obtain a finite energy in

this case and the corresponding results match. However, the AMD prescription [28, 29] for

computing the mass of a hairy spacetime is not suitable when the scalar field breaks the

asymptotic anti-de Sitter invariance [14].

5.4 Exact hairy solutions and triple-trace deformations

As a concrete example, we discuss the boundary conditions and some holographic properties

of the exact solutions of [18, 31]. We consider the following scalar potential, which for some

particular values of the parameter Υ it becomes the one of a truncation of ω-deformed

gauged N = 8 supergravity [31, 33, 52]:

V (φ) =
Λ(ν2 − 4)

6κν2

[
ν − 1

ν + 2
e−φlν(ν+1) +

ν + 1

ν − 2
eφlν(ν−1) + 4

ν2 − 1

ν2 − 4
e−φlν

]
(5.30)

+
Υ

κν2

[
ν − 1

ν + 2
sinhφlν(ν + 1)− ν + 1

ν − 2
sinhφlν(ν − 1) + 4

ν2 − 1

ν2 − 4
sinhφlν

]
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Using the metric ansatz (3.8), the equations of motion can be integrated for the con-

formal factor [17–19, 53]:

Ω(x) =
ν2xν−1

η2(xν − 1)2
(5.31)

where Υ, ν, κ and Λ = −3l−2 are parameters of the potential and η is an integration

constant. All of them characterize the hairy solution. With this choice of the conformal

factor, it is straightforward to obtain the expressions for the scalar field

φ(x) = l−1
ν lnx (5.32)

and metric function

f(x) =
1

l2
+ Υ

[
1

ν2 − 4
− x2

ν2

(
1 +

x−ν

ν − 2
− xν

ν + 2

)]
+

x

Ω(x)
(5.33)

where l−1
ν =

√
(ν2 − 1)/2κ.

We would like to point out that this potential is symmetric under ν → −ν. For x = 1,

which corresponds to the boundary, we can show that the theory has a standard AdS

vacuum 2κV (φ = 0) = 2Λ. In the limit ν = 1, one gets lν → ∞ and φ → 0 so that the

Schwarzschild-AdS black hole is smoothly obtained.

To compare with the results presented in the previous section, we should work with

the canonical coordinates of AdS. Let us discuss the branch x ∈ (1,∞) for which the scalar

field is positively defined. We change the r-coordinate so that the function in front of the

transversal section, dΣk, has the following fall-off:

Ω(x) = r2 +O
(
r−3
)

(5.34)

This choice is motivated by the fact that the term O(r−2) generates a lineal term in the

fall-off of Ω. The first three subleading terms are

x = 1 +
1

ηr
+
m

r3
+
n

r4
+

p

r5
+O

(
r−6
)

(5.35)

and they can be computed by considering the expansion around r =∞:

Ω(x) = r2 − 24mη3+ν2−1

12η2
− 24nη4−ν2+1

12η3r
+

720m2η6−480pη5+ν4−20ν2+19

240η4r2
+O

(
r−3
)

(5.36)

After a straightforward computation we obtain

x = 1 +
1

ηr
− (ν2 − 1)

24η3r3

[
1− 1

ηr
− 9(ν2 − 9)

80η2r2

]
+O

(
r−6
)

(5.37)

and the following asymptotic expansions for the metric functions:

−gtt = f(x)Ω(x) =
r2

l2
+ 1 +

Υ + 3η2

3η3r
+O

(
r−3
)

(5.38)

grr =
Ω(x)η2

f(x)

(
dx

dr

)
=
l2

r2
− l4

r4
−
l2
(
ν2 − 1

)
4η2r4

−
l2
(
3η2l2 + Υl2 − ν2 + 1

)
3η3r5

+O
(
r−6
)

(5.39)
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The asymptotic expansion of the scalar field becomes in these coordinates

φ(x) = l−1
ν lnx =

1

lνηr
− 1

2lνη2r2
− ν2 − 9

24η3r3
+O(r−4) (5.40)

and then, in the standard notation, we obtain α = 1/lνη, β = −1/2lνη
2. Both modes

are normalizable and, since β = Cα2 with C = −lν/2, the conformal symmetry in the

boundary is preserved. Now, we can easily compute the Hamiltonian mass of the system

as was proposed in [14]

M = σ

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(5.41)

and by considering W = −lνα3/6, σ = 4π, and l−1
ν =

√
(ν2 − 1)/2κ we obtain

M = −σ
κ

(
3η2 + Υ

3η3

)
(5.42)

that matches the holographic mass.

Let us end up this subsection with the interpretation of these hairy solutions within

AdS/CFT duality. That is, since W = −lνα3/6, they correspond to adding a triple trace

deformation to the boundary action as in (2.32) (similar examples can be found in [10, 54]):

ICFT → ICFT +
lν
6

∫
d3xO3 (5.43)

For different hairy black holes, which are characterized by the hairy parameter ν, the

relation between α and β does not change and so there are triple trace deformations, but

with different couplings lν/6.

6 Conclusions

Since the paper is self-contained and each section contains detailed computations and

interpretations, we would like only to present some general conclusions and possible future

directions.

The counterterm method [3], which was obtained in the context of AdS/CFT duality,

is by now a textbook example of regularizing the gravitational action. Initially it was

proposed for asymptotically AdS solutions [22, 55, 56] and then it was generalized to

asymptotically flat solutions [57–64] and even dS solutions [65–68], though in the last two

cases it is fair to say that there is no valid holographic interpretation generally accepted.

Interestingly, this method provides the quasilocal stress tensor and conserved charges in a

very similar way with the well understood holography of asymptotically AdS spacetimes.

When the theory contains scalar fields, there is a diversity of mixed boundary con-

ditions that can be imposed, in particular boundary conditions that break the conformal

symmetry of the boundary. The ‘holographic renormalization’ method [21, 22, 55, 56] that

uses the Fefferman-Graham expansion was generalized for the mixed boundary conditions

that correspond to the non-logarithmic branch of solutions in [24].
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In this work we have constructed explicit covariant counterterms that are similar with

the ones proposed by Balasubramanian and Kraus [3] and generalized this method for theo-

ries (moduli potentials) that contain also the logarithmic branch of solutions. To construct

these counterterms we were guided by the Hamiltonian method that provides the correct

boundary conditions (in particular, the fall-off of the scalar field) so that the conserved

charges are finite. We did also check that the variational principle for the gravitational

action is well-posed. It may then not be surprising that the holographic mass matches the

Hamiltonian mass for all the boundary conditions. However, when comparing with AMD

formalism there is a drastic change when the boundary conditions do not preseve the

conformal symmetry and, as was shown in [14], the AMD mass is not suitable for this case.

As future directions we would like to consider counterterms for other conformal masses

of the scalar field and for theories in higher dimensions. It will be useful, if possible, to

provide a general algorithm for constructing the counterterms by using the Hamiltonian

method — it is not at all clear if that is possible for gravity solutions that are asymptotically

dS. For the extremal black holes, there exists a different method to compute the conserved

charges, the entropy function formalism proposed by Sen [69–71] (for spinning black holes it

was generalized in [72] and in the context of AdS/CFT duality, see e.g. [73–77]). However,

this method provides the charges by using the near horizon geometry data and, when there

is a non-trivial RG flow in theories with scalars turned on, it will be interesting to compare

the conserved charges computed at the horizon with the ones obtained at the boundary

by the counterterm method. The counterterm method was already used in [78] to study

the phase diagram of a general class of hairy black holes with spherical horizon geometry

and we also plan to study the phase transitions for the case k = 0 [79] when a ‘hairy’ AdS

soliton can be constructed.

A different perspective, which naturally arises when scalar fields and gravity interact,

is the classical issue of hairy black holes. Indeed, it was very early shown that in asymp-

totically flat spacetimes and when the scalar field potential is convex, the only spherically

symmetric black hole is the Schwarzschild solution [80, 81], which was later generalized

to non-negative self interactions [82, 83], for a recent review see [84]. These no-hair the-

orems were not expected to hold when, asymptotically, there is a non-trivial cosmological

constant. The numerical existence of asymptotically AdS black holes has been verified in

a number of papers [10, 85, 86] (a number exact hairy black holes has been found when

the scalar field mass is m2 = −2l−2 [18, 31, 50, 51, 87–90]). Some of these black holes are

linearly stable [85, 91]. Another interesting direction is on boson star solutions and the

relation with the instabilities of some AdS solutions (and AdS itself) [92–96].

We hope to report in the near future some progress in these directions.
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