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Abstract
In the present paper, we establish some new Hermite-Hadamard type inequalities
involving two functions. Our results in a special case yield recent results on
Hermite-Hadamard type inequalities.
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1 Introduction
The following inequality is well known in the literature as Hermite-Hadamard’s inequality
[].

Theorem . Let f : [a,b] ⊂ R → R be a convex function on an interval of real numbers.
Then the following Hermite-Hadamard inequality for convex functions holds:

f
(
a + b


)
≤ 

b – a

∫ b

a
f (x)dx≤ f (a) + f (b)


. (.)

If the function f is concave, the inequality (.) can be written as follows:

f
(
a + b


)
≥ 

b – a

∫ b

a
f (x)dx≥ f (a) + f (b)


. (.)

Recently, many generalizations, extensions and variants of this inequality have appeared
in the literature (see, e.g., [–]) and the references given therein. In particular, in ,
Özdemir and Dragomir [] established some new Hermite-Hadamard inequalities and
other integral inequalities involving two functions in R. Following this work, the main
purpose of the present paper is to establish some dual Hermite-Hadamard type inequali-
ties involving two functions in R

. Our results provide some new estimates on such type
of inequalities.

2 Preliminaries
A regionD ⊂R

 is called convex if it contains the close line segment joining any two of its
points, or equivalently, if λx + ( –λ)x,λy + ( –λ)y ∈D whenever x(x, y), y(x, y) ∈D
and ≤ λ ≤ .
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Let z = f (x, y) be a duality function on the convex region D ⊂ R
. z = f (x, y) is called a

duality convex function on the convex region D if

f
[
λx + ( – λ)x,λy + ( – λ)y

] ≤ λf (x, y) + ( – λ)f (x, y), (.)

whenever (x, y), (x, y) ∈D and  ≤ λ ≤ .
If the function f (x, y) is concave, the inequality (.) can be written as follows:

f
[
λx + ( – λ)x,λy + ( – λ)y

] ≥ λf (x, y) + ( – λ)f (x, y). (.)

Let x = (x, . . . ,xn, . . . ,xm, . . . ,xmn) and p = (p, . . . ,pn, . . . ,pm, . . . ,pmn) be two positive
nm-tuples, and let r ∈ R ∪ {+∞, –∞}. Then, on putting Pmn =

∑n
k=

∑m
k= pkk , it easy

follows that if –∞ ≤ r < s≤ +∞, then

M[r]
mn ≤ M[s]

mn (.)

(also see, e.g., [, p.]). Here, the rth power mean of x with weights p is the following:
M[r]

mn = ( 
Pmn

∑n
k=

∑m
k= pkkx

r
kk )

/r if r 	= +∞, , –∞; M[r]
mn = (

∏n
k=

∏m
k= x

pkk
kk )Pmn if

r = ; M[r]
mn =min(x, . . . ,xn, . . . ,xn, . . . ,xmn) if r = –∞ and M[r]

mn =max(x, . . . ,xn, . . . ,xn,
. . . ,xmn) if r = +∞.
Let f (x, y) : [a,b] × [c,d] → R, and p ≥ . Now, we define the p-norm of the function

f (x, y) on [a,b]× [c,d] as follows:

∥∥f (x, y)∥∥p =
(∫ b

a

∫ d

c

∣∣f (x, y)∣∣p dxdy
)/p

,  ≤ p <∞,

and

∥∥f (x, y)∥∥p = sup
∣∣f (x, y)∣∣, p = ∞,

and Lp([a,b] × [c,d]) is the set of all functions f (x, y) : [a,b] × [c,d] → R such that
‖f (x, y)‖p <∞.

Lemma . (see []) (Barnes-Godunova-Levin inequality) Let f (x, y), g(x, y) be nonneg-
ative concave functions on [a,b]× [c,d], then for p,q >  we have

∥∥f (x, y)∥∥p

∥∥g(x, y)∥∥q ≤ B(p,q)
∫ b

a

∫ d

c
f (x, y)g(x, y)dxdy, (.)

where

B(p,q) =
[(b – a)(d – c)]/p+/q–

(p + )/p(q + )/q
.

Lemma . (see []) (Hermite-Hadamard inequality) Let f (x, y) : [a,b]× [c,d] ⊂R
 →R

be a convex function. Then the following dual Hermite-Hadamard inequality for convex
functions holds:

f
(
a + c


,
b + d


)
≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)dxdy≤ f (a,b) + f (c,d)


. (.)
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The inequality is reversed if the function f (x, y) is concave.

Lemma . (see []) (A reversedMinkowski integral inequality) Let f (x, y) and g(x, y) be
positive functions satisfying

 <m≤ f (x, y)
g(x, y)

≤ M, (x, y) ∈ [a,b]× [c,d]. (.)

Then

∥∥f (x, y)∥∥p +
∥∥g(x, y)∥∥p ≤ c

∥∥f (x, y) + g(x, y)
∥∥
p, (.)

where c = [M(m + ) + (M + )]/[(m + )(M + )].

3 Main results
Our main results are established in the following theorems.

Theorem. Let p,q >  and let f (x, y), g(x, y) : [a,b]× [c,d] →R be nonnegative functions
such that f (x, y)p and g(x, y)q are concave on [a,b]× [c,d]. Then

f (a,b) + f (c,d)


× g(a,b) + g(c,d)


≤ 
[(b – a)(d – c)]/p+/q

B(p,q)
∫ b

a

∫ d

c
f (x, y)g(x, y)dxdy, (.)

where B(p,q) is the Barnes-Godunova-Levin constant given by (.).

Proof Observe that whenever f p(x, y) is concave on [a,b]× [c,d], the nonnegative function
f (x, y) is also concave on [a,b]× [c,d]. Namely,

f
[
λa + ( – λ)c,λb + ( – λ)d

]p ≥ λf (a,b)p + ( – λ)f (c,d)p,

that is,

f
[
λa + ( – λ)c,λb + ( – λ)d

] ≥ ((
λf (a,b)p + ( – λ)f (c,d)p

))/p,
and p > , using the power-mean inequality (.), we obtain

f
[
λa + ( – λ)c,λb + ( – λ)d

] ≥ λf (a,b) + ( – λ)f (c,d).

For q > , similarly, if gq(x, y) is concave on [a,b]× [c,d], the nonnegative function g(x, y)
is concave on [a,b]× [c,d].
In view that f p(x, y) and gq(x, y) are concave functions on [a,b]× [c,d], from Lemma .,

we get

(
f (a,b)p + f (c,d)p



)/p

≤ 
[(b – a)(d – c)]/p

(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p

≤ f
(
a + c


,
b + d


)
, (.)
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and

(
g(a,b)p + g(c,d)q



)/q

≤ 
[(b – a)(d – c)]/q

(∫ b

a

∫ d

c
g(x, y)q dxdy

)/q

≤ g
(
a + c


,
b + d


)
. (.)

By multiplying the above inequalities, we obtain

(
f (a,b)p + f (c,d)p



)/p(g(a,b)p + g(c,d)q



)/q

≤ 
[(b – a)(d – c)]/p+/q

(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p(∫ b

a

∫ d

c
g(x, y)q dxdy

)/q

. (.)

If p,q > , then it is easy to show that

(
f (a,b)p + f (c,d)p



)/p

≥ f (a,b) + f (c,d)


, (.)

and

(
g(a,b)q + g(c,d)q



)/q

≥ g(a,b) + g(c,d)


. (.)

Thus, by applying Barnes-Godunova-Levin inequality to the right-hand side of (.) with
(.), (.), we get (.).
The proof is complete. �

Remark . By multiplying inequalities (.), (.), we obtain


[(b – a)(d – c)]/p+/q

(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p(∫ b

a

∫ d

c
g(x, y)q dxdy

)/q

≤ f
(
a + c


,
b + d


)
g
(
a + c


,
b + d


)
. (.)

By applying the Hölder inequality to the left-hand side of (.) with (/p) + (/q) = , we
get


(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)g(x, y)dxdy≤ f

(
a + c


,
b + d


)
g
(
a + c


,
b + d


)
. (.)

Remark . Let f (x, y) and g(x, y) change to f (x) and g(x), respectively, and with suitable
changes in Theorem . and Remark ., we have the following.

Corollary . Let p,q >  and let f (x), g(x) : [a,b] → R, a < b, be nonnegative functions
such that f (x)p and g(x)q are concave on [a,b]. Then

f (a) + f (b)


· g(a) + g(b)


≤ 
(b – a)/p+/q

B(p,q)
∫ b

a
f (x)g(x)dx,
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and if (/p) + (/q) = , then one has


b – a

∫ b

a
f (x)g(x)dx≤ f

(
a + b


)
g
(
a + b


)
.

This is just Theorem . established by Özdemir and Dragomir [].

Theorem . Let p ≥  and let
∫ b
a

∫ d
c f (x, y)p dxdy < ∞ and

∫ b
a

∫ d
c g(x, y)p dxdy < ∞, and

let f (x, y), g(x, y) : [a,b]× [c,d] →R be positive functions with

 <m≤ f (x, y)
g(x, y)

≤ M, ∀(x, y) ∈ [a,b]× [c,d].

Then

∥∥f (x, y)∥∥
p +

∥∥g(x, y)∥∥
p ≥

(
(M + )(m + )

M
– 

)∥∥f (x, y)∥∥p

∥∥g(x, y)∥∥p. (.)

Proof Since f (x, y), g(x, y) are positive, as in the proof of Lemma . (see [, p.]), we have

(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p

≤ M
M + 

(∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)p dxdy
)/p

and

(∫ b

a

∫ d

c
g(x, y)p dxdy

)/p

≤ 
m + 

(∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)p dxdy
)/p

.

By multiplying the above inequalities and in view of the Minkowski inequality, we get

(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p(∫ b

a

∫ d

c
g(x, y)p dxdy

)/p

≤ M
(M + )(m + )

(∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)p dxdy
)/p

≤ M
(M + )(m + )

((∫ b

a

∫ d

c
f (x, y)p dxdy

)/p

+
(∫ b

a

∫ d

c
g(x, y)p dxdy

)/p)

. (.)

Hence

(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p

+
(∫ b

a

∫ d

c
g(x, y)p dxdy

)/p

≥
(
(M + )(m + )

M
– 

)(∫ b

a

∫ d

c
f (x, y)p dxdy

)/p(∫ b

a

∫ d

c
g(x, y)p dxdy

)/p

.

This proof is complete. �

Remark . Let f (x, y) and g(x, y) change to f (x) and g(x), respectively, and with suitable
changes in (.), (.) reduces to an inequality established by Özdemir and Dragomir [].
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Theorem . If f p(x, y) and gq(x, y) are as in Theorem ., then the following inequality
holds:


(b – a)(d – c)

∥∥f (x, y)∥∥p
p · ∥∥g(x, y)∥∥q

q ≥ (f (a,b) + f (c,d))p(g(a,b) + g(c,d))q

p+q
. (.)

Proof If f p(x, y) and gq(x, y) are concave on [a,b]× [c,d], then from Lemma ., we get

f (a,b)p + f (c,d)p


≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
f (x, y)p dxdy

and

g(a,b)q + g(c,d)q


≤ 

(b – a)(d – c)

∫ b

a

∫ d

c
g(x, y)q dxdy,

which imply that

[f (a,b)p + f (c,d)p][g(a,b)q + g(c,d)q]


≤ 
[(b – a)(d – c)]

∫ b

a

∫ d

c
f (x, y)p dxdy

∫ b

a

∫ d

c
g(x, y)q dxdy. (.)

On the other hand, if p,q ≥ , from (.) we get

f (a,b)p + f (c,d)p


≤ –p

[
f (a,b) + f (c,d)

]p

and

g(a,b)q + g(c,d)q


≤ –q

[
g(a,b) + g(c,d)

]q,
which imply that

[f (a,b)p + f (c,d)p][g(a,b)p + g(c,d)q]


≥ –p–q
[
f (a,b) + f (c,d)

]p[g(a,b) + g(c,d)
]q. (.)

Combining (.) and (.), we obtain the desired inequality as

–p–q
[
f (a,b) + f (c,d)

]p[g(a,b) + g(c,d)
]q

≤ 
[(b – a)(d – c)]

∥∥f (x, y)∥∥p
p · ∥∥g(x, y)∥∥q

q.

This proof is complete. �

Remark . Let f (x, y) and g(x, y) change to f (x) and g(x), respectively, and with suitable
changes in (.), (.) reduces to an inequality established by Özdemir and Dragomir
[].
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Theorem . Let f (x, y), g(x, y) : [a,b]× [c,d] →R
+ be functions such that f (x, y)p, g(x, y)q

and f (x, y)g(x, y) are in L([a,b]× [c,d]), and

 <m≤ f (x, y)
g(x, y)

≤ M, ∀(x, y) ∈ [a,b]× [c,d],a,b, c,d ∈ [,∞).

Then

∫ b

a

∫ d

c
f (x, y)g(x, y)dxdy

≤ c
(‖f (x, y)‖pp + ‖g(x, y)‖pp



)
+ c

(‖f (x, y)‖qq + ‖g(x, y)‖qq


)
, (.)

where

c =
p

p

(
M

M + 

)p

, c =
q

q

(


m + 

)q

,

and (/p) + (/q) =  with p > .

Proof Since  <m ≤ f (x,y)
g(x,y) ≤ M, ∀(x, y) ∈ [a,b]× [c,d], we have

f (x, y)≤ M
M + 

(
f (x, y) + g(x, y)

)

and

g(x, y) ≤ 
m + 

(
f (x, y) + g(x, y)

)
.

In view of the Young-type inequality and using the elementary inequality

(a + b)p ≤ p–
(
ap + bp

)
, p > ,a,b ∈R

+,

we have

∫ b

a

∫ d

c
f (x, y)g(x, y)dxdy

≤ 
p

(
M

M + 

)p ∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)p dxdy

+

q

(


m + 

)q ∫ b

a

∫ d

c

(
f (x, y) + g(x, y)

)q dxdy

≤ 
p

(
M

M + 

)p

p–
∫ b

a

∫ d

c

[
f (x, y)p + g(x, y)p

]
dxdy

+

q

(


m + 

)q

q–
∫ b

a

∫ d

c

[
f (x, y)q + g(x, y)q

]
dxdy.

This completes the proof. �
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Remark . Let f (x, y) and g(x, y) change to f (x) and g(x), respectively, and with suitable
changes in (.), (.) reduces to an inequality established by Özdemir and Dragomir
[].
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