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recent lattice results of the RBC-UKQCD collaboration. We also point out that the pattern

of the size of the hadronic matrix elements of all QCD and electroweak penguin operatorsQi

contributing to the K → ππ amplitudes A0 and A2, obtained by this lattice collaboration,
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1 Introduction

The decays K → ππ have played a very important role since their discovery in the 1950s,

both in the construction of the Standard Model (SM) and more recently in the tests of

its possible extensions. Most of the discussions in the literature centred on the following

quantities:

• The ratio
ReA0

ReA2
= 22.4 , (1.1)

which expresses the so-called ∆I = 1/2 rule [1, 2].

• The parameter εK , a measure of indirect CP-violation inKL→ππ decays, found to be

εK = 2.228(11)× 10−3eiφε , (1.2)

where φε = 43.51(5)◦.

• The ratio of the direct CP-violation and indirect CP-violation in KL → ππ decays

measured to be [3–6]

Re(ε′/ε) = (16.6± 2.3)× 10−4. (1.3)

Unfortunately, due to non-perturbative uncertainties originating in the hadronic matrix

elements of contributing four-quark operators, it took a long time to obtain meaningful

results for all these observables in QCD. But already in the second half of the 1980s, we

have developed an approach to K0 − K̄0 mixing and non-leptonic K-meson decays [7–11]

based on the dual representation of QCD as a theory of weakly interacting mesons for large

N , where N is the number of colours [12–15]. The most recent results from our approach

can be found in [16, 17].

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
0
0
8

This approach provided, in particular, first results within QCD for the amplitudes

ReA0 and ReA2 in the ballpark of experimental values [10]. In this manner, for the first

time, the SM dynamics behind the ∆I = 1/2 rule has been identified. In particular, it

has been emphasized that at scales O(1GeV) long distance dynamics in hadronic matrix

elements of current-current operators and not QCD-penguin operators, as originally pro-

posed in [18], are dominantly responsible for this rule. Moreover, it has been demonstrated

analytically why ReA0 is enhanced and why ReA2 is suppressed relative to the vacuum

insertion approximation (VIA) estimates. In this context, we have emphasized that the

so-called Fierz terms in the latter approach totally misrepresent 1/N corrections to the

strict large N limit for these amplitudes [10].

Our approach, among other applications, allowed us to consistently calculate, for the

first time within QCD, the non-perturbative parameters B̂K , B
(1/2)
6 and B

(3/2)
8 governing

the corresponding matrix elements of ∆S = 2 SM current-current operator and K →
ππ matrix elements of the dominant QCD-penguin (Q6) and electroweak penguin (Q8)

operators. These parameters are crucial for the evaluation of εK and ε′/ε within the SM

and its various extensions. Other applications of large N ideas to K → ππ and B̂K , but

in a different spirit than our original approach, are reviewed in [19]. We will comment in

section 6 on those which reached very different conclusions from ours.

It is interesting and encouraging that most of our results have been confirmed by several

recent lattice QCD calculations that we will specify below. While the lattice QCD approach

has a better control over the errors than our approach, it does not provide the physical

picture of the dynamics behind the obtained numerical results. This is in particular seen

in the case of the ∆I = 1/2 rule where our analytic approach offers a very simple picture

of the dynamics behind this rule, as summarized again in [16, 17].

In the present paper, we briefly compare in section 2 the status of lattice results for

B̂K and the ∆I = 1/2 rule with the ones obtained in our approach. Subsequently, in

section 3 we demonstrate that the pattern of the size of the matrix elements for penguin

operators presented recently by the RBC-UKQCD collaboration for A0 [20] and A2 ampli-

tudes [21] gives another support to our approach. In section 4, we derive upper bounds on

the parameters B
(1/2)
6 and B

(3/2)
8 and discuss briefly in section 5 their phenomenological

implications for ε′/ε. In section 6 we describe briefly the results obtained in other large N

QCD approaches. An outlook is presented in section 7.

2 B̂K and the ∆I = 1/2 rule

2.1 B̂K

The scale and renormalization scheme dependent parameter BK(µ) is related to the relevant

hadronic matrix element of the ∆S = 2 operator

Q = (s̄d)V−A(s̄d)V−A (2.1)

as follows1

〈K̄0|Q(µ)|K0〉 = BK(µ)
8

3
F 2
Km2

K . (2.2)

1In this paper, we use the normalization of weak decay constants given in (3.17).
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More useful is the renormalization group invariant parameter B̂K that is given by [22]

B̂K = BK(µ)
[

α(3)
s (µ)

]−d
[

1 +
α
(3)
s (µ)

4π
J3

]

, d =
9(N − 1)

N(11N − 6)
. (2.3)

We have shown the N -dependence of the exponent d in the leading term to signal that

d vanishes in the large N limit. The coefficient J3 is renormalization scheme dependent.

This dependence cancels the one of BK(µ).

As in the strict large N limit the exponent in (2.3) and the NLO term involving J3
vanish, one finds [7] that independently of any renormalization scale or renormalization

scheme for the operator Q

B̂K → 0.75, (in large N limit, 1986). (2.4)

It can be shown that including 1/N corrections suppresses B̂K so that [23]

B̂K ≤ 0.75 , (in 1/N expansion). (2.5)

Our latest analysis in our approach gave [16]

B̂K = 0.73± 0.02, (in dual QCD), (2.6)

where the error should not be considered as a standard deviation. Rather, this result repre-

sents the range for B̂K we expect in our approach after the inclusion of NLO QCD correc-

tions and the contributions of pseudoscalar and vector mesons as discussed in detail in [16].

On the other hand, the world lattice average for B̂K based on the calculations of

various groups [24–29] reads for Nf = 2 + 1 calculations (recent FLAG update of [27])

B̂K = 0.766± 0.010, (in lattice QCD, 2014). (2.7)

See also the recent analyses in [30, 31]. While this result violates the bound in (2.5), it

should be noted that a number of lattice groups among [24–29] published results with

central values satisfying the bound in (2.5) but the errors did not allow for a clear cut

conclusion. In fact, the most recent update from staggered quarks [31] quotes precisely

B̂K = 0.738 ± 0.005 but additional systematic error of 0.037 does not allow for definite

conclusions. Similarly, the Rome group [32] finds basically the result in (2.6). We expect

therefore that improved lattice calculations will satisfy our bound one day and in a few

years from now lattice average for B̂K will read B̂K ≈ 0.74.

Finally, let us remark that while the lattice approach did not provide the explanation

why B̂K is so close to its largeN limit 0.75, in our approach the smallness of 1/N corrections

follows from the approximate cancellation of negative pseudoscalar meson contributions by

the positive vector meson contributions.

– 3 –
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2.2 ∆I = 1/2 rule

A very detailed comparison of the calculations of ReA0 and ReA2 in our approach and the

lattice QCD has been presented in [16] and our present discussion is meant to be an update

due to new results of the RBC-UKQCD collaboration on ReA0 [20].

First, let us mention that both the dual approach to QCD and lattice approach obtain

satisfactory results for the amplitude ReA2. On the other hand, whereas we find [16]
(

ReA0

ReA2

)

dual QCD

= 16.0± 1.5 , (2.8)

the most recent result from the RBC-UKQCD collaboration reads [20]
(

ReA0

ReA2

)

lattice QCD

= 31.0± 6.6 . (2.9)

Due to large error in the lattice result, both results are compatible with each other and

both signal that this rule follows dominantly from the QCD dynamics related to current-

current operators. But our approach, being analytic, allows to connect the ∆I = 1/2 rule

to the main properties of QCD: asymptotic freedom and the related evolutions of weak

matrix elements which at long distance scales can be performed in the dual representation

of QCD as a theory of weakly interacting mesons for large N . As lattice QCD calculations

are performed basically at a single energy scale, no such physical explanation of this rule is

expected from that framework. To this end, lattice calculations would have to be performed

at scales below 1GeV which is straightforward in our approach but appears impossible by

lattice methods at present.

On the other hand, from the present perspective only lattice simulations can provide

precise value of ReA0 one day, so that we will know whether some part of this rule at

the level of (20− 30)%, as signalled by the result in (2.8), originates in new physics (NP)

contributions. Indeed, as demonstrated in [33], a heavy Z ′ and in particular a heavy G′ in

the reach of the LHC could be responsible for the missing piece in ReA0 in (2.8). On the

basis of the analysis in [33] it is much harder to bring this ratio with the help of NP from

31 down to 22 without violating ∆MK constraint, but this requires a separate study.

Of some interest is the ratio of the matrix elements 〈Q2〉0 and 〈Q1〉0. It equals −2

in the large N limit, corresponding to µ = 0 [16]. Evolving these matrix elements to

µ = 1GeV in the meson theory and subsequently to µ = 1.53GeV in the quark theory, we

find in the NDR-MS scheme2

〈Q2〉0
〈Q1〉0

= −1.50± 0.10, µ = 1.53GeV, (dual QCD). (2.10)

The corresponding result in [20] reads

〈Q2〉0
〈Q1〉0

= −1.12± 0.49, µ = 1.53GeV, (lattice QCD). (2.11)

In view of large uncertainty in the lattice result, these two ratios are compatible with

each other. We expect on the basis of the results in (2.8) and (2.9) that this ratio will be

eventually found in the ballpark of −1.4.

2We thank Martin Gorbahn for checking this result.
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3 Matrix elements of penguin operators

3.1 Preliminaries

We will consider the usual basis of operators contributing to K → ππ amplitudes [34],

namely

Current-Current:

Q1 = (s̄αuβ)V−A (ūβdα)V−A , Q2 = (s̄u)V−A (ūd)V−A (3.1)

QCD-penguins:

Q3 = (s̄d)V−A

∑

q=u,d,s

(q̄q)V−A, Q4 = (s̄αdβ)V−A

∑

q=u,d,s

(q̄βqα)V−A (3.2)

Q5 = (s̄d)V−A

∑

q=u,d,s

(q̄q)V+A, Q6 = (s̄αdβ)V−A

∑

q=u,d,s

(q̄βqα)V+A (3.3)

Electroweak penguins:

Q7 =
3

2
(s̄d)V−A

∑

q=u,d,s

eq (q̄q)V+A, Q8 =
3

2
(s̄αdβ)V−A

∑

q=u,d,s

eq(q̄βqα)V+A (3.4)

Q9 =
3

2
(s̄d)V−A

∑

q=u,d,s

eq(q̄q)V−A, Q10 =
3

2
(s̄αdβ)V−A

∑

q=u,d,s

eq (q̄βqα)V−A (3.5)

Here, α, β denote colour indices and eq denotes the electric quark charges reflecting the

electroweak origin of Q7, . . . , Q10. Finally, (s̄d)V−A ≡ s̄αγµ(1− γ5)dα as in (2.1).

Recently, the RBC-UKQCD collaboration published their results for the matrix el-

ements 〈Qi〉0 [20]. Their matrix elements are given for three dynamical quarks at µ =

1.53GeV, which is too high for the direct comparison with our approach in the case of

current-current operators. On the other hand, the parameters B
(1/2)
6 and B

(3/2)
8 of the

QCD penguin operator Q6 and the electroweak penguin operator Q8 are known [34] to be

practically scale independent for 1.0GeV ≤ µ ≤ 3.0GeV. Therefore these results consti-

tute a useful test of our approach. Another issue is the colour suppression of some matrix

elements of other penguin operators which is predicted within our approach. We would

like to check whether the pattern of this suppression is also seen in the lattice data.

3.2 Hadronic matrix elements

The hadronic matrix elements of operators Qi that are most useful for our discussions are

〈Qi〉I ≡ 〈(ππ)I |Qi|K〉 , (3.6)

with I = 0, 2 being strong isospin.

It should be recalled that for µ ≤ mc, when charm quark has been integrated out, only

seven of the operators listed above are independent of each other. Eliminating then Q4, Q9

– 5 –
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and Q10 in terms of the remaining seven operators allows, in the isospin symmetry limit,

to find the following important relations [34]3

〈Q4〉0 = 〈Q3〉0 + 〈Q2〉0 − 〈Q1〉0 , (3.7)

〈Q9〉0 =
3

2
〈Q1〉0 −

1

2
〈Q3〉0 , (3.8)

〈Q10〉0 = 〈Q2〉0 +
1

2
〈Q1〉0 −

1

2
〈Q3〉0 , (3.9)

〈Q9〉2 = 〈Q10〉2 =
3

2
〈Q1〉2 , (3.10)

where we have used

〈Q1〉2 = 〈Q2〉2 . (3.11)

We have checked that these relations have been used in [20].

Of particular importance for our discussion are the matrix elements

〈Q6(µ)〉0 = −h

[

2m2
K

ms(µ) +md(µ)

]2

(FK − Fπ)B
(1/2)
6 , (3.12)

〈Q8(µ)〉2 =
h

2
√
2

[

2m2
K

ms(µ) +md(µ)

]2

Fπ B
(3/2)
8 , (3.13)

〈Q8(µ)〉0 =
h

2

[

2m2
K

ms(µ) +md(µ)

]2

Fπ B
(1/2)
8 , (3.14)

with [7, 8, 35]

B
(1/2)
6 = B

(3/2)
8 = B

(1/2)
8 = 1, (large N Limit) . (3.15)

Note, that using the definition of Bi parameters consistent with the large N limit of QCD,

as given above, implies that their values in the VIA [34] read

B
(1/2)
6 = 1, B

(3/2)
8 ≈ 0.99, B

(1/2)
8 ≈ 1.2 (VIA) . (3.16)

We will return to this point in the next section.

The input values of parameters entering these expressions are given by [36, 37]

Fπ = 130.41(20)MeV,
FK

Fπ
= 1.194(5) (3.17)

ms(mc) = 109.1(2.8)MeV, md(mc) = 5.44(19)MeV . (3.18)

It should be emphasized that the overall factor h in these expressions depends on

the normalisation of the amplitudes A0,2. In [34] and recent papers of the RBC-UKQCD

collaboration [21, 38] h =
√

3/2 is used whereas in most recent phenomenological pa-

pers [16, 19, 33, 39], h = 1. In the present paper we will keep general h so that, e.g., the

decay amplitude K+ → π+π0 reads (3/2h)A2.

3In writing (3.7) we neglect a small O(αs) correction in the NDR scheme which is explicitly given in

(4.44) of [34].

– 6 –



J
H
E
P
1
2
(
2
0
1
5
)
0
0
8

Comparing the expressions (3.12) and (3.14) with the lattice results in [20], we find

(see also [40])4

B
(1/2)
6 = 0.57± 0.19, B

(1/2)
8 = 1.0± 0.2 , (lattice QCD). (3.19)

On the other hand, comparing (3.13) with the value for this matrix element obtained by

RBC-UKQCD collaboration in [21] one extracts [39]

B
(3/2)
8 = 0.76± 0.05 , (lattice QCD). (3.20)

All these results are very weakly dependent on the renormalization scale. The quoted

values correspond to µ = 1.53GeV. Basically, identical results are obtained for µ = mc

used in [40]. However, as stated before (3.19), in extracting these parameters from [20] it

is important to use the quark masses at that scale.

As we will demonstrate in the next section, these lattice results are consistent with

the large N approach. Indeed, we will show that the following pattern emerges at next-to-

leading order in our dual approach:

B
(1/2)
6 = 1−

[

Fπ

FK − Fπ

]

O
(

1

N

)

< 1 , (3.21)

B
(3/2)
8 = 1−O

(

1

N

)

< 1 , (3.22)

B
(1/2)
8 = 1 +O

(

1

N

)

> 1 . (3.23)

We would like to recall that strong indication for the suppression of B
(3/2)
8 below unity

in our approach have been found already in 1998 in [41], while in the case of B
(1/2)
6 no clear

cut conclusions could be reached. Our present analysis of both B
(1/2)
6 and B

(3/2)
8 clearly

indicates the negative signs of 1/N corrections to the leading result in (3.15).

Finally, the lattice results in [20] and [21] exhibit colour suppression of the matrix

elements of Q3, Q5 and Q7 operators relative to the ones of Q4, Q6 and Q8, respectively:

〈Q3〉0
〈Q4〉0

= −0.18± 0.25,

(

FK

Fπ
− 1

) 〈Q5〉0
〈Q6〉0

= 0.10± 0.05 , (3.24)

〈Q7〉0
〈Q8〉0

= 0.13± 0.04 ,
〈Q7〉2
〈Q8〉2

= 0.22± 0.01 . (3.25)

These results are consistent with the large N approach. Indeed, as we will demonstrate

soon, the ratios in (3.24) are O(1/N2) while the ratios in (3.25) are O(1/N).

These results allow to simplify some of the relations between the matrix elements so

that it is justified to use the relations

〈Q4〉0 = 〈Q2〉0 − 〈Q1〉0 , (3.26)

〈Q9〉0 =
3

2
〈Q1〉0 , (3.27)

〈Q10〉0 = 〈Q2〉0 +
1

2
〈Q1〉0, (3.28)

which simplify the phenomenological analysis of ε′/ε in [40].

4To this end, the values ms = 102.27MeV and md = 5.10MeV at µ = 1.53GeV have to be used.
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4 Derivations

The large N numerical values of the |∆S| = 1 matrix elements already displayed in sec-

tion 3.2 are most easily derived from the effective theory for the the pseudo-Goldstone field

U(π) ≡ exp

(

i
√
2
π

f

)

(4.1)

with π = λaπ
a, the meson nonet lying below the one GeV and f , the associated weak

decay constant scaling like
√
N . In particular, the electroweak penguin operator introduced

in (3.4) and “Fierzed” into a product of two colour-singlet quark densities, namely,

Q8 = −12
∑

q=u,d,s

(s̄LqR)eq(q̄RdL) (4.2)

can be hadronized by considering the leading chiral effective Lagrangian in the largeN limit:

Leff(p
2, N) =

f2

8
Tr

[

∂µU∂µU+ + r(mU † + Um†)
]

. (4.3)

Indeed, a straightforward identification of the second term in this equation with the stan-

dard Dirac mass term in QCD

LQCD(mass) = −(q̄LmqR + q̄Rm
†qL) (4.4)

allows us to hadronize all colour-singlet quark densities

q̄aRq
b
L = −f2

8
rU ba (4.5)

q̄aLq
b
R = −f2

8
rU †ba (4.6)

such that

Q8 = − 3

16
f4r2

∑

q=u,d,s

UdqeqU
†qs . (4.7)

Consequently, the factorized matrix elements of the ∆I = 1/2 and ∆I = 3/2 components

of Q8 in the large N limit are

〈Q8〉0 =
h

2
fr2 (4.8)

〈Q8〉2 =
h

2
√
2
fr2 . (4.9)

Similarly, the QCD penguin operator Q6 introduced in (3.3) and “Fierzed” into a

product of two colour-singlet densities reads

Q6 = −8
∑

q=u,d,s

(s̄LqR)(q̄RdL) = −1

8
f4r2

∑

q

UdqU †qs = 0 . (4.10)

As a matter of fact, one has the relation

r(µ) =
2m2

K

ms(µ) +md(µ)
(4.11)

– 8 –
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at the level of Leff(p
2, N). Yet, at this level, the absence of SU(3) splitting among the weak

decay constants implies ill-defined 〈Q8〉0,2 matrix elements in (4.8) and (4.9) as well as a

vanishing Q6 operator in (4.10).

It is well known [8, 42] that the next-to-leading term in the chiral effective Lagrangian

Leff(p
4, N) = −f2

8

r

Λ2
χ

Tr
[

m∂2U † + ∂2Um†
]

(4.12)

solves both problems since it leads to realistic weak decay constants

Fπ =

(

1 +
m2

π

Λ2
χ

)

f (4.13)

FK

Fπ
= 1 +

m2
K −m2

π

Λ2
χ

(4.14)

thanks to its derivative dependence and, simultaneously, it implies

Q6 = −f4

4

(

r

Λχ

)2

(∂µU∂µU †)ds +O
(

1

Λ4
χ

)

≈ −
(

r

Λχ

)2

Q4 (4.15)

from the shift induced in the hadronized quark densities

U → U − 1

Λ2
χ

∂2U (4.16)

through its mass dependence. Taking these corrections into account, we now reproduce

the large N matrix elements given in (3.12)–(3.14), with the normalization (3.15) for the

B6,8 coefficients if contributions O(m2
π/Λ

2
χ) to Q8 are neglected.

At this point, it is worth emphasizing that, here, we consistently normalize the |∆S| =
1 B6,8 to unity in the large N limit. Such is unfortunately not the case for the |∆S| = 2 BK

parameter conventionally normalized to one with respect to VIA in (2.2). Had the ∆S = 2

matrix element in (2.2) been normalized relative to its large N value, the most precise B̂K

parameter extracted from lattice QCD in (2.7) would read B̂K = 1.021 ± 0.013 nowadays

and our result in (2.6) B̂K = 0.97± 0.03. In [34, 41], B6 and B8 were also normalized with

respect to the VIA as in (3.16).

We are now in an ideal position to estimate 1/N corrections encoded in the B6,8

parameters. The factorizable 1/N corrections to |∆S| = 1 density-density operators are

fully included [35] in the running of quark masses in (4.11). Let us thus focus on non-

factorizable one loop corrections induced by Leff(p
2, N). Applying the background field

method of [43], we find

UdqU †q′s(Λ) = UdqU †q′s(M)− 16

f4

ln(Λ2/M2)

(4πf)2

[

2Jds
L Jq′q

R + (JLJL)
dsδq

′q
]

(M) (4.17)

with Λ = O(1GeV) the euclidean ultraviolet cut-off of the effective theory (4.3) to be

matched with the non-factorizable short distance evolution, M = O(mK) and

Jab
L = q̄bLγµq

a
L = i

f2

4
(∂µUU †)ab (4.18)

Jab
R = q̄bRγµq

a
R = i

f2

4
(∂µU

†U)ab (4.19)

the colour-singlet left-handed and right-handed hadronic currents derived from Leff(p
2, N),

respectively.
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Applied to the specific K → ππ decay processes,

• the first (L-R) current-current operator in (4.17), also present with the right relative

sign in the VIA through a Fierz transformation, does not contribute to the matrix

element 〈Q6〉0 since

Tr(JR) =

√
3

2
f∂µη

0 (4.20)

• the second (L-L) current-current operator in (4.17), absent in the VIA, does not

contribute to the matrix elements 〈Q8〉0,2 since

Tr(eq) = 0 . (4.21)

An explicit calculation of the surviving Q4 and Q7 matrix elements (in the large N

limit) gives then, respectively,

B
(1/2)
6 = 1− 3

2

[

Fπ

FK − Fπ

]

(m2
K −m2

π)

(4πFπ)2
ln

(

1 +
Λ2

m̃2
6

)

= 1− 0.66 ln

(

1 +
Λ2

m̃2
6

)

(4.22)

B
(1/2)
8 = 1 +

(m2
K −m2

π)

(4πFπ)2
ln

(

1 +
Λ2

m̃2
8

)

= 1 + 0.08 ln

(

1 +
Λ2

m̃2
8

)

(4.23)

B
(3/2)
8 = 1− 2

(m2
K −m2

π)

(4πFπ)2
ln

(

1 +
Λ2

m̃2
8

)

= 1− 0.17 ln

(

1 +
Λ2

m̃2
8

)

(4.24)

with pseudoscalar mass scale parameters bounded necessarily by the effective cut-off around

1GeV:

m̃6,8 ≤ Λ . (4.25)

First, we emphasize most important properties of these results:

• For Λ = 0, corresponding to strict large N limit and matrix elements evaluated at

zero momentum, B
(1/2)
6 = B

(3/2)
8 = B

(1/2)
8 = 1 in accordance with (3.15).

• With increasing Λ, the parameters B
(1/2)
6 and B

(3/2)
8 decrease below unity and B

(1/2)
6

decreases faster than B
(3/2)
8 . Consequently, at scales O(1GeV) relevant for the phe-

nomenology both B
(1/2)
6 and B

(3/2)
8 are predicted to be below unity and there is

strong indication that B
(1/2)
6 < B

(3/2)
8 .

• While the dependence of B
(1/2)
6 and B

(3/2)
8 on Λ < 1GeV is stronger than their

dependence on µ in the perturbative regime, these two properties of B
(1/2)
6 and B

(3/2)
8

are at the qualitative level consistent with the numerical analysis performed for B
(1/2)
6

and B
(3/2)
8 by means of the standard renormalization group running in [34]. Indeed as

seen in figures 11 and 12 of that paper B
(1/2)
6 decreases with increasing µ, faster than

B
(3/2)
8 , albeit in this perturbative range the dependence of B

(1/2)
6 and B

(3/2)
8 on µ is

very weak. While the analysis in [34] includes NLO QCD and QED corrections, the

inspection of the one-loop anomalous dimension matrix allows to see these properties
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explicitly. In particular Q6 mixes with the linear combination (Q4+Q6) and we find

for µ1 ≤ µ2 ≤ mc

B
(1/2)
6 (µ2) = B

(1/2)
6 (µ1)

[

1− αs(µ1)

2π
ln

(

µ2

µ1

)(

1 +
〈Q4(µ1)〉0
〈Q6(µ1)〉0

)]

. (4.26)

From (4.15) |〈Q6(µ1)〉0| > |〈Q4(µ1)〉0| such that B
(1/2)
6 decreases with increasing µ.

On the other hand, in the LO Q8 runs only by itself and the one-loop anomalous

dimension matrix implies

B
(1/2,3/2)
8 (µ2) = B

(1/2,3/2)
8 (µ1) , (4.27)

which follows from exact SU(3) symmetry imposed in SD calculations. The break-

down of SU(3) is only felt in the matrix elements of Q8 making in the LD range

B
(3/2)
8 dependent weakly on the scales involved. In view of this, the suppression of

both B
(1/2)
6 and B

(3/2)
8 below the unity can be considered as a solid result and our

explicit calculation as well as different behaviour of Q6 and Q8 under flavour SU(3)

provide a strong support for B
(1/2)
6 < B

(3/2)
8 . On the other hand,

B
(1/2)
8 ≈ [B

(3/2)
8 ]−1/2 (4.28)

slightly increases with Λ which is also consistent with the standard renormalization

group running [40].

Next, we observe that:

• The numerical value of the parameter B
(1/2)
6 suffers from rather large uncertainties.

This feature is related to the fact that Q6 vanishes at leading order in chiral per-

turbation theory (see (4.10)). The 1/N logarithmic correction in (4.22) is therefore

artificially enhanced by the factor Fπ/(FK − Fπ) ≈ 5 such that

B
(1/2)
6 < 0.6 . (4.29)

• The parameter B
(1/2)
8 has a very small 1/N correction. At O(1/N2), one larger

contribution might arise from the anomalous effective Lagrangian

Leff(p
0, 1/N) =

f2

32

(

m2
0

N

)

[

Tr(lnU − lnU †)
]2

(4.30)

that solves the so-called U(1)A problem [44] by providing the η′ pseudoscalar with a

physical mass in the large N limit [45]:

m2
η′ +m2

η − 2m2
K ≈ m2

0 ≈ 0.7GeV2 . (4.31)

Applying again the background field method, we obtain

UdqU †q′s(Λ) =

[

1− 4

N

m2
0

(4πf)2
ln

(

Λ2

M2

)]

UdqU †q′s(M). (4.32)
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Such a negative contribution to Q8 has been included in [41]. However, any consistent

estimate beyond

B
(1/2)
8 ≈ 1 (4.33)

would require a full calculation at O(1/N2).

• The parameter B
(3/2)
8 , for which the 1/N expansion is more reliable, is found in the

range

0.7 ≤ B
(3/2)
8 ≤ 0.9 (4.34)

if m̃8 ≥ mK .

Lattice result for B
(1/2)
6 in (3.19) turns out to almost saturate our bound. But one

should realize that although we are confident about the suppression of B
(1/2)
6 below unity,

its actual size is rather uncertain. For instance the inclusion of dynamical scalars presently

frozen in Λχ could reduce the coefficient in front of the logarithm in (4.22) making B
(1/2)
6

larger. This uncertainty in the value of B
(1/2)
6 explains also why it took so long to calculate

B
(1/2)
6 in lattice QCD even with a large uncertainty as seen in (3.19). On the other hand,

the range for B
(3/2)
8 in (4.34) is consistent with the one in (3.20). These results indicate

that indeed B
(1/2)
6 could be smaller than B

(3/2)
8 . Yet, in view of the large numerical

uncertainties in the case of B
(1/2)
6 , we cannot exclude that B

(1/2)
6 is as large as B

(3/2)
8 . We

therefore believe that the best way of summarizing our results for B
(1/2)
6 and B

(3/2)
8 is given

in (3.21) and (3.22) together with

B
(1/2)
6 ≤ B

(3/2)
8 < 1 . (4.35)

Below 1GeV we have seen in (4.17) that density-density operators transmute into

current-current ones at O(1/N). But power counting in our effective theory does not

allow the other way around, namely current-current operators evolving into density-density

ones. This is fully consistent with the evolution of hadronic matrix elements above µ =

1GeV studied already in [34] and is opposite to the evolution of the corresponding Wilson

coefficients. Now, in the large N approach, it has already been shown [16, 43] that any

(L-L) current-current operator evolves as

Jab
L Jcd

L (Λ) = Jab
L Jcd

L (0)−O
(

1

N

)

[

2Jad
L Jcb

L − δad(JLJL)
cb − δcb(JLJL)

ad
]

(0) (4.36)

to stand in contrast with the wrong relative sign in the VIA analogue

Jab
L Jcd

L (Λ) = Jab
L Jcd

L (0) +
1

N
Jad
L Jcb

L (0) . (4.37)

As a consequence, summing over c = d = u, d, s we conclude that the matrix element 〈Q3〉0
which vanishes in the large N limit is formally O(1/N2) relative to 〈Q4〉0 in our effective

theory. Such a strong suppression could have been anticipated from the LO short-distance

evolution of the four-quark operator Q3 into another linear combination of Q4 and Q6:

Q3(µ2) = Q3(µ1)−O
(

1

N

)[

11

2
Q4 +Q6

]

(µ1). (4.38)
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At long distance, the further Q3 evolution undergoes an important numerical cancellation

since (4.15) tells us that the Q4 and Q6 operators are not independent anymore. Fol-

lowing (4.36), this numerical cancellation is not a mere coincidence but the result of a

consistent 1/N expansion.

In the same manner, it has been proved [43] that any (L-R) current-current operator

evolves as

Jab
L Jcd

R (Λ) = Jab
L Jcd

R (0) +O
(

1

N

)

[

Uad(δU †)cb + δUad(U †)cb
]

(0) (4.39)

with δU proportional to (�U − U�U †U).

Consequently, the matrix element 〈Q5〉0 which vanishes in the large N limit is O(1/N2)

relative to Fπ/(FK − Fπ)〈Q6〉0 in our effective theory. As already mentioned, an enhance-

ment factor has to be introduced to compensate for the “accidental” chiral suppression of

〈Q6〉0 in (4.10). On the other hand, the matrix elements

〈Q7〉0 =
h

2
Fπ(m

2
K −m2

π) (4.40)

〈Q7〉2 = − h√
2
Fπ(m

2
K −m2

π) (4.41)

are O(p2) but non zero in the large N limit. With the matrix elements 〈Q8〉0,2 given

in (4.8), (4.9) and being O(p0), the resulting ratios 〈Q7〉0,2/〈Q8〉0,2 are at the level of a few

percent and can thus be neglected. The long-distance evolution of Q7 in (4.39) leads then

to matrix elements proportional to 〈Q8〉0,2, though O(p2). This is clearly at variance with

its LO short-distance evolution, namely

Q7(µ2) = Q7(µ1) +O
(

1

N

)

Q8(µ1) . (4.42)

As already explicitly stated in [43], this suggests the necessity to introduce higher reso-

nances beyond our effective theory truncated to the low-lying pseudoscalars. In a dual

representation of QCD the matrix elements 〈Q7〉0,2 should then be dominantly O(p0), but

1/N -suppressed, with the bound
〈Q7〉0
〈Q7〉2

<
√
2 (4.43)

resulting from the isospin decompositions in (4.40)–(4.41) and (4.8)–(4.9).

5 Implications for ε′/ε

We will now briefly discuss the implications of our results for ε′/ε. To this end we will

use the analytic formula for ε′/ε in the SM derived recently in [40]. In obtaining this

formula it has been assumed that the SM describes exactly the data on CP-conserving

K → ππ amplitudes: ReA0 and ReA2. This allowed to determine the contributions of the

(V − A) ⊗ (V − A) QCD penguin operator Q4 and of the electroweak penguin operators

Q9 and Q10 to ε′/ε much more precisely than it is presently possible by lattice QCD and

large N approach. This determination was facilitated by our results on the suppression of

the matrix element 〈Q3〉0 implying the relations (3.26)–(3.28).5

5The final numerical analysis in [40] leading to (5.1) included also small corrections from Q3 and other

corrections from subleading operators.
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The formula in question reads [40]

ε′

ε
= 10−4

[

Imλt

1.4 · 10−4

]

[

a
(

1− Ω̂eff

)(

− 4.1 + 24.7B
(1/2)
6

)

+ 1.2− 10.4B
(3/2)
8

]

, (5.1)

where

Imλt = Im(VtdV
∗
ts) = |Vub||Vcb| sin γ (5.2)

and [40, 46–48]

a = 1.017, Ω̂eff = (14.8± 8.0)× 10−2 . (5.3)

|Vub| and |Vcb| are the elements of the CKM matrix and γ is an angle in the unitarity

triangle. The parameters a and Ω̂eff represent isospin breaking corrections [46–48]. See

these papers and [40] for details.

Setting all parameters, except for B
(1/2)
6 and B

(3/2)
8 , in (5.1) to their central values

we find

Re(ε′/ε) = 8.6× 10−4, (B
(1/2)
6 = 1.0, B

(3/2)
8 = 1.0) (5.4)

Re(ε′/ε) = 6.4× 10−4, (B
(1/2)
6 = 0.8, B

(3/2)
8 = 0.8) (5.5)

Re(ε′/ε) = 2.2× 10−4, (B
(1/2)
6 = 0.6, B

(3/2)
8 = 0.8) . (5.6)

A detailed anatomy of ε′/ε in the SM is presented in [40], where various uncertainties

related to NNLO QCD corrections and other uncertainties are discussed. But these three

examples indicate that taking our bounds into account and guided by the results on B
(1/2)
6

and B
(3/2)
8 from lattice QCD and our dual approach, our SM prediction for ε′/ε appears

to be significantly below the data given in (1.3).

In each of these predictions, there are uncertainties from the value of Imλt, the un-

known complete NNLO corrections to Wilson coefficients of contributing operators, αs, mt

and other input parameters. But they appear not to change the conclusion that, presently,

the SM prediction for ε′/ε is significantly below the data. Our upper bound on B
(1/2)
6 plays

an important role in this result as otherwise increasing B
(1/2)
6 above unity would allow to

fit easily the data.

6 Comments on other large N QCD approaches

In [49] the authors analyse ∆I = 1/2 rule and ε′/ε in the chiral limit including 1/N

corrections. Their results differ drastically from our results. In particular, their low energy

“Extended Nambu-Jona-Lasinio” model (ENJL) gives

B
(1/2)
6 ≈ 3, B

(3/2)
8 ≈ 1.3, (ENJL) (6.1)

namely B
(1/2)
6 roughly by a factor of five larger than lattice calculations and our results.

With such high values of B
(1/2)
6 , QCD penguins play an important role in the explanation

of the ∆I = 1/2 rule and the experimental value of ε′/ε can easily be reproduced, again in

contrast with lattice QCD and our dual QCD approach.
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In [50] the authors consider a low energy model including the light pseudo-scalar,

vector and scalar poles only in the chiral limit. Within this so-called “Minimal Hadronic

Approximation” (MHA), they also obtain much larger values of B
(1/2)
6 and B

(3/2)
8 than in

our approach

B
(1/2)
6 ≈ 3, B

(3/2)
8 ≈ 3.5, (MHA) (6.2)

and find then good agreement with data for ε′/ε.

In [51–53] the authors rely on dispersion relations and “Finite Energy Sum Rules”

(FESR) in the chiral limit to extract the electroweak penguin matrix elements from ALEPH

and OPAL data. Doing so, they obtain central values for B
(3/2)
8 by a factor of two to three

larger than in lattice QCD and our dual QCD approach

1.3 ≤ B
(3/2)
8 ≤ 2.5, (FESR) . (6.3)

We conclude that the recent lattice QCD results tend to demonstrate that the various

models considered in [49–53] do not represent properly the low energy QCD dynamics at

work for penguin matrix elements, but confirm the structure of our dual QCD approach.

7 Summary and outlook

In the present paper, we have compared the structure of the hadronic matrix elements in

K → ππ decays obtained within the dual approach to QCD with the one obtained recently

by the RBC-UKQCD lattice approach to QCD and commented briefly on the status of the

parameter B̂K and the ∆I = 1/2 rule. Our main results are as follows:

• The status of B̂K is very good as both our approach and the lattice QCD calculations

give this parameter very close to 0.75. But we expect that B̂K from the lattice

approach will decrease by a few % in the coming years.

• While the results for ReA2 obtained in both approaches agree well with the data, the

central value of ReA0 from RBC-UKQCD collaboration is by a factor ot two larger

than in our approach and 40% above the data. While our result in (2.8) appears

from present perspective to be final in our approach, significant improvement on the

lattice result is expected in the coming years. This will allow to find out whether at

some level of 20% new physics could still be responsible for the ∆I = 1/2 rule. An

analysis anticipating such possibility has been presented in [33].

• As the upper bound on B
(3/2)
8 in (3.22) has been already indicated in [41], one of

the most important results of our paper is the upper bound on B
(1/2)
6 . Our estimate

suggests that B
(1/2)
6 ≤ B

(3/2)
8 < 1, but the precise values can only be obtained by

lattice methods.

• Among other results of our approach supported by recent results from RBC-UKQCD

is the strong suppression of 〈Q3,5(µ)〉 and B
(1/2)
8 ≈ 1.
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If indeed the emerging pattern B
(1/2)
6 ≤ B

(3/2)
8 < 1 with B

(3/2)
8 = 0.8 ± 0.1 will be

confirmed by more precise calculations one day, the very recent analysis in [40] and our

paper show that ε′/ε within the SM will be found roughly by a factor of two below the data.

For a detailed phenomenological discussion of the state of ε′/ε within the SM including

all errors and future theoretical and experimental prospects we refer to [40]. On the other

hand, first phenomenological implications of our results on new physics models have been

presented in [54, 55].
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