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New developments and future opportunities
in biomarkers for amyotrophic lateral sclerosis
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Abstract

Modern technology has improved the ability to probe effectively the underlying biology of ALS by examination of
genomic, proteomic and physiological changes in patients with ALS, as well as to monitor functional and structural
changes during the course of disease. While effective treatments for ALS are lacking, the discovery of sensitive
biomarkers to disease activity offers clinicians tools for rapid diagnosis and insights into the pathophysiology of
ALS. The ultimate aim is to lessen reliance on clinical measures and survival as trial endpoints and broaden the
therapeutic options for patients with this disease.

Introduction
The earliest descriptions of amyotrophic lateral sclerosis
(ALS) were made in the late 1800s, and the understand-
ing of the clinical and pathological heterogeneity of ALS
has made a major advance in the last 30 years. However,
the phenotypic variability and a common clinical syn-
drome, including the region of onset, rate of progression,
patterns of disease spread, and relative burden of upper
motor neuron (UMN), lower motor neuron (LMN), and
cognitive pathology complicates the diagnosis of disease
and the measurement of disease progression. For ex-
ample, the mean delay in time from presentation of
symptoms to diagnosis has remained at over 1 year [1],
and around 5 ~ 10 % of patients with ALS survive for
more than a decade after diagnosis [2, 3]. Furthermore,
nearly one-quarter of patients who present with progres-
sive muscular atrophy (PMA) develop signs of UMN dis-
ease within 5 years of diagnosis [4]. while patients with
primary lateral sclerosis (PLS) presenting isolated UMN
signs evolve LMN features over time [5]. The presence
of UMN-predominant and LMN-predominant clinical
signs is associated with better prognosis [3, 6]; although
within these phenotypes there may still be dramatic vari-
ability in the rate of disease progression. All the hetero-
geneity of clinical presentation indicates that quantitative
monitoring biomarkers which would facilitate effective
decision-making and care-planning are the most needed.

Technological advancements have led to the discovery of
candidate biomarkers for ALS in biofluids and tissues,
electrophysiological indicators, and neuroimaging mea-
sures. This review highlights advances in the identification
and understanding of biomarkers of ALS, including bio-
fluid and tissue biomarkers, neurophysiology biomarkers,
and neuroimaging biomarkers.

Tissue and biofluid biomarkers (Table 1)
Biofluids
Cerebrospinal fluid (CSF) CSF is an ideal biofluid for
biomarker discovery due to its approximation to the
brain and spinal cord regions. It might reflect patho-
physiological alterations in disease progression, and it
could provide an insight into disease pathogenesis.

Dysfunction of the blood brain barrier (BBB) and its
markers in CSF
The changes in the selected matrix metalloproteinases
(MMPs), including MMP-2 and MMP-9, were demon-
strated in the CSF of ALS patients. One study showed
that the concentrations of MMP-2 were higher, and the
MMP-9 concentrations were lower in the CSF of ALS
patients than in healthy controls [7]. However, another
study presented an opposite findings and they found that
the CSF MMP-9 concentrations in ALS patients were
significantly higher than in healthy controls, and there
were no significant differences of CSF MMP-2 concentra-
tions between ALS patients and controls [8]. MMPs are
involved in mediation of disruption of BBB, and contrib-
ute to ALS pathology, but future researches concerning
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the significance of selected MMPs as potential biomarkers
for ALS need to be continued.

Neuroaxonal degeneration markers in CSF
Neurofilaments (Nf) are considered to be an important
component of the axonal skeleton. Nf are composed of
three subunits: a light (NfL), a medium (NfM) and a heavy
(NfH) chain. Tortelli et al. reported that the concentra-
tions of NfL in CSF were significantly higher in ALS cases
than in neurological controls [9]. They also showed that
CSF NfL levels was correlated with the time of symptom
spreading from spinal or bulbar localization to both
(TTG), a clinical intermediate parameter of survivorship
[10]. In addition, recently, another study demonstrated
that the NfL levels in CSF discriminated between ALS pa-
tients and neurological controls, with a sensitivity of 97 %
and specificity of 95 %. Furthermore, CSF NfL was highly
correlated with serum levels, which were found to be
strong, independent predictors of survival [11]. The prog-
nostic and diagnostic values of the CSF levels of phos-
phorylated neurofilament heavy chain and complement
C3 (pNFH/C3) were also confirmed in patients with ALS,
and the predictive pNFH/C3 ratio identified ALS with
87.3 % sensitivity and 94.6 % specificity [12]. A final pro-
spective clinical qualification study is currently underway
using 4 sites in the US and 2 sites in Europe. The CSF Nf
levels could be promising disease-monitoring biomarkers
in ALS targeting cytoskeletal antigens. Another biomarker
of axonal degeneration is Tau protein. Significantly re-
duced CSF levels of p-tau and the p-tau:t-tau ratio were
identified in ALS [13]. However, contrary to this report,
another study showed that CSF p-tau was not significantly
reduced, and t-tau was significantly increased in ALS cases
[14]. Thus, it is still controversial to consider CSF p-tau as
a suitable diagnostic biomarker for ALS.

Markers of the neuroprotection in CSF
Cystatin C, a cysteine proteinase inhibitor, has been im-
plicated in the processes of neuronal degeneration and

the repairmen of the nervous system [15], and a signifi-
cant decrease in cystatin C in CSF of ALS patients has
been described in previous studies [16–20]. However,
another study reported that there was no difference in
CSF cystatin C levels in patients and controls from six
European centers [21]. These inconsistent findings may
be explained partially by the fact that cystatin C seems to
be prone to preanalytic artifacts [22]. TDP-43 (43-kDa
transactive response (TAR)-DNAbinding protein), regulat-
ing biological processes in the nucleus, plays a crucial role
in the neurodegeneration in ALS. TDP-43 was considered
to be a biomarker for the early stages of disease, since sig-
nificantly higher levels of CSF TDP-43 were identified in
ALS patients at the disease onset [23]. Similar findings
also showed that CSF TDP-43 levels were increased only
in ALS patients with a sensitivity of 59.3 % and a specifi-
city of 96.0 %, and the lower CSF TDP-43 levels may be
associated with shorter survival time [24]. However, an-
other study concludes that TDP-43 in CSF originates
mainly from blood, and measurements of TDP-43 in CSF
and blood may be of minor importance as a diagnostic
tool [25].

Markers of inflammation and immune activation in CSF
Inflammation in the CNS and the systemic circulation is
considered to be a key factor in the pathogenesis of ALS
[26, 27]. Inflammation in ALS is resulted from activation
of microglia and autoimmune responses in the CNS,
leading to neuronal dysfunction. In the CSF, increased con-
centrations of interleukin-6 (IL-6), interleukin-8 (IL-8),
complement factors C3 and C4, prostaglandin E2, neop-
terin, peroxynitrite, granulocyte colony stimulating factor
(G-CSF), monocyte chemoattractant protein-1 (MCP-1),
and antibodies against various cellular structures have been
identified [28–30]. CHIT-1 is a enzyme synthesized by
microglia or infiltrating macrophages [31]. Studies showed
that CSF CHIT-1 levels were significantly higher in SALS
patients than in other neurological controls [32, 33]. The
enhanced expression of CHIT-1 possibly indicates a neu-
roinflammatory response activated by microglia, and an
index of the severity of inflammation alongside the release
of pro-inflammatory cytokines [34]. Thus, CHIT-1 may be
helpful for the evaluation of cerebral inflammatory activity
in ALS patients.

Glial activation markers in CSF
Glial activation occurs in early stages of during the cascade
of neuroaxonal degeneration [35]. Markers of glial activa-
tion include erythropoietin (EPO), S100 beta (S100b), glial
fibrillary acidic protein (GFAP) and glutamine synthetase.
In ALS, CSF concentrations of EPO were significantly de-
creased [36, 37]. CSF S100b levels were found to be signifi-
cantly lower in lower MND (LMND), as compared to other
MNDbut there is no consistent evidence for a correlation

Table 1 Candidate-tissue and biofluid-based biomarkers for ALS

Evaluated biomarkers Meaning/function

CSF MMP-2, MMP-9 Markers of BBB
dysfunction

NfL, pNFH/C3, p-tau Neuroaxonal degeneration
markers

cystatin C, TDP-43 Markers of the
neuroprotection

IL-6, IL-8, complement factors C3
and C4, prostaglandin E2, neopterin,
peroxynitrite, G-CSF, MCP-1

Markers of inflammation
and immune activation

S100b, EPO Glial activation markers

Blood Creatinine, albumin, ferritin

Muscle Nogo-A, smads
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between concentrations of CSF S100b and disease severity.
. Furthermore, changes of S100b have been reported in
other neurodegenerative diseases. Therefore, S100b has
limited usefulness for disease diagnosing and monitoring
disease progression [38].

Blood
Blood is more accessible compared to CSF. In ALS,
serum albumin and creatinine are reliable markers of
the severity of clinical status and can be used in defining
prognosis at the time of diagnosis [39]. The DREAM-
Phil Bowen ALS Prediction Prize4Life challenge also
confirmed that uric acid and creatinine could be used as
potential nonstandard predictors of disease progression,
shedding light on ALS pathobiology [40]. A post hoc
analysis of subgroup outcomes and creatinine in the
phase III clinical trial (EMPOWER) of dexpramipexole
in ALS demonstrated that creatinine loss correlated with
disease progression [41]. Similar findings also showed
that changes to ferritin and creatinine levels with time
were associated with ALS progression, suggesting serum
creatinine as a candidate biomarker [42].

Muscle
Skeletal muscle is one of the most severely affected by
the disease and it is easily accessible to biopsy. Thus,
with progressive denervation and atrophy, muscles may
represent a valuable source of biomarkers in ALS. Nogo-
A was found to be strongly expressed in ALS muscles,
and its expression was correlated with amyotrophic lat-
eral sclerosis functional rating scale (ALSFRS) [43, 44].
However, studies questioned that expression of Nogo-A in
human muscle fibers may be not specific for ALS [45, 46].
Muscle transcriptome analyses have found that smad1, 5,
8 mRNA and protein levels, as well as Smad phosphoryl-
ation, were elevated in ALS muscle. Therefore, muscle
smads could serve as potential candidates for ALS bio-
markers [47].

Physiological biomarkers (Table 2)
While biochemical markers may provide clues for the
specific cellular or signaling alterations that occur in
ALS, a number of global physiological features can be
assessed that might differentiate ALS from other neuro-
logical diseases and enable the monitoring of disease

progression. The presence of fibrillation potentials and
positive sharp waves on needle electromyography indi-
cates ongoing LMN degeneration or axonal loss, and
prolonged and polyphasic motor units are considered to
be a consequence of reinnervation. However, electro-
myography has a limited sensitivity (60 %) for the diagno-
sis of ALS, and the characteristics measured, including
motor unit duration, amplitude and phase do not system-
atically change with disease progression. A measure of
motor unit loss that is reproducible, noninvasive, rapidly
obtained, and amenable to repeated evaluation over time
would be highly desirable.

Measures of LMN Loss
Motor unit number estimation (MUNE)
Motor unit number estimation (MUNE) is a neurophysio-
logical tool that was developed to quantify residual motor
axons supplying a muscle, by estimating the contribution
of individual motor units to the maximum response amp-
litude. Longitudinal studies of changes in MUNE in ALS
have correlated loss of motor neurons with survival [48].
A number of MUNE techniques for estimating the average
amplitude of single motor units have been developed, but
most of them have been limited by sampling bias and lack
of reproducibility [49]. Recently, multipoint incremental
MUNE was found to have excellent test-retest reliability.
The rate of decline was more sensitive than that of MRC
sum score and ALSFRS-R [50, 51]. Other new MUNE
methods, including Bayseian MUNE and motor unit num-
ber index (MUNIX), the latter was considered to be a reli-
able electrophysiological biomarker to track lower motor
neuron loss in ALS [52]. Bayesian MUNE could be used
to show differing rate of loss of motor units in subgroups
of ALS [53].

Axonal excitability
Motor axonal dysfunction has been demonstrated in
ALS patients using threshold-tracking technology, with
increased persistent conduction in sodium channels and
reduced conduction in potassium channels [54, 55].
Changes in axonal excitability evolve with disease pro-
gression [56], and may be used as a predictor of survival
in ALS patients [57]. Axonal excitability parameters
could be used as biomarkers of axonal degeneration.

Electrical impedance myography (EIM)
EIM is an emerging technology in which a high-
frequency, low-intensity electrical current is applied to a
localized area of muscle and the consequent surface
voltages measured [58]. EIM assesses the integrity and
structure of the muscle. Recently, a multicenter study
compared EIM directly to the ALSFRS-R, MUNE, and
handheld dynamometry, and found that EIM outper-
formed the other measures in terms of its ability to

Table 2 Candidate physiological biomarkers for ALS

Evaluated biomarkers

Measures of LMN loss Motor unit number estimation (MUNE)

Axonal excitability

Electrical impedance myography (EIM)

Muscle ultrasound (MUS)

Measures of UMN loss Transcranial magnetic stimulation (TMS)
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detect deterioration [59], and EIM can serve as a mean-
ingful measure of disease severity in ALS [60]. One ad-
vantage of EIM is its ability to assess a variety of
muscles and to measure specifically the area of the body
where the disease is progressing most rapidly. The other
advantage is that EIM of tongue musculature could dis-
tinguish patients with ALS from healthy controls. The
demonstrated relationship between tongue function and
Ph supports further testing of EIM of the tongue as a
potential biomarker in ALS [61]. Large studies are
needed to further refine the technique for easy use and
validate it as a biomarker for future clinical trials.

Muscle ultrasound (MUS)
Ultrasound may also detect changes in the thickness and
echogenicity in muscles with and without clinical weak-
ness [62]. Muscle ultrasound differentiated between ALS
and mimics with 96 % sensitivity and 84 % specificity,
and it is a sensitive tool to screen for regional lower
motor neuron involvement [63]. The most established
role of MUS in the ALS clinic relates is the identification
of fasciculations. The sensitivity and specificity of MUS
in diagnosing ALS was almost equivalent to those of
EMG, and combined use of EMG and MUS enhanced
the diagnostic accuracy compared to EMG alone [64].

Measures of UMN Loss
Transcranial magnetic stimulation (TMS)
TMS is a neurophysiological test that measures UMN
functional integrity, and it is able to improve the sensi-
tivity of ALS diagnosis by demonstrating evidence of
subtle subclinical UMN dysfunction, as well as clarify
the relationship between ALS and its variants [65], such
as PMA. It is used to study the excitability and conduct-
ivity of the corticospinal system. Changes in cortical ex-
citability may precede the development of muscle
weakness in ALS [66, 67]. Single pulse evoked TMS
amplitude could used to objectively discriminate ALS
from neurological controls and assess the progression of
ALS [68–70]. The threshold tracking TMS technique
could used to differentiate ALS from non-ALS disorders
with a sensitivity of 73.21 % and specificity of 80.88 % at
an early stage in the disease. It may represent a useful
diagnostic investigation to prove UMN dysfunction at
early stages of ALS when combined with the Awaji cri-
teria [71].

Neuroimaging biomarkers (Table 3)
Imaging offers a noninvasive approach to biomarker dis-
covery and disease monitoring. If neuroimaging bio-
markers were validated, they could be easily integrated
into routine clinical evaluation of patients with sus-
pected ALS, and revealed disease mechanisms that
might aid the discovery of novel drug targets.

Radionuclide imaging
Single photon emission computed tomography (SPECT)
is a practical and potentially widely applicable form of
radionuclide imaging. It was at the forefront of the now
established concept of a continuum between ALS and
frontotemporal dementia (FTD) [72]. Positron emission
tomography (PET) has greater resolution than SPECT.
Pivotal ‘activation’ PET studies, using tracers sensitive to
blood flow and metabolism, provide in vivo evidence for
a consistent extramotor cerebral pathology in ALS [73],
while ‘ligand’ PET is used to identify specific cerebral
neuronal receptor changes in ALS. The PET ligand 11C-
PK11195 binds to the peripheral benzodiazepine recep-
tor, which are expressed by activated microglia. A study
provided in vivo evidence of widespread corticospinal
tract and extra-motor microglial activation in ALS pa-
tients [74]. A serotonin 5-HT1A receptor PET ligand
11C-WAY100635 showed marked reductions in binding
in a group of nondepressed ALS patients [75]. Loss of
binding was mainly located in frontotemporal regions.
These locations are similar in distribution to a subse-
quent study in patients with FTD [76], and this striking
reduction in serotonin-1A receptor binding was con-
firmed histologically [77]. The future value of PET in
ALS will depend on the development of ligands with
relevance to pathogenic hypotheses, e.g., more specific
neuroinflammatory or protein markers.

Magnetic resonance imaging (MRI)
The observation of corticospinal tract hyperintensity
lacks sensitivity and specificity for the diagnosis of ALS.
Routine clinical MRI has limited value as a source of
biomarkers in ALS, e.g., the marked precentral gyrus at-
rophy was demonstrated in rare cases of PLS. Thus, the
advanced analysis methods have greater potential in this
regard.

Voxel & surface-based MRI morphometry
Automated and unbiased whole-brain analysis tech-
niques have been developed to quantify and segment
grey and white matter (WM) morphology using T1-
weighted images, and this advanced analysis techniques

Table 3 Candidate neuroimaging biomarkers for ALS

Evaluated biomarkers

Radionuclide imaging SPECT

PET

Magnetic resonance
imaging (MRI)

Voxel & surface-based MRI morphometry
(VBM&SBM)

Diffusion tensor imaging (DTI)

Functional MRI (fMRI)

Magnetic resonance spectroscopy (MRS)

Spinal cord MRI
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include voxel- and surface-based morphometry (VBM
and SBM), the latter is known as cortical thickness mea-
sures, because it allows decomposition of cortical vol-
ume into both thickness and surface area and respects
the cortical topology, with enhanced reliability and sen-
sitivity [78]. A meta-analysis of VBM studies in ALS
demonstrated significant grey matter loss in the right
precentral gyrus [79]; however, extra-motor changes
were not found to be a consistent feature. This finding is
in agreement with clinical observations, since at least
fifty percent ALS patients have no detectable cognitive
impairment [80, 81]. However, in those ALS patients
with significant cognitive impairment or frank dementia,
extra-motor grey matter changes are considered to be a
clear feature across a range of techniques [82]. Two lon-
gitudinal VBM studies have showed progressive atrophy
in extra-motor as well as motor regions [83, 84], and pa-
tients with more rapidly progressive ALS presented
frontal lobe changes as well as more extensive motor
changes [84]. This separate observations reflect that
early cognitive impairment is a poor prognostic factor
[85]. Studies of SBM in ALS have demonstrated cortical
thinning in the precentral gyrus [86–88], and a marked
correlation was found between thinning within the tem-
poral lobe cortex and rapid disease progression [88].

Diffusion tensor imaging
Post mortem histopathological study have demonstrate
widespread cerebral white matter tract damage in ALS,
and this alteration can now be detected non-invasively
using diffusion tensor imaging (DTI) [89]. The two main
quantitative measures of loss of neuronal tract integrity
are increased mean diffusivity (MD) and reduced frac-
tional anisotropy (FA). DTI studies have shown consist-
ently reduced FA in the corticospinal tract (CST) and
corpus callosum of ALS patients, particularly within the
posterior limb of the internal capsule (PLIC) [90, 91].
Targeted FA measurement at the PLIC may provide
prognostic information [92]. Many DTI studies showed
that decreased CST FA in ALS patients was correlated
with disease severity and rate of disease progression,
along with clinical and electrophysiological measures of
UMN degeneration, but paradoxically higher CST FA
values were reported in two studies. Increased MD of
the CST was associated with longer disease duration
[93]. A meta-analysis has demonstrated the independent
prognostic value of CST FA [90]. DTI studies that
employed a voxel-wise approach also demonstrated a de-
crease of FA values in regions outside the ‘classical’
motor network [93, 94].

Functional MRI
Blood oxygenation level-dependent (BOLD) functional
MRI (fMRI) studies of motor tasks in ALS patients is

unique in its ability to study cerebral activity noninva-
sively, confirming the widened region of activation ob-
served in PET studies. More recently, it is the study of
the ‘resting state’ that shows multisystem involvement of
cognitive, emotional and sensory processing pathways in
ALS, suggesting novel insight into ALS as a ‘system fail-
ure’. Resting-state fMRI (R-fMRI) has shown increased
functional connectivity within the damaged ALS cortical
network, with possible implications in relation to cor-
tical inhibitory influences [95, 96]. The combination of
structural and functional MRI measures holds major
promise for more sensitive biomarker panels in ALS,
providing much better separation of ALS phenotypes
from healthy age-matched controls [95].

Magnetic resonance spectroscopy
Magnetic resonance spectroscopy (MRS) is an applica-
tion of MRI that permits the noninvasive quantification
of cerebral tissue metabolites. N-acetylaspartate (NAA),
total creatine (Cr) and total choline (Cho) have been
mostly studied due to their simple (singlet) spectral pat-
terns and relatively high concentrations in the CNS. It
has consistently demonstrated reduced NAA ratios (a
non-specific marker of neuronal loss) in the motor cor-
tex of ALS patients, and high-field studies also suggest a
specific loss of GABA-ergic influence [97]. Metabolite
changes have also been found in the brainstem of ALS
patients [98, 99]. MRS studies have found decreased
NAA:Cho in nonmotor regions, including the thalamus
and basal ganglia [100], mid-cingulate cortex [101] and
the frontal and parietal lobes [102] of patients with
ALS.Longitudinal MRS studies have reported continued
reduction in NAA:Cho and NAA in the primary motor
cortex (PMC) of ALS patients during follow-up periods,
with a correlation between changes in PMC NAA:Cho
and progression rate [98].

Spinal cord MRI
The ‘dying-back’ theory of ALS suggests that early de-
generation is more likely to be captured at the spinal an-
terior horn rather than the brain [103]. Patients with
ALS have been shown to have increased radial diffusivity
and considerably reduced FA in the spinal cord, particu-
larly in the distal cervical cord. Particularly, FA values
correlated with disability, and focal atrophy of the spinal
cord correlated with muscle deficits [104, 105]. Longitu-
dinal reductions in cord FA and elevation in cord MD
have been shown in ALS patients after a mean follow-up
of 9 months [106]. Reduced NAA:Cr and NAA:myo-in-
ositol ratios have been reported in the cervical cord in
ALS patients [107, 108] and in presymptomatic carriers
of SOD1 mutations [109], raising the potential for
screening and early detection.
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Conclusions
Multiple methodological advancements have led to the
discovery of various biomarkers for ALS. Importantly,
many biomarkers are emerging with the potential to refine
the diagnosis, stratify patients prognostically, and facilitate
therapeutic development. They also have provided mech-
anistic insights, since it seems likely that there are mul-
tiple, possibly more discrete, pathways converging on
motor neuron degeneration. Each class of biomarker re-
quires continued development. A key aim for further bio-
marker development is the combination of different
classes to create a ‘signature’ applicable to the range of
phenotypes, and which can provide quantifiable evidence
of efficacy in future therapeutic trials and successful trans-
lation to the clinical setting. Future longitudinal study
with a large group of patients in several disease pheno-
types will be required to validate a panel of biomarkers
that could be easily incorporated into the routine clinical
evaluation of patients with suspected ALS. Combination
of measurements in biofluids or tissues with advanced
technologies in neurophysiology and neuroimaging will
increase sensitivity and accuracy for acute diagnosis and
analyzing ALS disease progression and prognosis.
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