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1 Introduction

For several years, dualities have became a well established instrument to study fundamental

aspects of string theory and the corresponding low energy effective field theories. Hence,

it is not a surprise that there is a growing interest in a theory called Double Field The-

ory (DFT) [2–9] which makes abelian T-duality a manifest symmetry in the low energy

description of closed string theory. To this end, it seizes the idea [2, 10–13] to double the co-

ordinates of the target space. Adding D additional dual coordinates allows to take winding

excitations of the closed string on a compact background into account. Exchanging wind-

ing and momentum excitations is the mechanism underpinning T-duality on a torus and

thus the doubled target space of DFT permits to capture this mechanism through a global

O(D,D) symmetry. The doubling of the coordinates can be also viewed as introducing

D left-moving and D right-moving closed string coordinates, where the ordinary and dual

coordinates are just the sums and the differences of left- and right-moving coordinates.

However, there are still conceptual questions about the current status of DFT. They

are mainly triggered by the strong constraint which is required for a consistent low energy

formulation. The strong constraint is a consequence of the toroidal background used in
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the original derivation [3] and it states that winding and momentum excitations in the

same direction are not allowed. Violating the strong constraint, it is impossible to choose

a torus radius in the corresponding direction to make all fields much lighter than the

string scale. Either momentum or winding modes are heavier than the first massive string

excitations and spoil a consistent truncation. On the other hand, applying the strong

constraint identifies DFT with the well studied NS/NS sector of SUGRA. Thus, except

for an effective rewriting, it does not give any new physical insights. Moreover, such a

rewriting is also available in terms of Hitchin’s generalized complex geometry [14, 15] which

is an appropriate replacement for DFT in this case. The situation is more intriguing, but

unfortunately also more speculative, if one weakens the strong constraint. In this case

so called non-geometric backgrounds [12, 13, 16, 17] arise. They are partly inspired by

generalized Scherk-Schwarz compactifications which give rise to gauged supergravities not

accessible by flux compactifications from the SUGRA regime [11, 18–23]. Some of these

backgrounds have an uplift to string theory in terms of left-right asymmetric orbifold

constructions [11, 23–25], but in general their fate is unknown.

In order to improve this situation three of the authors proposed an alternative theory

with a doubled coordinate space called DFTWZW [1]. It originates from tree-level Closed

String Field Theory (CSFT) calculations up to cubic order in the fields and leading order

of α′ on a group manifold.1 This theory is governed by a Wess-Zumino-Witten model

on the worldsheet. In DFTWZW the doubling of the coordinates basically refers to the

left- and right-moving currents of the WZW model on a group manifold. Interestingly, it

turned out that this theory does not reproduce all results known from original DFT: the

strong constraint, the gauge transformations and the action receive corrections from the

non-trivial string background. Furthermore, the closure of the gauge algebra only requires

the strong constraint for fluctuations, whereas the weaker closure constraint is sufficient for

the background fields. In this way, one can obtain a consistent tree-level description of non-

geometric backgrounds. All these properties suggest that DFTWZW should be considered

as a generalization of original DFT. However, a direct comparison between the two at cubic

level seems to be impossible. Therefore, in this paper we derive the full generalized metric

formulation of the theory. Let us summarize our results in the following.

The resulting action to all orders in the fields reads

S =

∫
dX2De−2dR , (1.1)

where d denotes the generalized dilaton and R represents the generalized curvature scalar

R = 4HIJ∇I∇Jd−∇I∇JHIJ − 4HIJ∇Id∇Jd+ 4∇Id∇JHIJ

+
1

8
HKL∇KHIJ∇LHIJ −

1

2
HIJ∇JHKL∇LHIK +

1

6
FIKLFJ

KLHIJ
(1.2)

of DFTWZW. It incorporates the generalized metric HIJ , the covariant derivative

∇IV J = ∂IV
J + ΓIK

JV K (1.3)

1Previous works on duality manifest actions on group manifolds include [26].
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and the structure coefficients FIJK of the group manifold. Both the connection appearing

in the covariant derivative and the structure coefficients are determined entirely by the

background. In this sense, the theory presented here is manifestly background dependent.

As we will discuss in section 5, this is not a contradiction in being a generalization of DFT

which is background independent once the strong constraint is invoked. We show that the

proposed action (1.1) is invariant under the generalized diffeomorphisms

δξHIJ = LξHIJ = λK∇KHIJ + (∇IλK −∇KλI)HKJ + (∇JλK −∇KλJ)HIK

δξd = Lξd = ξI∇Id−
1

2
∇IξI , (1.4)

where Lξ denotes the generalized Lie derivative of the theory. In all calculations, we assume

the strong constraint

∇I∂I · = 0 (1.5)

to be fulfilled for the generalized dilaton d, the generalized metric HAB, the parameter ξA

of the generalized Lie derivative and arbitrary products of them. The strong constraint

only applies to quantities in flat indices. To switch between curved and flat indices the

generalized vielbein EA
I of the background is used. Additionally, we also apply the Jacobi

identity

FIJ
MFMK

L + FKI
MFMJ

L + FJK
MFMI

L = 0 (1.6)

for the structure coefficients of the background. Besides generalized diffeomorphisms, (1.1)

is manifestly invariant under 2D-diffeomorphisms

δξEA
I = LξEA

I = ξJ∂JEA
I − EAJ∂JξI , (1.7)

δξe
−2d = Lξe

−2d = ξP δP e
−2d + e−2d∂Iξ

I , (1.8)

with Lξ denoting the ordinary Lie derivative. In view of this, DFTWZW seems to imple-

ment a non-trivial extension of the DFT gauge algebra as proposed by Cederwall [27, 28].

Still, there exists an important difference. Whereas Cederwall considered only torsionless

covariant derivatives, the covariant derivative (1.3) exhibits a torsionful connection.

One of the objectives of this paper is to clarify the relation between background de-

pendent DFTWZW and original DFT. We will succeed to identify DFTWZW with the gener-

alized metric formulation of DFT [29] under two special assumptions: first, a distinguished

generalized vielbein which fulfills the strong constraint of DFT is required and second an

extended strong constraint

∂Ib ∂
If = 0 , (1.9)

linking background fields b and fluctuations f , has to be imposed. It is important to

note that this constraint is totally optional in the framework of our theory. Hence, it is

reasonable to suspect that there exist valid field configurations in DFTWZW that go beyond

DFT. This statement even holds, if the background group manifold is purely geometric or

T-dual to a geometric one. Identifying the two theories under the assumptions mentioned

above, we confirm the background independence of DFT suggested in [5]. This background
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independence is a result of the very restrictive strong constraint in DFT which renders it

equivalent to SUGRA.

The organization of this paper follows the outline given in the last paragraph. After

a short review of the DFTWZW cubic action and the required notation, section 2 presents

the generalized metric formulation of the action and its gauge transformations. Section 3

discusses the equations of motion of this action. Further, it derives the generalized curva-

ture scalar and the generalized Ricci tensor. In section 4, we prove the invariance of the

action under generalized diffeomorphisms and 2D-diffeomorphisms. At last, we show the

equivalence of our theory and original DFT in section 5. A small outlook, discussing the

potential and possible applications of DFTWZW concludes the paper in section 6.

2 Generalized metric formulation

Starting from the results derived in [1], we derive the generalized metric formulation of

the DFTWZW action in this section. As a preliminary, subsection 2.1 reviews the most

important aspects of the cubic action derived in [1] and introduces the required notation.

Although already discussed in [1], we shortly present the gauge transformations and the

C-bracket governing the gauge algebra in subsection 2.2 before discussing the new results

for action in subsection 2.3.

2.1 Review of cubic action and notation

The cubic action and gauge transformations were derived at the leading order of α′ from

CSFT in [1]. The starting point are fields εab̄ that can be considered as fluctuations around

the WZW background. The indices a and b̄ refer to the adjoint representation of the

corresponding group GL×GR. In addition we also introduce gauge parameters λa and λā.

In contrast to the toroidal case, one does not consider momentum and winding modes but

one considers different representations R = (rL, rR) of GL ×GR. Here, we do not use the

form stated in [1], but instead perform the field redefinition

εab̄ → −2εab̄ , λa → 2λa and λā → 2λā (2.1)

giving rise to

(2κ2)S =

∫
d2DX

√
|H|

[
εab̄�ε

ab̄ + (Db̄εab̄)
2 + (Daεab̄)

2 + 4d̃ DaDb̄εab̄ − 4d̃�d̃

− 2εab̄
(
Daεcd̄D

b̄εcd̄ −Daεcd̄D
d̄εcb̄ −Dcεad̄Db̄εcd̄

)
+ 2εab̄

(
F acdD

ēεdb̄ εcē + F b̄c̄d̄D
eεad̄ εec̄

)
+

2

3
F ace F b̄d̄f̄ εab̄ εcd̄ εef̄

+ d̃
(
2(Daεab̄)

2+2(Db̄εab̄)
2+(Dcεab̄)

2+(Dc̄εab̄)
2+4εab̄(DaD

cεcb̄+Db̄D
c̄εac̄)

)
− 8εab̄ d̃ D

aDb̄d̃+ 4d̃2 �d̃
]

(2.2)

with the abbreviation

� =
1

2
(DaD

a +DāD
ā) (2.3)
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and the corresponding gauge transformations

δλε
ab̄ =−Db̄λa +Daλcε

cb̄ −Dcλ
aεcb̄ + λcDcε

ab̄ + F acd λ
cεdb̄

−Daλb̄ +Db̄λc̄ε
ac̄ −Dc̄λ

b̄εac̄ + λc̄Dc̄ε
ab̄ + F b̄c̄d̄λ

c̄ εad̄ ,

δλd̃ =− 1

2
Daλ

a + λaD
ad̃− 1

2
Dāλ

ā + λāD
ād̃ .

(2.4)

Besides, further rescaling in the definitions given later in this subsection, this field re-

definition helps to get rid of a 1/2 factor which arises in [1] between the DFT and the

DFTWZW results. To allow a clear distinction between background fields and fluctuations,

we have changed the notation of [1]. Now, d̃ denotes fluctuations of the generalized dilaton

d = d̄ + d̃ which combines the background field d̄ and the fluctuations. As a consequence

of level-matching in closed string theory, the fields εab̄, d̃ and the gauge parameters λa and

λā have to fulfill the strong constraint

(DaD
a −DāD

ā)· = 0 , (2.5)

where · not only denotes the mentioned field but also arbitrary products of them.

On the world sheet, the theory is governed by a CFT with two independent, a chiral

(left mover) and an anti-chiral (right mover), Kač-Moody current algebras. The structure

coefficients of their central extensions gL × gR are denoted by Fab
c and Fāb̄

c̄. Bared and

unbared indices allow to distinguish between the algebras for the left and right moving

part of the closed string. These indices run from 1 . . . D, the dimension of the group

manifold used as background. The integration in (2.2) is performed over a product manifold

combining the Lie groups GL ×GR associated to the Lie algebras gL × gR. This manifold

is parameterized by the 2D coordinates XI = (xi xī) and is equipped with the metric

SAB = 2

(
ηab 0

0 ηāb̄

)
and its inverse SAB =

1

2

(
ηab 0

0 ηāb̄

)
(2.6)

in flat indices. It combines the killing metrics ηab / ηāb̄ of the Lie algebras gL / gR which

are used to lower flat indices. Moreover, it is very convenient to introduce the vielbein

EA
I =

(
ea
i 0

0 eā
ī

)
and its inverse transposed EAI =

(
eai 0

0 eāī

)
(2.7)

in order to switch between flat and curved indices. Applying it on the partial derivatives

∂I = (∂i ∂ī) of the background manifold GL×GR, it gives rise to the doubled flat derivative

DA = EA
I∂I = (Da Dā) . (2.8)

Finally HIJ , whose determinante H is used in (2.2), is defined as the curved version

HIJ = EAISABE
B
J (2.9)

of SAB. As a consequence of the rescaled flat metric SAB, HIJ differs by a factor 2 from

the definition in [1]. To keep the action integral (2.2) invariant, one has to perform the
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compensating change of variables XI → XI/
√

2. Besides the background metric SAB in

flat indices, it is convenient to introduce the metric

ηAB = 2

(
ηab 0

0 −ηāb̄

)
and its inverse ηAB =

1

2

(
ηab 0

0 −ηāb̄

)
(2.10)

to lower and raise doubled indices. In combination with the doubled flat derivative (2.8),

it e.g. allows to express the strong constraint (2.5) in the compact form

ηABDADB · = DAD
A · = 0 . (2.11)

2.2 Gauge transformations

Switching from the notation with bared and unbared indices to doubled indices, generally

simplifies the equations in DFTWZW a lot. In this respect, the strong constraint (2.11) is a

toy example. More drastic is the effect on the gauge transformations (2.4). In order to ex-

press them in doubled notation, we follow [1] and introduce the symmetric, O(D,D) matrix

HAB = exp(εAB) = SAB + εAB +
1

2
εACSCDε

DB +
1

6
εACSCDε

DESEF ε
FB + . . . , (2.12)

called generalized metric. It is generated by

εAB =

(
0 εab̄

εāb 0

)
with εab̄ = (εT )b̄a , (2.13)

which embeds the fluctuations εab̄ into a tensor with doubled indices. Furthermore, we

define the flat covariant derivatives

∇AV B = DAV
B +

1

3
FBACV

C and ∇AVB = DAVB +
1

3
FBA

CVC , (2.14)

where

FAB
C =


Fab

c

Fāb̄
c̄

0 otherwise

(2.15)

combines the structure coefficients defining the Kač-Moody algebras for the strings left and

right moving parts. At this point, let us recall the conventions from [1]: DA, FAB
C and

ξA are considered as “fundamental” objects, meaning their bared and unbared components

do not receive additional minus signs or prefactors. From these quantities all others are

derived by raising/lowering the doubled indices with the η-metric. A simple example is

ξA = (ξa ξā) and ξA = ξBηBA = (2ξa − 2ξā) . (2.16)

Now, we expand the generalized metric (2.12) into components

HAB =

(
1
2η

ab + εac̄ηc̄d̄ε
d̄b εab̄ + 2

3ε
ac̄ηc̄d̄ε

d̄eηef ε
fb̄

εāb + 2
3ε
ācηcdε

dēηēf̄ ε
f̄ b 1

2η
āb̄ + εācηcdε

db̄

)
+O(ε4) (2.17)

– 6 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
6

up to cubic order in the fields. Plugging this expansion into

δξHAB = LξHAB = λC∇CHAB + (∇AλC −∇CλA)HCB + (∇BλC −∇CλB)HAC

δξd̃ = Lξd̃ = ξADAd̃−
1

2
DAξ

A , (2.18)

one recovers the gauge transformations (2.4) up to additional terms which are not linear

in the field or the gauge parameter. The same holds for the C-bracket

[ξ1, ξ2]AC = ξB1 ∇BξA2 −
1

2
ξB1 ∇A ξ2B − (1↔ 2) . (2.19)

2.3 Action

In this subsection, we rewrite the action (2.2) in terms of the generalized metric. The

guiding principle is inspired by the results for the gauge transformations and the C-bracket

discussed in the last subsection: in the expressions known from traditional DFT, one has

to substitute partial derivatives by covariant derivatives (2.14). Taking into account the

original DFT action in the generalized metric formulation [29] and following this principle,

the action should read

S =

∫
d2nXe−2d

(
1

8
HCD∇CHAB∇DHAB −

1

2
HAB∇BHCD∇DHAC

− 2∇Ad∇BHAB + 4HAB∇Ad∇Bd
)
. (2.20)

Subsequently, we prove that, up to cubic terms in the fields, this action indeed repro-

duces (2.2) up to a missing term that has to be added to (2.20). To keep this straightforward

though cumbersome calculation as traceable as possible, we begin with terms containing

two flat derivatives like e.g.

e−2d 1

8
HCDDCHABDDHAB. (2.21)

We further simplify the calculation by first considering the term

1

8
SCDDCHABDDHAB, (2.22)

which gives rise to

1

8
SCDDCHABDDHAB = −1

2

(
Dcεab̄D

cεab̄ +Dc̄εab̄D
c̄εab̄
)

+O(ε4)

= εab̄�ε
ab̄ − εab̄Dcd̃D

cεab̄ − εab̄Dc̄d̃D
c̄εab̄ +O(ε4) , (2.23)

after plugging in the components of SAB and HAB, according to (2.6) and (2.17). From

the first to the second line in (2.23), we perform integration by parts by applying the rule∫
d2nXe−2duDav = −

∫
d2n
√
|H|e−2d̃(−2uDad̃+Dau)v

=

∫
d2nXe−2d(2uDad̃−Dau)v . (2.24)
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It automatically arises, if one splits the generalized dilaton

d = d̄+ d̃ = −1

2
log
√
|H|+ d̃ (2.25)

into the background part d̄ and the fluctuations d̃ around this background. Performing

integrations by parts again and dropping the terms in quartic order in the fields, we obtain

1

8
SCDDCHABDDHAB = εab̄�ε

ab̄+d̃
(
Dcεab̄

)2
+d̃
(
Dc̄εab̄

)2
+2d̃ εab̄�ε

ab̄+O(ε4) +O(d̃2ε2) .

(2.26)

Now, it is straightforward to read off the remaining terms of (2.21), namely

e−2d 1

8
HCDDCHABDDHAB =

√
H
[
εab̄�ε

ab̄ − 2εcd̄Dcεab̄Dd̄ε
ab̄ + d̃

(
Dcεab̄

)2
+ d̃
(
Dc̄εab̄

)2]
.

(2.27)

Here and in the following, O(. . . ) is suppressed for brevity. The last term in (2.26) cancels

against a term arising in the expansion of

e−2d =
√
|H|
(
1− 2d̃+ 2d̃2 + . . .

)
. (2.28)

Next, we turn to the term

− 1

2
HABDBHCDDDHAC (2.29)

for which the calculations are more cumbersome. Using the commutation relations for flat

derivatives

[Da, Db] = Fab
cDc , [Dā, Db̄] = Fāb̄

c̄Dc̄ (2.30)

and performing integration by parts, we finally obtain the result

−e−2d 1

2
HABDBHCDDDHAC =

√
|H|
[(
Daeab̄

)2
+
(
Db̄eab̄

)2
−
(
Fd

acDcε
db̄εab̄ + Fd̄

āc̄Dc̄ε
bd̄εbā

)(
1− 2d̃

)
+ 2d̃ εab̄DaD

cεcb̄ − 2d̃DaD
cεab̄εcb̄ − 2d̃Dcεab̄Daεcb̄

+ 2d̃ εab̄Db̄D
c̄εac̄ − 2d̃Db̄D

c̄εab̄εac̄ − 2d̃Dc̄εab̄Db̄εac̄

+ 2εab̄
(
Daεcd̄D

d̄εcb̄ +Dcεad̄Db̄εcd̄
)]
. (2.31)

All remaining terms in the action (2.20) contain covariant derivatives acting on the gen-

eralized dilaton d. Its background part d̄ is covariantly constant and the fluctuations d̃

transform like a scalar. Thus, we are able to identify

∇Ad = DAd̃ . (2.32)

In combination with the expansion (2.17) of HAB, this identity gives rise to

4HABDAd̃DB d̃ = 2Dad̃D
ad̃+ 2Dād̃D

ād̃+ 8εab̄Dad̃Db̄d̃ . (2.33)

Taking into account the prefactor e−2d, we obtain

e−2d4HABDAd̃DB d̃ =
√
|H|
[
− 4d̃�d̃+ 8εab̄Dad̃Db̄d̃+ 4d̃2�d̃

]
, (2.34)
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where we applied the relation
√
H4d̃2�d =

√
H
(
− 4d̃Dad̃D

ad̃− 4d̃Dād̃D
ād̃
)
. (2.35)

The last term in (2.20), which contains two flat derivatives, gives rise to

−e−2d2DAd̃DBHAB =
√
|H|
[
4d̃DaDb̄ε

ab̄ − 8εab̄Dad̃Db̄d̃− 8d̃εab̄DaDb̄d̃

+ 2d̃
(
Daεab̄

)2
+ 2d̃

(
Db̄εab̄

)2
+ 2d̃εab̄DaD

cεab̄ + 2d̃εab̄Db̄D
c̄εac̄

+ 2d̃Dcεab̄Daεcb̄ + 2d̃Dc̄εab̄Db̄εac̄ + 2d̃DaD
cεab̄εcb̄

+ 2d̃
(
Db̄D

c̄εab̄
)
εac̄

]
. (2.36)

Now, we are done with all terms required for the abelian case FABC = 0. Hence, it is a

convenient check of the results obtained so far to write down the complete abelian action

S|FABC=0 =

∫
d2nX

√
|H|
[
εab̄�ε

ab̄ +
(
Daeab̄

)2
+
(
Db̄eab̄

)2
+ 4d̃DaDb̄ε

ab̄ − 4d̃�d̃

− 2εab̄
(
Daεcd̄Db̄ε

cd̄ −Daεcd̄D
d̄εcb̄ −Dcεad̄Db̄εcd̄

)
+ d̃
(

2
(
Daeab̄

)2
+2
(
Db̄eab̄

)2
+
(
Dcεab̄

)2
+
(
Dc̄εab̄

)2
+4εab̄

(
DaD

cεab̄+Db̄D
c̄εac̄
))

+ 4d̃2�d̃− 8d̃εab̄DaDb̄d̃
]
. (2.37)

It indeed matches with the action (2.2) after dropping all terms depending on the structure

coefficients Fabc and Fāb̄c̄.

Let us now consider these terms so that we have to consider the full covariant derivative

instead of only using its flat derivative part. Let us start with

−2∇Ad∇BHAB = −DAd̃

(
DBHAB +

1

3

(
FABCHCB + FBBCHAC

))
= −DAd̃DBHAB , (2.38)

where the second term in the first line vanishes due the total antisymmetry of FABC and

the symmetry of HAB. The third term is zero due to the unimodularity condition

FAAB = 0 , (2.39)

which the structure coefficients have to fulfill [1]. At this point, we come to the more

challenging part

1

8
HCD∇CHAB∇DHAB −

1

2
HAB∇BHCD∇DHAC . (2.40)

In the subsequent computation, we ignore all terms which contain more than one flat

derivative, because we already discussed these contributions above. The first part of (2.40)

gives rise to

1

8
HCD∇CHAB∇DHAB =

1

12
HCDDCHABFADEHEB +

1

12
HCDFACFHFBDDHAB

+
1

36
HCDFACFHFBFADEHEB +

1

36
HCDFACFHFBFBDEHAE +O(D2),

(2.41)
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where the second term on the right hand side is equivalent to

HCDFACFHFBDDHAB = HCDFADEHEBDCHAB , (2.42)

after using the symmetry of HAB and relabeling the indices. For the fourth term, we use

the total antisymmetry of the structure coefficients to yield

HCDFACFHFBFBDEHAE = −FACEFBDFHABHCDHEF . (2.43)

Applying these two substitutions, (2.41) simplifies to

1

8
HCD∇CHAB∇DHAB =

1

6
HCDDCHABFADEHEB +

1

36
HCDFACFFADEHFBHEB

− 1

36
FACEFBDFHABHCDHEF +O(D2) . (2.44)

For the second part of (2.41), we obtain in a similar fashion

−1

2
HAB∇BHCD∇DHAC =

1

3
HCDDCHABFADEHEB −

1

6
HABDBHCDFCDEHAE

− 1

6
HABFDBEHCEDDHAC −

1

18
FACEFBDFHABHCDHEF

+
1

18
HCDFACFFADEHFBHEB +O(D2) . (2.45)

After combining these results, we finally get

e−2d

[
1

8
HCD∇CHAB∇DHAB −

1

2
HAB∇BHCD∇DHAC

]
=
√
|H|
[
2εab̄

(
F acdD

ēεdb̄εcē + F b̄c̄d̄D
eεad̄εec̄

)
+

2

3
FaceFb̄d̄f̄ ε

ab̄εcd̄εef̄

− 1

6

(
F acdFb

cdεaēε
bē + F āc̄d̄Fb̄

c̄d̄εeāε
eb̄
)(

1− 2d̃
)

+O(D2)

]
. (2.46)

The first line on the right hand side exactly reproduces the structure coefficients dependent

terms in the cubic action (2.2), but the second line has to be canceled to successfully

reproduce the action. Achieving this is done by adding the term

1

6
FACEFBDFHABηCDηEF + V0 =

1

6

(
F acdFb

cdεaēε
bē + F āc̄d̄Fb̄

c̄d̄εeāε
eb̄
)

(2.47)

with

V0 = −1

6
FACEFBDFS

ABSCDSEF

= −1

4
FACEFBDFS

ABηCDηEF +
1

12
FACEFBDFS

ABSCDSEF (2.48)

to the naive action (2.20). To obtain the second line in the expression for V0, we applied

the identity

FACEFBDFS
CDSEF = FACEFBDF η

CDηEF (2.49)
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which holds due to the strict separation of bared and unbared structure coefficients (2.15).

Substituting the structure coefficients FABC by the covariant fluxes FABC , V0 matches the

vacuum expectation value of the scalar potential arising from generalized Scherk-Schwarz

compactifications [19, 30]. Note that even though we do not impose the strong constraint

on the background, V0 lacks the 1/6FABCF
ABC introduced by hand in the flux formula-

tion [20, 31] in order to reproduce the scalar potential of half-maximal, electrically gauge

supergravities [32]. If we consider the full 2D-dimensional doubled space time instead

of only its 2n-dimensional compact subspace, V0 has to vanish for each background which

gives rise to a well defined CFT. Otherwise the combined central charge of the ghost system

and the bosons would not vanish.

We close this section with the complete action of DFTWZW

S =

∫
d2DXe−2d

(
1

8
HCD∇CHAB∇DHAB −

1

2
HAB∇BHCD∇DHAC

− 2∇Ad∇BHAB + 4HAB∇Ad∇Bd+
1

6
FACDFB

CDHAB
)
,

(2.50)

in the generalized metric formulation. For obtaining the action in curved indices, one has

to remember the vielbein compatibility condition ∇IEAJ = 0 of the covariant derivative.

Due to this condition it is legitimate to simply substitute all flat indices with curved ones.

3 Equations of motion

After deriving the full action of DFTWZW in the last section, we now discuss its equations

of motion. It is convenient to split them into two independent parts. First, we present the

variation of the action (2.50) with respect to the generalized dilaton d in subsection 3.1.

It gives rise to the generalized curvature scalar R. Furthermore, we show how the action

can be rewritten in terms of this scalar. In the second step, we perform the variation with

respect to the generalized metric HAB in subsection 3.2. Just as in the generalized metric

formulation of DFT [29], we have to apply an appropriate projection, taking into account

the O(D,D) property of the generalized metric, to obtain the generalized Ricci tensor RIJ .

3.1 Generalized curvature scalar

Following [29], we define the generalized scalar curvatureR of DFTWZW using the variation

of the action (2.50)

δS = −2

∫
d2DX e−2dR δd, (3.1)

with respect to the generalized dilaton d. A straightforward calculation gives rise to

R = 4HAB∇A∇Bd−∇A∇BHAB − 4HAB∇Ad∇Bd+ 4∇Ad∇BHAB

+
1

8
HCD∇CHAB∇DHAB −

1

2
HAB∇BHCD∇DHAC +

1

6
FACDFB

CDHAB .
(3.2)

In order to prove the invariance of the action (2.50) under generalized diffeomorphisms in

the next section, it is very convenient to express it in the form

S =

∫
d2DX e−2dR . (3.3)
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To this end, we rewrite (2.50) as

S =

∫
d2DX e−2dR+

∫
d2DX

√
|H|DA

[
e−2d̃

(
∇BHAB − 4HAB∇Bd

)]
, (3.4)

where the last term is a vanishing boundary term. Due to the compatibility of the covari-

ant derivative with the generalized vielbein, it is trivial to express the generalized scalar

curvature in curved instead of flat indices. One only has to relabel the indices to obtain the

desired result (1.2) stated in the introduction. The generalized dilaton part of the equation

of motion reads

R = 0 . (3.5)

3.2 Generalized Ricci tensor

Now, we consider the variation of the action (2.50) with respect to the generalized metric

HAB. In analogy to (3.1), we consider

δS =

∫
d2DX e−2d δHAB KAB . (3.6)

As discussed in [29], the variation δHAB is symmetric and thus it is sufficient to study

the symmetric part of KAB only. Performing the variation explicitly and afterwards sym-

metrizing KAB gives rise to

KAB =
1

8
∇AHCD∇BHCD −

1

4

[
∇C − 2(∇Cd)

]
HCD∇DHAB + 2∇(A∇B)d (3.7)

−∇(AHCD∇DHB)C +
[
∇D − 2(∇Dd)

][
HCD∇(AHB)C +HC (A∇CHDB)

]
+

1

6
FACDFB

CD.

Furthermore, the O(D,D) constraint

HACηCDHDB = ηAB (3.8)

has to be preserved under the variation [29]. This implies that only a certain projection

of KAB gives rise to the equations of motion. Hence, it is necessary to introduce the

projection operators

PAB =
1

2

(
ηAB − SAB

)
and P̄AB =

1

2

(
ηAB + SAB

)
, (3.9)

which are used to define the generalized Ricci tensor

RAB = 2P(A
C P̄ D

B) KCD . (3.10)

This projection cancels the term in the last line of (3.7). Thus, we find a generalized Ricci

tensor whose structure matches the one of toroidal DFT. However, all partial derivatives

have to be replaced with covariant ones.
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4 Local symmetries

The CSFT derivation of DFTWZW in [1] was very challenging. The recasting of the action

and the gauge transformations in section 2 is a good, first indication that everything is

consistent: all the different terms with bared and unbared indices integrate nicely into

doubled objects. However, a much more important consistency check is the invariance of

the action (2.50) under the gauge transformations (2.18). If all previous calculations were

performed correctly, the CSFT framework guarantees this invariance up to cubic order in

the fields. As we will show in subsection 4.1, it even holds to all higher orders introduced

by the generalized metric formulation. Besides generalized diffeomorphism invariance, the

action is also manifestly invariant under 2D-diffeomorphisms, as we prove in subsection 4.2.

4.1 Generalized diffeomorphisms

It does not matter whether one proves the invariance under gauge transformations for

the action (2.50) or (3.3). Both only differ by a vanishing total derivative. We choose

the latter one, with the generalized curvature scalar R. Proving its invariance, requires

two step: first, we show that R transforms as a scalar under generalized diffeomorphisms.

Second, we consider the remaining term e−2d and show that it transforms as a weight +1

scalar density.

In order to show that the generalized curvature (3.2) is a scalar under generalized diffeo-

morphisms, we have to compare its transformation behavior under gauge transformations

with the results we expect from generalized diffeomorphisms mediated by the generalized

Lie derivative. The failure of a quantity V to transform covariantly under generalized

diffeomorphisms reads

∆ξV = δξV − LξV, (4.1)

where Lξ is the generalized Lie derivative

LξV A = ξB∇BV A +
(
∇AξB −∇BξA

)
V B, (4.2)

with the usual generalization to higher rank tensors. δξ denotes the gauge transforma-

tions (2.18) discussed in section 2.2. From the definition (4.1), it is obvious that

∆ξHAB = 0 and ∆ξd̃ = 0 (4.3)

hold. Furthermore, ∆ξ is linear and fulfills the product rule

∆ξ

(
VW

)
=
(
∆ξV

)
W + V

(
∆ξW

)
. (4.4)

Please note that the gauge transformations δξ act on the fields HAB and d̃ only, whereas

the generalized Lie derivative Lξ acts on the full tensorial structure. As an instructive

example take e.g.

∆ξ

(
DAHBC

)
= δξ

(
DAHBC

)
− Lξ

(
DAHBC

)
= DA

(
LξHBC

)
− Lξ

(
DAHBC

)
. (4.5)
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We now calculate ∆ξ for all sub-terms appearing in the generalized curvature

scalar (3.2). Finally, we combine these results, using the product rule and the linearity of

∆ξ to compute ∆ξR. We begin with

∆ξ

(
∇Ad

)
= ∆ξ

(
DAd̃

)
= −1

2
DA

(
DDξ

D
)
, (4.6)

and since

HMN∇M∇Nd = HMNDMDN d̃ (4.7)

holds, we only need to consider

∆ξ

(
DADB d̃

)
=
(
DADBξ

D
)
DDd̃−

1

2
DADB

(
DDξ

D
)

+ FBD
C
(
DAξ

D
)(
DC d̃

)
. (4.8)

Furthermore, we obtain

∆ξ

(
∇AHBC

)
= 2DAD

(BξDHC)D − 2DADDξ
(BHC)D +

2

3
F (B

AEH
C)D

(
DEξD −DDξ

E
)

+
4

3
F (B

DEHC)EDAξ
D +

2

3
F (B

DEHC)EDDξA

+
2

3
FDAE

(
DDξ

(B
)
HC)E − 2

3
FDAE

(
D(BξD

)
HC)E (4.9)

and

∆ξ

(
∇A∇BHAB

)
=

2

3
FACEF

E
BDξ

CDBHAD +
4

3
FACEF

E
BDHABDCξD − 1

3
FACEHABDBD

CξE

+
2

3
FACEξ

ADCDFHEF +
10

3
FACEHABDCDBξ

E + 2FACED
AξCDDHDE

+ FACED
AHDEDDξ

C − 2

3
FACEξ

ADDD
CHDE −DADBξ

CDCHAB

− 2DAHABDCDBξ
C − 2HABDCDADBξ

C +
2

27
FACEFBDFF

EDFHBCξA . (4.10)

On the right hand side, we canceled all terms of the form

FABC
(
DB ·

)(
DC ·

)
=
(
DB ·

)(
[DA, DB] ·

)
= 0 . (4.11)

They vanish due to the strong constraint (2.11). Combining these results, we are finally able

to calculate ∆ξ of the naive generalized Ricci scalar (3.2) without the 1/6FACDFB
CDHAB

term. It is denoted as R̃ and its failure to transform as a scalar under generalized diffeo-

morphisms reads

∆ξR̃ =
1

6

(
1

3
FAFHFCGIFE

HIηBD −
1

3
FACHFEFIFG

HIηBD

− FABHFCDFFEGH
)
HBCHDEHFGξA

+
1

3
FACDF

CD
EHABDBξ

E +
1

6
FACDF

CD
EHABDEξB

+
1

6

(
FIAGF

G
CD + FCIGF

G
AD + FACGF

G
ID

)
HBCHDEξADEHFI

+ FACDD
AξBD

CHBD − 1

2
FACDD

AHBDDBξ
C + FACDHABDDDCξB

− 1

2
FACDHABHEFDF ξ

DDCHBE +
1

2
FACDHABHEFDCξED

DHBF . (4.12)
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Here, we ordered the terms according to the number of derivatives. All terms with three

flat derivatives vanish in the same way as they do for toroidal DFT [29]. The third line

of (4.12) vanishes due to the Jacobi identity

FAB
EFEC

D + FCA
EFEB

D + FBC
EFEA

D = 0 . (4.13)

Additionally, one is able to rewrite the first line as

1

18
HABξG

(
FEA

PHPF + FFA
PHPE

)(
FB

J(EFGHJ + FG
J(EFHBJ + FH

J(EFBGJ

)
HF )H ,

(4.14)

showing that it is zero due to the Jacobi identity, too. Simplifying the remaining terms

in (4.12), we make use of the O(D,D) property

HABHBC = δA
C and following from it DDHABHBC = −HABDDHBC , (4.15)

which gives rise to

∆ξR̃ =
1

3
FACDF

CD
EHABDBξ

E +
1

6
FACDF

CD
EHABDEξB (4.16)

+
1

2
FACDD

AξBD
CHBD + FACDHABDDDCξB .

Further, due to the antisymmetry of the structure coefficients we identify

FACDHABDDDCξB =
1

2
FACDHAB

[
DD, DC

]
ξB =

1

2
FACDHABFDCEDEξB

= −1

2
FACDHABFCDEDEξB (4.17)

and obtain

∆ξR̃ =
1

3
FACDF

CD
EHABDBξ

E − 1

3
FACDF

CD
EHABDEξB +

1

2
FACDD

AξBD
CHBD .

(4.18)

The last term vanishes under the strong constraint (4.11) and

∆ξR̃ =
1

3
HABFACDFECD

(
DBξ

E −DEξB
)

(4.19)

remains. This non-vanishing failure of R̃ to transform like a scalar should be canceled by

the term

1

6
FACDFB

CDHAB (4.20)

that we have not taken into account yet. Indeed, ∆ξ applied on this term gives rise to

1

6
∆ξ

(
FACDFB

CDHAB
)

= −1

3
HABFACDFECD

(
DBξ

E −DEξB
)

(4.21)

after remembering δξFABC = 0 (gauge transformations act on fluctuations only, but not

on background fields [1]). Ultimately, we obtain the desired result

∆ξR = ∆ξR̃+
1

6
∆ξ

(
FACDFB

CDHAB
)

= 0 (4.22)

– 15 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
6

which proves that the generalized curvature scalar 3.2 is indeed a scalar under generalized

diffeomorphisms.

In addition to R, we have to check the transformation behavior of the factor e−2d in

the action (3.3). To this end, we first rewrite the generalized Lie derivative of the dilaton

fluctuations (2.18) in terms of covariant derivatives

Lξd̃ = ξA∇Ad̃−
1

2
∇AξA = ξADAd̃−

1

2
DAξ

A − 1

6
FAABξ

B , (4.23)

where the last term vanishes due to the unimodularity of the structure coefficients. Next,

we consider

δξe
−2d = −2e−2dδξd = −2e−2dLξd̃ , (4.24)

where we take into account that the background field d̄ is not affected by gauge trans-

formations. With Lξd̃ written in terms of covariant derivatives, it is trivial to switch to

curved indices. Doing so and plugging in (4.23), δξe
−2d reads

δξe
−2d = ξI∂Ie

−2d + e−2d(∇IξI + ξI2∂I d̄) = ξI∂Ie
−2d + e−2d(∇IξI − ΓJI

JξI)

= ξI∂Ie
−2d + e−2d∂Iξ

I (4.25)

after identifying

2∂I d̄ = −ΓJI
J (4.26)

as explained in [1]. Thus, we see that e−2d transforms like a scalar density with the weight

+1 and the integral over the product e−2dR, which is equivalent to the action, is invariant.

Besides the action, the generalized Lie derivative (4.2) transforms covariantly under

generalized diffeomorphisms. Indirectly, this property has already been proven by showing

the closure of the gauge algebra

[Lξ1 ,Lξ2 ]V A = L[ξ1,ξ2]CV
A (4.27)

in [1]. However to make it more explicit, we consider

∆ξLλV A = Lξ(LλV A)− LLξλV
A − Lλ(LξV A) = 0 . (4.28)

In combination with (4.27) it vanishes

∆ξLλV A = L[ξ,λ]CV
A − LLξλV

A = 0 (4.29)

after rewriting the C-bracket

[ξ, λ]AC = LξλA −
1

2
∇A(ξBλ

B) (4.30)

in terms of the generalized Lie derivative and the trivial gauge transformation

−1/2∇I(ξJλJ).
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4.2 2D-diffeomorphisms

Besides the generalized diffeomorphisms discussed in the previous subsection, one can

change the coordinates parameterizing the fields of DFTWZW through the standard Lie

derivative. This gives rise to 2D-diffeomorphisms under which the action (3.3) is even

manifestly invariant. In order to prove this claim, we follow very similar steps as in sub-

section 4.1. However, in this case we will not apply the strong constraint in any of the

following steps.

Again, we start by introducing the failure

∆ξV = δξV − LξV . (4.31)

of an arbitrary quantity V to transform covariantly. Here, we use the standard Lie deriva-

tive Lξ instead of the generalized Lie derivative. The transformation behavior of the

generalized vielbein EA
I and the generalized dilaton fluctuations d̃ is given by

δξEA
I = LξEA

I = ξJ∂JEA
I − EAJ∂JξI and (4.32)

δξd̃ = Lξd̃ = ξP δP d̃ . (4.33)

From these two equations, we see that EA
I transforms as a vector and d̃ as a scalar under

2D-diffeomorphisms. Next, we check the failure

∆ξ

(
∇IV J

)
= ∆ξ

(
∂IV

J
)

+ ∆ξ

(
ΓJ IL

)
V L (4.34)

of the covariant derivative

∇IV J = ∂IV
J + ΓIK

JV K (4.35)

to transform as a covariant quantity. Being called a ‘covariant’ derivative, this failure

should vanish of course. We start by calculating the first term in (4.34) and obtain

∆ξ

(
∂IV

J
)

= −V K∂K∂Iξ
J . (4.36)

The second terms is a bit more challenging. In order to evaluate it, we need the definition

of the Christoffel symbols

ΓIJ
K = −1

3

(
2ΩIJ

K + ΩJI
K
)
, (4.37)

where ΩIJK denotes the coefficients of anholonomy

ΩIJK = EAIE
B
JE

C
KΩABC = −∂IEAJEAK (4.38)

in curved indices. With these definitions at hand, one obtains

∆ξΩIJ
K = −∂I∂JξK and finally ∆ξΓIJ

K = ∂I∂Jξ
K . (4.39)

Thus, (4.34) gives rise to the expected result

∆ξ

(
∇IV J

)
= −V K∂K∂Iξ

J + V K∂I∂Kξ
J = 0 (4.40)

and ∇I is indeed a covariant derivative under 2D-diffeomorphisms.
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Even though we have shown the vanishing ∆ξ of a covariant derivative applied on a

vector, this result generalizes to arbitrary tensors. Especially, the failures

∆ξ

(
∇IHJK

)
= 0 and ∆ξ

(
∇Id

)
= ∆ξ

(
∂I d̃
)

= 0 (4.41)

vanish. The last ingredient in the definition of the generalized curvature scalar (3.2) are

the structure coefficients FIJK . Fortunately, their failure to transform covariantly

∆ξFIJ
K = 2Ω[IJ ]

K = ∂[I∂J ]ξ
K = 0 (4.42)

vanishes, too. Applying the linearity and the product rule of ∆ξ, we immediately obtain

∆ξ

(
e−2d̃R

)
= 0, (4.43)

which proves that the product e−2d̃R transforms as a scalar under 2D-diffeomorphisms.

For the action (3.3) to be invariant, the remaining factor e−2d̄ has to transform as a weight

+1 scalar density. Indeed, we have

e−2d̄ =
√
|H| (4.44)

which exactly transforms in the right way. Hence, the DFTWZW action exhibits a manifest

2D-diffeomorphism invariance.

Containing covariant derivatives only, the generalized Lie derivative (4.2) transforms

covariantly, too. Hence, it fulfills

∆ξLλV A = 0 . (4.45)

Rewriting this equation, we obtain

∆ξLλV A = Lξ(LλV A)− LLξλV
A − Lλ(LξV

A) = 0 , (4.46)

giving rise to the algebra

[Lξ,Lλ]V A = LLξλV
A (4.47)

which links 2D-diffeomorphisms and generalized diffeomorphisms. Equipped with this al-

gebra, our theory implements an extension of the DFT gauge algebra proposed by Ced-

erwall [27, 28]. However, there are some important differences we would like to comment

on. Cederwall considered a covariant derivative without torsion on an arbitrary pseudo

Riemannian manifold in order to define a generalized Lie derivative formally matching the

one of DFTWZW. Applying the Bianchi identity without torsion

R[IJK]
L = 0 (4.48)

he shows in full generality that the gauge algebra closes. We consider a torsionful covariant

derivative on a group manifold, a very special case of a pseudo Riemannian manifold.

Interestingly, the Bianchi identity with torsion

R[IJK]
L+∇[IT

L
JK]−TM [IJT

L
K]M =

2

9

(
FIJ

MFMK
L+FKI

MFMJ
L+FJK

MFMI
L
)

= 0

(4.49)
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reproduces on the group manifold the Jacobi identity which we used to show the closure

of the DFTWZW gauge algebra and the invariance of the action under generalized diffeo-

morphisms. Thus, one is inclined to conjecture that the whole formalism presented here

is not limited to a group manifold as background but could hold for arbitrary pseudo

Riemannian manifolds.

5 Transition to original DFT

Assuming a geometric group manifold as background, in this section we study the connec-

tion between DFTWZW and the original formulation. A link between them was already

conjectured in [1], but no explicit calculation has been provided yet. Now, with the gen-

eralized metric formulation available, we prove that under an additional constraint both

theories can be identified. For that purpose, first we introduce a distinguished generalized

vielbein in subsection 5.1. Afterwards, we discuss an additional constraint that links the

background fields with the fluctuations around it. We call it the extended strong con-

straint. As subsection 5.2 shows, this constraint allows us to identify the covariant fluxes

FABC of the DFT flux formulation [7, 23, 31] with the structure coefficients FABC of the

group manifold. Applying the extended strong constraint, in subsection 5.3 we prove the

equivalence of the gauge transformations and the action in both theories. In this context,

we will briefly discuss the background independence of DFT.

5.1 Appropriate generalized vielbein

The starting point for the following discussion is a background generalized vielbein EA
I

fulfilling the strong constraint of DFT. Due to 2D-diffeomorphism invariance proven in

section 4.2, one is not forced to parameterize it with the left/right moving coordinates

xi/xī. Instead, we choose the momentum xi and winding x̃i coordinates which are common

in the generalized metric formulation of DFT [29]. They give rise to

XI = (x̃i x
i) , ∂I = (∂̃i ∂i) and ηIJ =

(
0 δij
δji 0

)
. (5.1)

A canonical choice for the vielbein in the DFT flux formulation [7, 23, 31] is

EÂ
I =

(
eai 0

−eajBji eai

)
. (5.2)

The strong constraint of DFT requires that it only depends on half of the coordinates.

Without any loss of generality, we choose EÂ
I to depend on the momentum coordinates

xi. Note that a hat over a doubled index indicates that the η-metric

ηÂB̂ =

(
0 δab
δba 0

)
and its inverse is ηÂB̂ =

(
0 δba
δab 0

)
(5.3)

are used to lower and raise this index. In order to identify this representation of η with the

diagonal form (2.10) common in DFTWZW, we apply the coordinate independent O(2D)
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rotation

MA
B̂ =

(
ηab δba
−ηāb δbā

)
with MA

ĈMB
D̂ηĈD̂ = ηAB . (5.4)

It leaves the background metric invariant and thus yields

MA
ĈMB

D̂SĈD̂ = SAB with SÂB̂ =

(
ηab 0

0 ηab

)
. (5.5)

Switching to curved indices, SÂB̂ gives rise to the generalized metric

HIJ = EÂ
ISÂB̂EB̂

J =

(
gij −BikgklBlj Bikgkj

−gikBkj gij

)
. (5.6)

It is important to note that the canonical generalized vielbein (2.7) of DFTWZW is not an

O(D,D) element, because it gives rise to different representations of the η-metric in flat

and curved indices, namely

EA
IηABEB

J = ηIJ = 2

(
gij 0

0 −gīj̄

)
. (5.7)

This is an apparent problem, if one tries to compare DFTWZW and DFT. A short calculation

shows that the generalized vielbein defined in (5.2) fixes this problem. It fulfills the relation

EÂ
IηÂB̂EB̂

J = ηIJ =

(
0 δji
δij 0

)
(5.8)

and hence is an O(D,D) matrix.

This new generalized vielbein should give rise to the constant structure coefficients

FABC = 2Ω[AB]C with ΩABC = EA
I∂IEB

JECJ (5.9)

from which the derivation of DFTWZW in [1] starts. Unfortunately, this does not work out

because the resulting structure coefficients fail to be constant. A way around is to consider

the covariant fluxes

FÂB̂Ĉ = 3Ω[ÂB̂Ĉ] (5.10)

instead. Following [31] and remembering that the vielbein ea
i and the B-field Bij depend

on the momentum coordinates xi only, we obtain

Fabc = −3ea
ieb

jec
k∂[iBjk] = −Habc = −Fabc and (5.11)

Fabc = 2e[b
i∂iec]

jeaj = 2Ω[bc]
a = F abc . (5.12)

The remaining independent components Fabc and Fabc vanish. Next, we switch from FÂB̂Ĉ
to FABC by applying the transformation MA

B̂ defined in (5.4). Doing so gives rise to

FABC =


Fabc + ηadFdbc + ηbdFadc + ηcdFabd = 2Fabc

Fābc − ηād̄F d̄bc + ηbdFādc + ηcdFābd = 0

Fāb̄c − ηād̄F d̄b̄c − ηb̄d̄Fād̄c + ηcdFāb̄d = −2Fāb̄c

Fāb̄c̄ − ηād̄F d̄b̄c̄ − ηb̄d̄Fād̄c̄ − ηc̄d̄Fāb̄d̄ = −4Fāb̄c̄ ,

(5.13)

– 20 –



J
H
E
P
0
8
(
2
0
1
5
)
0
5
6

which are constant but still do not match the strict left/right separation in the structure

coefficients required to formulate DFTWZW. However, there is still a way to cure this

problem without spoiling the O(D,D) property (5.8). To this end, we apply a coordinate

dependent O(D)×O(D) transformation which acts on

EA
I = MA

B̂EB̂
I =

(
eai + ea

jBji ea
i

−eai + ea
jBji ea

i

)
as ẼA

I = TA
B(xi)EB

I . (5.14)

In the second row of EA
I , we drop the bar over the index a of eai and ea

i respectively to

emphasis that, in contrast to (2.7), we use the left mover vielbein only. It is connected to

the one for the right movers by the O(D) transformation

eā
i = tā

beb
i with tā

b = K(tā, gt
bg−1) , (5.15)

where K denotes the Killing form

K(x, y) = −α
′k

2

Tr(adx ady)

2h∨
with x, y ∈ g , (5.16)

introduced in [1], and g is the group element parameterized by the coordinates xi. This

transformation is embedded into

TA
B =

(
δba 0

0 tā
b

)
producing ẼA

I =

(
eai + ea

jBji ea
i

−eāi + eā
jBji eā

i

)
, (5.17)

which ‘recovers’ the correct index structure. Due to the coordinate dependence of this

transformation, it modifies the coefficients of anholonomy according to

Ω̃ABC = TA
DTB

ETC
F (ΩDEF − EDI∂ITHETHF ) . (5.18)

After some algebra and keeping the definition ta = −tā in mind, we obtain

∂itd̄bt
d̄
c = K([tb, tc], ta)e

a
i = eaiFabc (5.19)

and finally

EA
I∂ITDBT

D
C = 2EA

I

(
0 0

0 −∂Itd̄btd̄c

)
= −2


Fab̄c̄

Fāb̄c̄

0 otherwise.

(5.20)

This result is nice, because it allows us the fix the problems we encountered with the

covariant fluxes FABC in (5.13). After proper antisymmetrization of Ω̃ABC , the covariant

fluxes for the O(D)×O(D) rotated generalized vielbein ẼA
I read

F̃ABC = 2


Fabc

−Fāb̄c̄
0 otherwise

or in the standard form F̃ABC =


Fab

c

Fāb̄
c̄

0 otherwise.

(5.21)

They are now compatible with the left/right separation of the structure coefficients in

DFTWZW. Thus, via (5.17) we have succeeded to properly embed the WZW background

into the flux formulation of original DFT.
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5.2 Extended strong constraint

There is still a small but peculiar difference in the two definitions of the structure coefficients

FABC = 2Ω[AB]C and the covariant fluxes FABC = 3Ω[ABC] . (5.22)

In order to identify them even so, first note that ΩABC is antisymmetric with respect to

its last two indices due to O(D,D) property (5.8). Thus, we are able to write

FABC = ΩABC + ΩCAB + ΩBCA = FABC + ΩCAB . (5.23)

Moreover, the purpose of FABC in DFTWZW is to define the commutator relation

[DA, DB] = FAB
CDC (5.24)

between flat derivatives. Thus, it is sufficient to study

FABCDC · = FAB
CDC ·+

(
DCEA

I
)
EBIDC · (5.25)

where · denotes arbitrary products of fluctuations εAB, d̃ and the gauge parameter ξA,

which we also consider as a fluctuation. In DFTWZW, the strong constraint only acts on

these fluctuations, whereas it does not apply for the background or the relation between

background and fluctuations. However, we can of course introduce an additional constraint,

the so called extended strong constraint

DAbD
Af = 0 , (5.26)

linking background fields b with fluctuations f . It restricts all valid field configurations in

DFTWZW to a particular subset which allows to cancel the last term in (5.25) and therefore

to identify FABC = FABC . Furthermore, it allows to cancel the last term in the strong

constraint in curved indices giving rise to

(∂I∂
I − 2 ∂I d̄ ∂

I)· = ∂I∂
I · = 0 , (5.27)

which is apparently equivalent to the strong constraint in the original DFT formulation.

5.3 Gauge transformations and action

Using the covariant fluxes FABC instead of the structure coefficients FABC , we have to

recalculate the Christoffel symbols of the covariant derivative. To this end, we solve the

frame compatibility condition

∇AEBI = DAEB
I +

1

3
FBACECI + EA

KΓKJ
IEB

J = 0 (5.28)

which gives rise to

ΓIJ
K = −ΩIJ

K + Ω[IJL]η
LK =

1

3
(−2ΩIJ

K + ΩK
IJ + ΩJ

K
I) . (5.29)
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For this connection, the generalized torsion

T IJK = 2Γ[JK]
I + ΓI [JK] = 0 , (5.30)

vanishes. The latter links the C-bracket

[ξ1, ξ2]IC = [ξ1, ξ2]JDFT,C + T IJKξJ1 ξK2 (5.31)

of DFTWZW and DFT. Thus, both theories share besides the strong constraint (5.27) the

same gauge algebra, too. This also holds for the generalized Lie derivative, which can be

derived from the C-bracket as

LξV I = [ξ, V ]IC +
1

2
∇I(ξJV J) = [ξ, V ]IDFT,C +

1

2
∂I(ξJV

J) = LDFT,ξV
I . (5.32)

Even if the Christoffel symbols ΓIJ
K get modified, they still keep their transformation

behavior (4.39) under 2D-diffeomorphisms. In this sense, 2D-diffeomorphisms are still a

manifest symmetry of the action and its gauge transformations. However, this symmetry

gets partially broken due to the constraint

Lξη
IJ = 0 = ∂JξI + ∂IξJ (5.33)

which preserves the O(D,D) property (5.8) of the background generalized vielbein EA
I .

Further, the strong constraint for EA
I and the extended strong constraint have to transform

covariantly, which gives rise to the additional restrictions

∆ξ(∂IEA
J∂If) = −EAK∂K∂IξJ∂If = 0 , (5.34)

∆ξ(∂IEA
J∂IEB

K) = −EAL∂L∂IξJ∂IEBK − ∂IEAJEBL∂L∂IξK = 0 (5.35)

requiring

∂Iξ
J∂If = 0 and ∂Iξ

J∂IEA
K = 0 or ∂Iξ

K = const. . (5.36)

The latter allows for global O(D,D) rotations. Besides them, only transformations of

the form

LξEA
I = ξJ∂JEA

I + EJA∂Jξ
I = EA

J

(
0 0

∂[j ξ̃i] 0

)
(5.37)

are possible. They correspond to B-field gauge transformations with

Bij → Bij + ∂[iξj] (5.38)

and, as well as the global O(D,D) rotations, can be expressed in terms of generalized

diffeomorphisms. Hence, the additional 2D-diffeomorphism invariance of DFTWZW is com-

pletely broken by the extended strong constraint (5.26) and the O(D,D) valued background

generalized vielbein.

The new connection (5.29) has a non-trivial effect on the background dilaton d̄ defined

in (2.25), too. To be compatible with integration by parts [1], d̄ has to fulfill

ΩJ
JI + 2∂I d̄ = 0 (5.39)
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after using

ΩIJ
J = ΩJI

J , a direct consequence of FIJ
J = ΩIJ

J − ΩJI
J = 0 , (5.40)

and the antisymmetry of ΩIJK in its last two indices.

Subsequently, we show that the action S of DFTWZW in curved indices is equivalent

to the traditional DFT action

SDFT =

∫
d2DXe−2d

(
1

8
HKL∂KHIJ∂LHIJ −

1

2
HIJ∂JHKL∂LHIK

− 2∂Id∂JHIJ + 4HIJ∂Id∂Jd
)
. (5.41)

Of course,

S = SDFT (5.42)

only holds under the extended strong constraint (5.26). To prove this identity, we show that

S − SDFT =

∫
d2DXe−2d∆ (5.43)

vanishes. Expressing all covariant derivatives in terms of partial derivatives and the con-

nection (5.29), ∆ can be simplified to

∆ =HIJ
(

ΩIKLΩKL
J − ΩK

KIΩ
L
LJ +

1

2
ΩKLIΩ

KL
J

)
− ΩIJ

K∂KHIJ + 2ΩK
KIHIJ∂J d̃− ΩK

KI∂JHIJ + 2HIJΩIJ
K∂K d̃ . (5.44)

The last term in the first line vanishes under the strong constraint of the background fields.

After performing integration by parts analogous to (2.24) and splitting the generalized

dilaton according to (2.25), one obtains

−ΩIJ
K∂KHIJ = −2HIJΩIJ

K∂K d̃+HIJΩIJ
KΩL

LK + ∂KΩIJ
KHIJ and (5.45)

−ΩK
KI∂JHIJ = −2ΩK

KIHIJ∂J d̃+HIJΩK
KIΩ

L
LJ +HIJ∂IΩK

KJ . (5.46)

Here, we also have applied (5.39) to get rid of derivatives acting on d̄. After these substi-

tutions, ∆ reads

∆ = HIJ
(
ΩIKLΩKL

J + ΩIJ
KΩL

LK + ∂KΩIJ
K + ∂IΩ

K
KJ

)
. (5.47)

Finally, by taking the definition of ΩIJK (4.38) into account, it is straightforward to

show that

∂KΩIJ
K + ∂IΩ

K
KJ = −ΩIJ

KΩL
LK − ΩIKLΩKL

J (5.48)

holds and thus one obtains the desired result

∆ = 0 . (5.49)

The calculations shown in this subsection generalize in some sense the endeavor of [5]

to find a background independent version of the cubic DFT action derived in [3]. The
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main idea behind those technically challenging calculations in that paper is that ‘. . . one

can absorb a constant part of the fluctuation field eij into a change of the background

field Eij . The dilaton plays no role in the background dependence; . . . ’ ([5] page six,

first paragraph). In our context, we have a similar situation by splitting the generalized

metric into

HIJ = HIJ + hIJ , where hIJ = εIJ +
1

2
εIKHKLε

LJ + . . . , (5.50)

i.e. the background field HIJ and the fluctuation field hIJ . As opposed to [5], we consider

the generalized dilaton (2.25), too. Furthermore, we are not limited to constant background

fields, because HIJ is not constant for an arbitrary group manifold. It is only constant for

the special case of a torus. For being a consistent background, it always has to fulfill the

field equations of the theory. Still, we were able to reproduce the background independence

of ordinary DFT proposed by [5].

As we have seen, for this background independence we have to impose the extended

strong constraint, which rules out any solutions beyond SUGRA. To this extend, DFTWZW

possesses the same background independence as DFT but still allows to have a glimpse at

physics not covered by SUGRA. Moreover, the derivation in this subsection shows that

DFT breaks the 2D-diffeomorphism invariance of DFTWZW. Especially in the context of

doubled sigma models with manifest 2D-diffeomorphism invariance like e.g. in [33], this

could be interesting.

6 Outlook

In the course of this paper, we have derived the generalized metric formulation of the

DFTWZW action and proven its invariance under generalized diffeomorphisms and 2D-

diffeomorphisms. Afterwards, we have shown that our theory contains the original formu-

lation of DFT as a subset. To this end, we have restricted the background vielbein EA
I to

be O(D,D) valued and to fulfill the strong constraint of DFT. Furthermore, the so called

extended strong constraint has to link background and fluctuations. There is no reason

why there should not be consistent solutions outside this subset. They are beyond the

scope of SUGRA and could contain new physics. Hence, it is worth to study them.

In general DFTWZW only needs the closure constraint (CC) for background fields b

and the strong constraint (SC) for fluctuations f . Depending on how one extends these

constraint, the following solutions are accessible:

Theory CC b SC b - b SC b -f SC f -f Solutions

DFTWZW 3 7 7 3 non-geometric

DFTWZW 3 3 7 3 geometric, non-trivial def. of algebra

DFT 3 3 3 3 geometric, T-dual to SUGRA solution.

Besides the most general case giving rise to non-geometric backgrounds, one could drop

the extended strong constraint but keeping the strong constraint for the background fields.

This choice guarantees that the underlying CFT has a modular invariant partition function

but still goes beyond conventional SUGRA. Such solutions could be linked to non-trivial
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deformations of the Courant algebroid underlying the symmetries of DFT. Some of these

deformations are known to give rise to non-commutative deformations of the target space

in terms of a Poisson structure [34, 35]. Recently, there has been put much effort into

understanding non-commutativity and even non-associativity in gravity theories [36–40].

All of them are closely connected to backgrounds with fluxes. Being able to handle such

kinds of backgrounds, DFTWZW might be an appropriate tool to push these efforts forward.

Another interesting challenge would be an extension from group manifolds to arbitrary

background geometries. To this end, one should follow the observations made at the end

of section 4.1.
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