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Abstract. Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each
filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We
model it by discretizing Kirchhoff’s elastic-rod theory and develop a coarse-grained approach for driving
the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the
cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and
show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a
supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher
motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition
during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby
obtain a characteristic relation between the critical thrust force and motor torque. We present a elaborate
analytical model for the buckling transition based on a helical rod which quantitatively reproduces the
critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical
filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of
pulling flagella along the driving torque is not stable and comment on the biological relevance for marine
bacteria.

1 Introduction

Many bacteria such as Escherichia coli and Salmonella
typhimurium swim by rotating a bundle of helical flag-
ella [1]. Nature’s simple and ingenious solution for loco-
motion at low Reynolds number has already inspired re-
searchers to apply rotating flagella to perform such diverse
tasks as pumping fluid [2] or manufacturing nanotubes [3].
Even artificial helical flagella already exist [4].

The flagellum in the bundle consists of three parts;
the rotary motor, a short and very flexible proximal hook
that couples the motor to the third part, the long heli-
cal filament [1,6,5]. The motors are embedded at differ-
ent locations of the cell wall so that the flagella have to
bend around the cell body to form a bundle. Bacteria such
as Escherichia coli and Salmonella typhimurium use this
bundle to perform a run-and-tumble motion which enables
them to follow a chemical gradient (chemotaxis). After
swimming for about 1 s, the sense of rotation of one mo-
tor reverses and the attached flagellum leaves the bundle.
It goes through a sequence of polymorphic conformations
until the motor reverses its rotational direction again. The
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flagellum returns to its original or normal helical form and
rejoins the bundle. During this tumbling event, which lasts
for about 0.1 s, the bacterium changes its swimming direc-
tion randomly. It is interesting that flagella of cells, which
are clued to a surface, do not bundle [5,6]. Furthermore,
each flagellum is reported to be relatively rigid and visi-
ble deformations due to rotation are not reported [5]. In
general, videos show a complex behavior of a single flag-
ellum when it interacts with other flagella, with the wall,
or when it goes through different polymorphic conforma-
tions [6]. In this context, recent articles study the syn-
chronization and bundling of two or more flagella due to
hydrodynamic interactions [7–10].

The polymorphism of the flagellum is a fascinating and
intensively studied subject [11–19]. Using a coarse-grained
molecular model, we recently addressed the question why
the normal polymorphic state is realized in a flagellum [20]
and also developed a simple model for flagellar growth [21].
Based on an extended Kirchhoff theory for the helical fila-
ment, we modeled the polymorphism of the flagellum [22]
and were able to reproduce experimental force-extension
curves where a polymorphic transition is induced by an
external force [18].

In this article we concentrate on the normal form of
a single bacterial flagellum, model it by the discretized
version of Kirchhoff’s elastic-rod theory and develop a
coarse-grained approach for driving the helical filament
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Fig. 1. (Color online) Each segment of a rotating helical flag-
ellum experiences a frictional force F that is not antiparallel
to the local velocity v due to the anisotropic friction of a rod.
Whereas the force component perpendicular to the helix axis
averages to zero over one helical turn, the parallel component
adds up to the thrust force. For a detailed treatment see ap-
pendix A.

Fig. 2. a) An elastic rod buckles under the influence of a com-
pressional force F and an external torque M . b) The critical
values Fc and Mc at which buckling occurs obey a characteris-
tic relation. The graph depicts relation (1) valid for a rod with
fixed ends.

by a motor torque. A rotating helical flagellum produces
a thrust force as explained in fig. 1 that adds up along
the filament and then pushes the cell body forward. We
report two buckling instabilities of a fixed helical filament
for increasing motor torque. The first instability occurs in
the biologically relevant regime. The straight helical fil-
ament starts to bend under the influence of the acting
thrust force similar to a rod that buckles under its own
load. The buckling instability is visible as a supercritical
Hopf bifurcation in the thrust force. It also occurs when
the filament is allowed to move by attaching it to a load
particle. We will develop an analytical model based on a
rigid helical rod that explains the buckling transition and
reproduces quantitatively the critical force-torque relation
from our simulations.

An elastic rod buckles under the influence of a com-
pressional force and an external torque acting at both ends
of the rod (fig. 2(a)). This is one of the first examples for
a bifurcation and Euler was the first to provide the theory
for the critical load force at zero torque. In general, crit-
ical force and torque for a rod with fixed ends obey the
relation [23]
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)
+

1
4
M2
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(
L0

A

)2

, (1)

where L0 is the rod length and A its bending rigidity
(fig. 2(b)). Note that eq. (1) does not depend on the com-
pressibility or the torsional rigidity of the rod.

Similar buckling or elastic instabilities occur in the dy-
namics of rods at low Reynolds number. Here one typically
applies a torque at one end of the filament. The rod rotates
and the applied torque is balanced by frictional forces and
torques continuously distributed along the filament. Wol-
gemuth et al. investigated a rod with one clamped and
one free end rotating around its axis. They observed two
regimes separated by a supercritical (i.e. continuous) Hopf
bifurcation. When the rotational frequency exceeds a crit-
ical value, the straight filament starts to bend and per-
forms a whirling motion [24]. In Brownian dynamics sim-
ulations Wada and Netz observed for the same conditions
a subcritical (i.e. discontinuous) Hopf bifurcation where
the strongly bent filament nearly folds back on itself [25].
On the other hand, a rod tilted with respect to the rota-
tional axis bends slightly due to friction at low rotational
velocity. At a critical value, a discontinuous transition to
a helical rod shape occurs [26].

In this article we treat buckling instabilities for the bi-
ologically relevant helical filament. The problem is more
complex due to the characteristic rotation-translation cou-
pling and the fact that we do not fix the orientation of the
helical filament. The content of the article is organized as
follows. In sect. 2 we explain how we model the motor-
driven bacterial flagellum and how we perform the sim-
ulations. In sect. 3 we present and discuss our numerical
results for both buckling instabilities for the fixed filament
and then address the first buckling instability during loco-
motion of the filament. In sect. 4 we formulate a buckling
theory for a helical rod and show that it quantitatively
reproduces the critical force-torque relation in the bio-
logically relevant regime. We close with a summary and
conclusions.

2 Modeling the motor-driven bacterial
flagellum

We start with a short review of the elasticity model and
the dynamics of a helical filament in sects. 2.1 and 2.2
following our previous work [22] and then explain how we
model the motor-driven hook in sect. 2.3. A summary of
the simulation parameters follows in sect. 2.4.

2.1 Elasticity model of a helical filament

We describe the conformation of the helical filament with
contour length L by the space curve of its center line r(s),
where s is the arc length. In addition, we attach a mate-
rial frame of three orthogonal unit vectors {e1,e2,e3}, to
each point along the filament so that e3 points along the
tangent of r(s) (see fig. 3). The generalized Frenet-Serret
equations transport the material frame along the filament,

∂sei = Ω × ei, (2)
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Fig. 3. (Color online) The kinematic variables of a slender
elastic rod are the space curve r(s) of its center line and the
material frame {e1, e2, e3} attached at each point of the center
line.

where ∂s means derivative with respect to s. We can char-
acterize any conformation by the angular strain vector
Ω = (Ω1, Ω2, Ω3) given in components with respect to
the local material frame. Along an ideal helical filament,
spontaneous curvature κ0 and torsion τ0 are constant. As
material frame for the equilibrium shape of the helical fil-
ament, we choose the Frenet frame which consists of the
tangent vector t = e3, the normal vector e1 = n = ∂st/κ0,
and the binormal vector e2 = b = t×n. The strain vector
then becomes Ω = (0, κ0, τ0). Further parameters of an
ideal helix are the pitch p = 2πτ0/(κ2

0 + τ2
0 ) and radius

R = κ0/(κ2
0 + τ2

0 ). The ratio of pitch and circumference,
p/2πR = tanα, defines the pitch angle α.

The total elastic free energy of the filament consists of
two contributions:

F =
∫ L

0

(fcl + fst)ds. (3)

The first term is Kirchhoff’s classical theory for bending
and twisting,

fcl =
A

2
(Ω1)2 +

A

2
(Ω2 − κ0)2 +

C

2
(Ω3 − τ0)2, (4)

where we introduced the bending rigidity A and the tor-
sional rigidity C [23,27]. Instead of implementing a con-
straint for the inextensibility of the filament in our sim-
ulations, we also add a stretching free energy with line
density

fst =
K

2
(∂sr)2 . (5)

We choose the spring constant K such that the changes
in the filament length are below 1.5%. The filament is
inextensible to a good approximation.

2.2 Dynamics of the helical filament

We mostly performed deterministic simulations, only in a
few cases we have added thermal fluctuations. We formu-
late Langevin equations for the location r(s) and intrinsic
twist φ(s) of the helical filament. At low Reynolds number

elastic force per unit length, f el = −δF/δr, and thermal
force f th are balanced by viscous drag. The same applies
to the elastic torque per unit length, mel = −δF/δφ and
thermal torque mth. Using resistive-force theory, we in-
troduce local friction coefficients γ‖, γ⊥ and γR (see ap-
pendix A) and arrive at the Langevin equations[

γ‖t ⊗ t + γ⊥(1 − t ⊗ t)
]
v =f el + f th, (6)

γRω =mel + mth. (7)

Here v = ∂tr is the translational velocity, ω = ∂tφ the
angular velocity about the local tangent vector t = e3,
and ⊗ means tensorial product. The anisotropic friction
tensor acting on v in eq. (6) couples rotation about the
helical axis to translation and thereby creates the thrust
force that pushes the bacterium forward as illustrated in
fig. 1 [28]. Experiments show reasonable agreement with
the approach of resistive-force theory [29,30]. Finally, the
thermal force f th and torque mth are Gaussian stochas-
tic variables with zero mean, 〈f th〉 = 0 and 〈mth〉 = 0.
Their variances obey the fluctuation-dissipation theorem
and therefore read

〈f th(t, s) ⊗ f th(t′, s′)〉 = 2kBTδ(t − t′)δ(s − s′)

×
[
γ‖t ⊗ t + γ⊥(1 − t ⊗ t)

]
, (8)

〈mth(t, s)mth(t′, s′)〉 = 2kBTδ(t − t′)δ(s − s′)γR, (9)

〈mth(t, s)f th(t′, s′)〉 = 0. (10)

In our simulations we use a discretized version of the
dynamic equations following our earlier work [31,22] (see
also refs. [32–34]). We discretize the center line r(s) of the
filament by introducing N + 1 beads at locations r(i) =
r(s = i ·h) and with nearest-neighbor distance h. To every
bead we attach the material frame {e(i)

1 ,e
(i)
2 ,e

(i)
3 } (i =

0, . . . , N) and approximate the tangent vector by

e
(i)
3 =

r(i) − r(i−1)

|r(i) − r(i−1)| . (11)

The transport of the material frame along the filament
occurs in two steps: First, we rotate about the bond di-
rection e

(i)
3 by an angle Ω

(i)
3 h to implement intrinsic twist

plus torsion. Thereafter, we introduce the curvature of the
filament, by rotating the bond vector e

(i)
3 of the material

frame about e
(i)
3 × e

(i+1)
3 by an angle

√
Ω2

1 + Ω2
2h into

the consecutive direction e
(i+1)
3 . With this procedure the

free energy densities fcl and fst from eqs. (4) and (5) are
discretized and the functional derivatives of the total free
energy, f el = −δF/δr and mel = −δF/δφ, reduce to con-
ventional derivatives with respect to r(i) and φ(i). In ad-
dition, we approximate the tangent vector in the friction
tensor in eq. (6) by t(i) = (e(i)

3 + e
(i+1)
3 )/|e(i)

3 + e
(i+1)
3 |.

2.3 The motor-driven hook

The flagellum is driven by a rotary motor embedded in
the cell wall of the bacterium. The motor torque is trans-
mitted to the helical filament by a short flexible coupling.
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Because of its shape it is called hook. With a well regu-
lated length of 0.05μm for E. coli or S. typhimurium and
up to 0.1μm for R. sphaeroides it is much shorter than
the helical filament [35–38]. It is also shorter than the dis-
cretization length of h = 0.2μm which we can employ in
our simulations as indicated in fig. 4. We, therefore, can-
not model the hook in full detail. Instead, we represent
motor and hook by a motor torque that acts directly on
one end of the filament neglecting the extension of the
hook.

Molecular dynamics simulations showed that the hook
bends and twists easily. This is possible since conforma-
tional changes of molecular bonds require only a small
amount of energy [39]. So the hook itself allows the fil-
ament to nearly assume any orientation outside the cell.
Hence, it is comparable to a constant-velocity joint. The
blow-up in fig. 4 illustrates how motor and hook act to-
gether to drive the filament. The picture also shows the
rotational degrees of freedom of the filament at the attach-
ment point to the hook. The filament can rotate about its
local axis, about the axis parallel to the motor torque,
and towards or away from this axis. These hinged bound-
ary conditions are different from the clamped conditions
of previous studies on a whirling rod [24–26]. Note that
boundary conditions significantly influence the buckling
of rods [23,27].

The task of the hook is to transmit the motor torque
to the filament and to guarantee its rotational degrees of
freedom. In our coarse-grained model, we implement this
task by balancing all the torques acting on the first mate-
rial frame {e(0)

1 ,e
(0)
2 ,e

(0)
3 } that determines the orientation

of one end of the filament:

[
γRhe

(0)
3 e

(0)
3 +

1
2
γ⊥h3(1 − e

(0)
3 e

(0)
3 )

]
ω

= M − A[Ω1e
(0)
1 + (Ω2 − κ0)e

(0)
2 ] − C(Ω3 − τ0)e

(0)
3 .

(12)

The material frame rotates with an angular frequency ω.
It gives rise to a frictional torque decomposed into a com-
ponent along the tangent vector e

(0)
3 and perpendicular to

it. The length h appears due to the discretization. The fric-
tional torque is balanced by the motor or external torque
M = Mez, which we assume constant throughout the
paper, and the elastic torque −δF/δΩ.

2.4 Simulation parameters

For the bending rigidity we use A = 3.5 pNμm2 given
in ref. [18] as a typical value for bacterial flagella and
set it equal to the torsional rigidity, C = A. Our previ-
ous work showed that this is in agreement with experi-
mental observations [22]. All other parameters are deter-
mined by the geometry. In our study we use the normal
state of the bacterial flagellum with spontaneous curvature
κ1 = 1.3/μm and torsion τ1 = 2.1/μm. In the following
we study a right-handed helical filament although the nor-
mal state of a real flagellum is left-handed. We calculate

Fig. 4. (Color online) Blow-up: the hook acts as a universal
joint between the motor embedded in the cell wall and the
long helical filament which retains its full rotational degrees
of freedom. Main picture: The hook is much shorter than the
discretization length indicated by the blue and red segments
of the filament. We do not model the hook explicitly but let
the motor torque act directly on the first material frame of
the filament which, in principle, can assume any orientation in
space.

the local friction coefficients from Lighthill’s formulas [40]
summarized in appendix A as γ‖ = 1.6 · 10−3 pN s/μm2,
γ⊥ = 2.8·10−3 pN s/μm2, and γR = 1.26·10−6 pN s, where
a filament diameter of about 20 nm is used. The length of
the filament is L = 10μm corresponding to approximately
four helical turns. The discretization length between the
beads is chosen as h = 0.2μm.

3 The motor-driven helical filament

In this section we study in detail the thrust force that the
motor-driven helical filament generates both when the ac-
tuated end of the filament is fixed in space or attached to
a larger load particle, which mimics the cell body. In par-
ticular, we describe the buckling transitions by illustrating
the observed filament configurations.

It is instructive to shortly look at a completely rigid he-
lical rod first, which does not exhibit translational motion.
In the low Reynolds number regime, the angular velocity
ω of the rod and the applied torque M obey the linear
relation M = Bω, where B is the rotational friction ten-
sor. For a long slender helix like the normal form of the
bacterial filament, one principal axis of B points along the
helical axis and the eigenvalues in the plane perpendicu-
lar to this axis are degenerate, in good approximation [40,
41]. Now there is a formal analogy to the motion of the
force and torque less spinning top with axial symmetry in
classical mechanics [42,43]. We just replace the constant
torque M by the conserved angular momentum and B by
the moment of inertia tensor. We explain details in ap-
pendix B. According to this analogy, the rigid helix in a
viscous fluid precesses about the constant applied torque
while also rotating about its helical axis. However, in our
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Fig. 5. (Color online) (a) Thrust force F versus motor torque M . Four different regimes associated with different configurations
of the rotating filament exist. In regime (iii) and (iv) the minimum and maximum value of the oscillating thrust force are shown.
A supercritical bifurcation occurs at the critical torque Mc1 ≈ 1.1 pN μm indicating a buckling transition. A second bifurcation
is visible at Mc2 ≈ 4.2 pN μm. The red line in regimes (i) and (ii) follows from resistive force theory. (b) Thrust force versus
time for specific torque values in the four different regimes: (i) M = −1.0 pN μm, (ii) M = 1.0 pN μm, (iii) M = 1.2 pN μm,
and (iv) M = 4.5 pN μm. (c) Characteristic snapshots of the helical filament in the four regimes. The red circular arrow and ω
indicate a rotation about the local helix axis and F l the local thrust force. The green circular arrow and χ show the precession
about the external torque axis. In addition, the trajectory of the tip of the first tangent vector is indicated: (i) The green line
belongs to the perpendicular orientation of the filament, (iv) red line: fast rotation about helical axis, green line: slow precession
about motor torque during relaxation of the filament.

simulations we observe that as soon as we introduce a fi-
nite elasticity of the helical rod, the precession is no longer
stable and the helical filament aligns, for example, parallel
to the torque.

3.1 Force-torque relation and buckling

3.1.1 Discussion of the basic features

The motor-driven helical filament creates a thrust force.
We calculate it as the force component on the first
bead parallel to the applied torque M = Mez: F =
−∂F/∂r(0) · ez. We keep here the bead at a fixed posi-
tion r0 = r(0) and use the discretized version of the free
energy (4). Figure 5(a) plots the resulting thrust force F
versus the applied torque determined in simulations with-
out thermal noise. We discuss the graph in detail.

A positive torque M produces a thrust force that
pushes against the anchoring point of the filament. The
thrust force is constant in time as indicated by the straight
line (ii) in fig. 5(b). The illustration (ii) of fig. 5(c) shows
the stable orientation of the helical filament along the
torque M . It rotates about the helical axis with angular

frequency ω. The local thrust force acting along the helix
axis is indicated by F l. The tangent of the filament at the
anchoring point is tilted against M and the tip moves on
a circle, as indicated by the schematic. Movies for all four
types of configurations are available in the supplementary
material.

A negative torque M generates a negative force that
pulls at the anchoring point. However, we realized that
the orientation of the filament along the torque is not
stable. For long times the filament turns away from the
torque axis (green arrow in illustration (i) of fig. 5(c)) un-
til it reaches a configuration perpendicular to M , where
it slowly rotates about the local helical axis and slowly
precesses about M . This motion is also visible for the tip
of the first tangent vector. The reorientation of the he-
lix occurs due to elastic deformations when the negative
torque slightly unwinds the helical filament. The linear in-
crease of F with M in the regimes (i) and (ii) in fig. 5(a)
fits well with the result from resistive force theory for a
perfect helical filament, as indicated by the line (see ap-
pendix A). Small deviations are visible at higher torques
due to elastic deformations of the helix which enhance the
thrust force.
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At a critical torque Mc1 ≈ 1.1 pNμm the thrust force
starts to oscillate as curve (iii) in fig. 5(c) indicates. Min-
imum and maximum values of the force are plotted in
fig. 5(a). They develop continuously from the constant
force at Mc1 indicating a supercritical Hopf bifurcation.
Illustration (iii) of fig. 5(c) shows a buckled configuration
that rotates about the local helix axis with frequency ω
and precesses with frequency χ about the motor torque
M keeping its shape fixed. The trajectory of the tip of
the first tangent vector reflects this motion. A straightfor-
ward explanation is that the helical filament buckles under
the thrust force generated by the rotating filament. The
force adds up from the free to the fixed end of the filament
and puts the filament under compressional tension. This
is similar to a rod that buckles under its own gravitational
load [23,27]. In sect. 4 we will develop a theory for this
buckling transition which is quite involved. Finally, at a
critical torque value of Mc2 ≈ 4.2 pNμm a second bifur-
cation occurs in the force-torque relation of fig. 5(a). The
buckled state itself becomes unstable, visible by the fast
oscillations of the thrust force in fig. 5(b). The buckled
configuration is compressed until the fixed end becomes
perpendicular to the motor torque. At this point the fast
rotation about the local helical axis stops and the thrust
force averaged over one fast period is approximately zero.
Now the strongly bent configuration of the filament re-
laxes slowly and precesses about the applied torque M
(second configuration in fig. 5(b)(iv)). The thrust force on
the anchoring point slowly increases. When the filament is
sufficiently relaxed, it starts again its fast rotations about
the local helix axis and the whole cycle repeats.

3.1.2 Discussion of additional features

The reported supercritical Hopf bifurcation is also visible
in other quantities besides the thrust force. We discuss
here additional properties of the motor-driven helical fil-
ament.

To quantify the stability of the filament aligned par-
allel to the motor torque axis, we recorded the temporal
evolution of the elastic free energy starting from a small
disturbance of the aligned state and fit it to the form

|F − F0| ≈ δF0 exp(λt) sin(ωt). (13)

Here ω is the angular velocity of the rotating helix leading
to oscillations in F and λ is the reorientation rate. The
result for λ is plotted in fig. 6(a). For positive M below the
critical torque, the negative λ indicates the stable aligned
state. For small M a reorientation of the filament could not
be detected within the simulation time. Frictional forces
are small and hardly deform the helix which, therefore,
just precesses about the applied torque. Nevertheless, to
record the thrust force-torque relation, we always started
from an aligned state at M = 1pNμm and then changed
the driving torque to the desired value and let the elastic
free energy relax to its stationary value, where we finally
recorded the thrust force. The small positive λ for M < 0
indicates the slow reorientation of the filament towards the

Fig. 6. (Color online) (a) Relaxation rate λ of the elastic free
energy versus applied torque M for a small disturbance of the
aligned state where the filament is parallel to the torque direc-
tion. (b) Angular velocity ω and precession frequency χ versus
torque M . The supercritical bifurcation at Mc1 is clearly vis-
ible. The red line is calculated with resistive force theory. (c)
Mean end-to-end distance 〈r〉 in units of the helix length L0

versus M . The red dots are results from Brownian dynamics
simulations with thermal noise included. (d) Standard devi-
ation σ(r) of the end-to-end distance in units of σ0 = R/

√
2

versus M . Thermal noise (red dots) leads to fluctuations about
the mean value.

perpendicular configuration The supercritical Hopf bifur-
cation is located where λ changes sign from negative to
positive.

Figure 6(b) shows the angular frequency ω for rota-
tions about the local helix axis as a function of M . The
linear regime belongs to the aligned state, deviations from
it occur in the buckled state. The precession frequency χ
for rotations of the whole filament about the torque axis
is plotted in the inset. A non-zero χ corresponds to the
buckled state.

Finally, figs. 6(c) and (d) plot the mean end-to-end
distance 〈r〉 of the helix and its standard deviation σ as a
function of M , respectively. They are defined as

〈r〉 = lim
T→∞

1
T

∫ T

0

|r(s = L) − r(s = 0)|dt, (14)

σ2 =
〈
(r − 〈r〉)2

〉
. (15)

Whereas 〈r〉 is continuous at both bifurcations, the stan-
dard deviation displays a pronounced discontinuity at the
second bifurcation in agreement with the behavior of the
thrust force. We write σ in units of σ0 = R/

√
2, where

R is the helix radius. σ0 is the maximum value of σ in
regime (iii) where the buckled helix has a constant shape
but the free end of the filament rotates on a circle with
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radius R. The strong increase of σ in regime (iv) is due to
the oscillating buckled state.

The rotating filament also experiences thermal forces
due to the viscous environment. However, since the persis-
tence length A/kBT ≈ 1mm calculated from the bending
rigidity A is much larger than the filament length of 10μm,
we do expect that our results are robust against thermal
fluctuations. This is confirmed by the end-to-end distance
〈r〉 in fig. 6(c) (red dots) which agrees with the determin-
istic simulations. The standard deviation in fig. 6(d) indi-
cates some fluctuations. Below the buckling transition we
can directly connect them to compressional fluctuations
using the spring constant of the helical filament, A/(R2L),
calculated in our earlier article [22]. The equipartition the-
orem gives σ/σ0 ≈ 0.15 in good agreement with the sim-
ulated value of 0.18. In the buckled state, the helical fil-
ament has more opportunities to fluctuate around which
explains the further increase of σ. Furthermore, we observe
strong fluctuations of the thrust force in our simulations
which result from the delta correlated stochastic forces
acting on the fixed first bead of the discretized filament.
An average over these fluctuations agrees with the deter-
ministic case (data not shown). The fluctuations will also
be smoothed out in an experiment which performs some
temporal average during measurement.

3.2 Buckling instability during locomotion

So far we have studied the situation where one end of the
filament is fixed in space so that it cannot translate. How-
ever, rotating flagella push the cell body of a bacterium
forward so that it moves. We mimic this scenario by at-
taching the filament to a bead of radius a which, for sim-
plicity, can only move along the z-direction. The thrust
force F generated at the attached end of the filament
is then used to push the sphere forward acting against
the Stokes friction force. We observe similar thrust force-
torque relations as for the case of a fixed filament. The
aligned state is again unstable for negative torque and
possesses a larger reorientation rate which might have bi-
ological relevance as we discuss in sect. 5. For positive
torque, the aligned state is stable and the thrust force
grows linearly in the driving torque M until the Hopf
bifurcation occurs at a critical value Mc1 indicating the
buckling instability.

Figure 7(a) shows the critical torque Mc1 as a func-
tion of the inverse bead radius 1/a. From 1/a = 0, which
corresponds to the fixed filament, the critical torque in-
creases linearly in 1/a and then at a−1 ≈ 5/2 turns into
a slow growth towards the value for the freely swimming
helix, i.e., 1/a → ∞. In the biological relevant case with
the cell body size a ≈ 0.5 · · · 2μm, the linear dependence
of the critical torque on 1/a can be derived based on the
fact that the critical thrust force Fc1 is nearly constant,
as we show in fig. 7(b). So the velocity v = Fc1/(6πηa) is
so slow that the buckling transition is hardly influenced
by the motion of the helical filament with the attached
bead. Now, force and torque on the helix depend linearly
on velocity v and angular velocity ω (see appendix A).

Fig. 7. (Color online) Buckling transition for a helical filament
attached to a bead of radius a that can move along the z-
direction. (a) Critical torque Mc1 as a function of inverse bead
radius 1/a. Inset: blow-up for the biologically relevant regime.
(b) Critical force Fc1 versus critical torque Mc1.

Eliminating ω and setting v = Fc1/(6πηa) at the buckling
transition, one arrives at

Mc1 = −
B‖
C‖

Fc1 +
(

C‖ −
A‖B‖
C‖

)
Fc1

6πη

1
a
. (16)

Here A‖, B‖, and C‖ are the translational, the rotational,
and coupling friction coefficients parallel to the helical
axis, respectively. This formula with the coefficients calcu-
lated by resistive force theory (see appendix A) reproduces
the linear increase for small 1/a, as demonstrated by the
red line in the inset of fig. 7(a).

In fig. 7(b) we plot the critical thrust force versus the
critical torque. For biologically relevant values Mc1 be-
tween 1 and 2 pNμm the critical force is indeed nearly
constant. It only shows a very slow linear increase since
frictional forces due to the motion of the helix stabilize it
against buckling. At Mc1 ≈ 4 pNμm the behavior changes
dramatically. The critical thrust force goes to zero propor-
tional to M2

c1 (see dotted line) following the behavior of a
rod that buckles under an applied force and torque as de-
scribed in the introduction. In this regime the supercritical
Hopf bifurcation becomes subcritical and hysteresis oc-
curs. So whereas for small torques buckling is hindered by
locomotion, for large torque the typical quadratic depen-
dence Fc1 ∝ M2

c1 is observed. In the following section, we
develop a theory to describe the observed buckling tran-
sition.
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Fig. 8. (Color online) The helical filament is approximated
by a thin helical rod of length L0 that is characterized by the
effective bending rigidity Aeff and local friction coefficients of
the helical filament. The applied torque Mez generates the
frictional torque m and forces f‖ and f⊥.

4 Buckling theory for a helical rod

The goal in this section is to formulate a theory that re-
produces the force-torque relation in fig. 7(b) for the first
buckling transition of the helical filament as obtained by
our simulations. Clearly, this relation cannot directly be
explained by the theory of a thin elastic rod that buckles
under the influence of an external force and torque which
we shortly mentioned in the introduction in eq. (1). There
are several reasons for this. First, the helical filament is
not just a simple elastic rod. Second, the external force
that puts the helix under tension is generated locally by
the rotation-translation coupling of the helix and accu-
mulated along the filament similar to a rod that buckles
under its own gravitational weight. Third, the whole fil-
ament moves with a constant velocity which leads to ad-
ditional frictional forces and it also precesses about the
external torque in the buckled state. In the following we
formulate a model based on the theory of a thin elastic
helical rod, derive from it a force-torque relation for the
buckling transition, and compare it to fig. 7(b).

4.1 Model equations

To set up our model equations, we approximate the helical
filament by a thin helical rod where the helicity comes in
through the rotation-translation coupling in the friction
matrix, as sketched in fig. 8. The length of the rod, L0 =
sin αL, agrees with the height of the helix, where α is the
pitch angle. In engineering science the buckling of helical
springs is a well known problem. If the height of the spring
is larger than its radius, one approximates the spring by a
soft rod with effective bending, shear, and compressional
rigidity [44–46]. In our case, in contrast to classical helical
spring theory, the pitch of the helix is much larger than its
radius. We therefore had to generalize the theory of helical
springs in ref. [46] to derive an effective bending rigidity
of the helical rod in terms of the bending and torsional
rigidity of the filament:

1
Aeff

=
1
2

1
A

1
sinα

(
1 + sin2 α +

A

C
cos2 α

)
. (17)

Details of the derivation are given in appendix C.
To address buckling of the helical rod, we start with

the balance equations for force and momentum acting on

a thin elastic rod [23,27] and neglect any inertial contri-
bution in the low Reynolds number regime:

F ′ + f = 0, (18a)

M ′ + e3 × F + m = 0, (18b)

where ′ means derivative with respect to the arc length
s and e3 is the local tangent vector. Here F and M
are internal elastic forces and torques acting along the
rod, whereas f and m denote, respectively, external force
and torque densities due to the applied motor torque and
friction with the surrounding fluid. In addition, bound-
ary conditions are necessary. At the free end of the rod
(s = L0) no external force and torque act, so elastic force
and torque have to vanish. The end attached to the sphere
can only move in z-direction with velocity v. The exter-
nal torque Mez is balanced by the elastic torque M(0)
and the thrust force on the sphere F = 6πηav equals the
elastic force at the leading end of the rod, Fz(0):

Fz(0) = F = 6πηavez, M(0) = Mez, (19a)

F (L0) = 0, M(L0) = 0. (19b)

After setting up the problem, we have to explain how
the different forces and torques entering eqs. (18) look
like for the helical rod close to the buckling transition.
The elastic torque M is proportional to the angular strain
vector Ω written in components with respect to the local
material frame {e1,e2,e3}:

M = AeffΩ1e1 + AeffΩ2e2 + CeffΩ3e3, (20)

where Aeff is the effective bending rigidity of eq. (17). Since
buckling theory considers local displacements of the rod
only, the torsional term and the actual value of the ef-
fective torsional rigidity Ceff are not important. The for-
mulation for M is in full analogy to our presentation in
sect. 2.1, only the spontaneous curvature and torsion are
zero for the helical rod which serves as an effective repre-
sentation of the helical filament. In setting up linearized
equations in the vicinity of the buckling transition, the
elastic force F is only needed for the unbuckled straight
rod oriented along ez. Since the external force density f
is constant for the straight rod, as we argue in the next
paragraph, eq. (18a) and boundary conditions (19) give
the linear force profile

F (z) = f‖(L0 − z)ez, with f‖ = F/L0, (21)

where we introduce f‖ as thrust force F divided by the rod
length L0. We will use it as one parameter in the following.

The straight filament moves with a constant veloc-
ity vez and rotates with a constant angular velocity ωez.
They result, respectively, in a constant frictional force den-
sity f‖ez and a torque density mez with

f‖ = a‖v + c‖ω, (22a)

m = c‖v + b‖ω, (22b)
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where the frictional coefficient c‖ couples translation to
rotation. Appendix A gives the coefficients a‖, b‖, and c‖
for the helical rod in terms of the parameters of the helical
filament. In eq. (21) we have already linked f‖ to the thrust
force F . From eq. (18b) and boundary conditions (19), we
also deduce a linear torque profile

M(z) = m(L0 − z)ez, with m = M/L0, (23)

where we relate m to the applied motor torque M divided
by the rod length L0. So, m is the second parameter in
our problem.

The buckled rod after the first buckling transition in
our simulations has a constant shape. It rotates about the
local tangent vector with angular velocity ωe3 and pre-
cesses with angular velocity χ about the axis of the applied
torque leading to a local velocity χez×r. Furthermore, the
filament translates with velocity v along the z-direction
and the total local velocity amounts to v = vez +χez ×r.
In the vicinity of the buckling transition, deformations are
small and in leading order we can identify v and ω with
the values of the straight rod. Then, the frictional torque
along the local tangent vector is

m = me3, (24)

where m is already given in eq. (22b). So, close to the
buckling instability we can identify m with the applied
motor torque as in eq. (23). The frictional force density
becomes

f = f‖P‖ez + f⊥P⊥ez + a⊥χP⊥(ez × r), (25)

where we use the projectors

P‖ = e3 ⊗ e3 and P⊥ = 1 − e3 ⊗ e3 (26)

on the directions parallel and perpendicular to the tangent
vector e3. The force density f‖ has already been given in
eq. (22a) and

f⊥ = a⊥v (27)

characterizes the frictional force density generated perpen-
dicular to the local rod axis when the rod moves with ve-
locity v. Since the frictional coefficient a⊥ is larger than a‖,
f⊥ acts against buckling. Finally, a⊥χ is the friction due to
the precession of the rod. We note that a term P‖ ·(ez×r)
does not appear since it does not contribute in leading or-
der to f‖. We also did not include the rotation-translation
coupling perpendicular to e3 since the two terms cancel
each other in the equations, we formulate in the following.

We will analyze the buckling transition by first con-
sidering the four parameters m, f‖, f⊥, and χ as inde-
pendent and then apply our results to reproduce the
force-torque relation of the helical rod. Buckling occurs
when the straight solution r(z) = (0, 0, z) of eqs. (18)
becomes unstable and a new non-trivial solution occurs
at a certain parameter set. We, therefore, use the ansatz
r(z) = (X(z), Y (z), z) and seek two equations linear in X,
Y , and its derivatives. We start by taking the derivative
of eq. (18b) and use F ′ = −f to arrive at

M ′′ + e′
3 × F − e3 × f + m = 0, (28)

where we insert the concrete formulas for M , F , f , m.
We linearize these resulting equations using the identities
Ω1 ≈ −Y ′′, Ω2 ≈ X ′′, P‖ ·ez = e3 ≈ (X ′, Y ′, 1), P⊥ ·ez ≈
−(X ′, Y ′, 0), and P⊥·(ez×r) ≈ (−Y,X, 0), and ultimately
arrive at

0 = − Y ′′′′ + ∂z(m̂(1 − ẑ)X ′′)

− f̂‖(1 − ẑ)Y ′′ − f̂⊥Y ′ + χ̂X, (29a)

0 =X ′′′′ + ∂z(m̂(1 − ẑ)Y ′′)

+ f̂‖(1 − ẑ)X ′′ + f̂⊥X ′ + χ̂Y. (29b)

Here we introduced the rescaled coordinate ẑ = z/L0

and the dimensionless parameters m̂ = mL2
0/Aeff, f̂‖ =

f‖L
3
0/Aeff, f̂⊥ = f⊥L3

0/Aeff, and χ̂ = χa⊥L4
0/Aeff.

Equations (29) are quite general and several related
problems follow from them. When forces f̂‖ and f̂⊥ van-
ish, they describe the writhing instability of rotating
rods [24]. For zero torque and precession frequency, and
f̂‖ = −f̂⊥ = f̂z, one arrives at the classical example of a
column that buckles under its own weight [23,27]. A sim-
ilar problem occurs for microtubuli that buckle under the
action of molecular motors [47]. In our case, the force den-
sity f‖ that causes buckling points along the rod axis and
f⊥ stabilizes the straight rod for non-zero v. In compari-
son, the column under gravity always experiences a force
density along the vertical which gives a force component
perpendicular to the rod as soon as it buckles and thereby
supports buckling.

We complete the linearized dynamic equations (29) by
writing the boundary conditions (19) in linearized and re-
duced form:

X(0) = 0, Y (0) = 0, (30a)

X ′′(0) = −m̂Y ′(0), Y ′′(0) = m̂X ′(0), (30b)

X ′′(1) = 0, Y ′′(1) = 0, (30c)

X ′′′(1) = 0, Y ′′′(1) = 0. (30d)

The first line means that the attached end of the rod can
only move in z-direction and not along the x and y axis.
The second line means that a torque does not act per-
pendicular to the z-axis. So if the rod starts to buckle,
the local torque me3 has to be equilibrated by a bending
moment. The free end of the rod is torque less and, there-
fore, the rod does not bend, as expressed by the third line.
Finally, the free end is also force free and the fourth line
follows from eq. (18b) by setting F = 0.

To search for non-trivial solutions of eqs. (29) in our
parameter space and thereby identify the buckling transi-
tion, we proceeded as follows. In addition, to the boundary
conditions (30a) and (30b), non-trivial solutions of the
buckling equations (29) can be characterized by X ′(0),
Y ′(0), X ′′′(0) and Y ′′′(0). The principal idea is to use
them to generate solutions of eqs. (29) and to fulfill the
boundary conditions (30c) and (30d) at the free end by
varying them. However, since X ′(0) and Y ′(0) just deter-
mine the amplitude of a bent configuration and merely fix
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Fig. 9. (Color online) (a) Manifold of bifurcation points in the parameter space (m̂, f̂‖, f̂⊥). To each parameter triple belongs
a specific value of the precession frequency χ̂. (b) Buckling curves f‖(m) for different values of the perpendicular force ranging

from f̂⊥ = 0 in steps of 25 to 300. The red dots are the critical forces and torques from fig. 7(b). (c) The plane pictures relation
(31) between f‖, f⊥, and m for the helical rod with constant friction coefficients. Intersecting it with the manifold of bifurcation
points gives the buckling curves in (d). Full blue line: for constant friction coefficients of the undistorted helix, dashed green
line: torque-dependent friction coefficients.

the rotational degree of freedom about the z axis, they can
be chosen arbitrary. Instead, we vary two of our four pa-
rameters, f̂⊥ and χ̂, to fulfill the four boundary conditions
at ẑ = 1. As a result, for given m̂ and f̂‖, we determine pa-
rameters f̂⊥ and χ̂ for which non-trivial solutions of the
buckling equations exist and thereby identify the mani-
fold of bifurcation points in our four-parameter space. We
discuss it in the following section.

4.2 Discussion

Figure 9(a) plots the manifold of bifurcation points. To
each parameter triple (m̂, f̂‖, f̂⊥) belongs a specific value
of the precession frequency χ̂ which we do not discuss
further here. At positive f̂⊥ and for small m̂ and f̂‖ the
straight configuration of the helical rod is stable. If we
change the sign of f̂⊥, a bifurcation occurs which we inter-
pret as an instability of the straight rod when it reorients
towards the perpendicular configuration. We saw this in-
stability in our simulations when we reversed the driving

torque as discussed in sects. 3.1.1 and 3.2. Here we keep
the direction of the torque but reverse the sign of the ve-
locity v and thereby the sign of f̂⊥ in eq. (27) by reversing
the chirality of the rod. The main result is the surface in
dark yellow that belongs to the first buckling transition
observed in our simulations, so at large m̂ the rod is buck-
led. Finally, at f̂⊥ ≈ 0 and large m̂ a transition between
two different configurations of the buckled rod occurs. An
interesting feature is the ridge in the bifurcation surface.
However, we could not determine any dramatic changes
in the buckling of the helical rod close to this ridge.

Figure 9(b) shows buckling curves f̂‖(m̂) for different
values of the perpendicular force ranging from f̂⊥ = 0
in steps of 25 to 300. At f̂⊥ = 0 the typical parabolic
curve of eq. (1) occurs. At constant but small value of m,
the critical force f‖ increases strongly with increasing f̂⊥.
Likewise, one needs large forces f̂⊥ to stabilize the straight
helical rod at high torques. The red dots are the critical
forces and torques from fig. 7(b) determined in our simu-
lations. We plot them in reduced units where we calculate
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Aeff from eq. (17). Note that the buckling curves develop a
shoulder at m̂ around 15 for increasing f̂⊥ due to the ridge
in the manifold of bifurcation points in fig. 9(a). The two
simulation points at large m are close to this ridge. We
speculate that the transition from a supercritical bifurca-
tion observed in our simulations at low m to a subcritical
bifurcation at large m is connected to the existence of this
ridge.

In the rotating helical filament or helical rod, the forces
f‖ and f⊥ and the torque m are related to each other
by eqs. (22) and (27). Eliminating velocity v and angular
frequency ω, one arrives at

f⊥ =
a⊥

a‖b‖ − c2
‖

(
b‖f‖ − c‖m

)
. (31)

We give the friction coefficients in terms of the helical
parameters in appendix A. Relation (31) defines a plane
in the parameter space (m̂, f̂‖, f̂⊥) which we intersect in
fig. 9(c) with the manifold of bifurcation points. The re-
sulting bifurcation curve is then plotted in fig. 9(d) as
full blue line. At low m we have a remarkable quanti-
tative agreement with our simulations (red dots) but we
miss the slight increase of the critical force f‖. We al-
ready discussed that the location of the buckling transi-
tion is sensitive to small variations in the parameters. We
also mentioned in the discussion of the simulation results
that close to the buckling transition the helical filament
is slightly deformed. In ref. [22] we calculated the effec-
tive spring constant A/(R2L) for the helical filament. It
gives a relative compression of the filament of about 2%
for critical forces of 1 pN at the buckling transition, which
is negligible. On the other hand, we apply a torque along
the helical axis. As a result, one end of the helix twists
against the other end by an angle Δφ/L = M/A, where
we set A = C [23]. One end of the helical filament is
free, so the twist increases linearly from the free end to
the other and the average value is M/(2A). Due to the
twisting, the radius of the helix changes. One can show
that for the average twist angle M/(2A) the inverse ra-
dius R−1 changes to R−1 + (cos α)−1M/(2A). Here we
keep the pitch angle α constant, which is confirmed by
our simulations. The helical radius directly influences the
friction coefficients b‖ and c‖ in eq. (31) (see eqs. (A.7)
and (A.8b) in appendix A) and eq. (31) becomes a non-
linear function in m = M/L0. Intersecting it with the
bifurcation manifold gives the green curve in fig. 9(d)
which nicely reproduces the critical force-torque relation
for m̂ < 10. Our theory also gives the strong decrease
of the critical force f‖ at large m. However, in the ef-
fective model the bifurcation is shifted to larger torque
values. This might be related to the ridge in the man-
ifold of bifurcation points. Nevertheless, considering the
fact that we approximate the helical filament by a rigid
rod whose helicity comes in through the friction coeffi-
cients, we obtain a very good agreement with our simula-
tions.

5 Summary and conclusions

Bacteria move forward by rotating a bundle of helical flag-
ella which creates a thrust force that pushes against the
cell body. In this article we have modeled a single flagel-
lum based on the discretized version of Kirchhoff’s elastic-
rod theory and developed a coarse-grained approach for
driving the helical filament by a motor torque. When in-
creasing the motor torque, the thrust force reveals a su-
percritical Hopf bifurcation due to buckling of the heli-
cal filament. When the torque is further increased, a sec-
ond buckling instability occurs. The Hopf bifurcation is
also visible when we attach the flagellum to a spherical
particle, which mimics the cell body, so that the whole
model bacterium moves forward. Via the size of the cell
body we can tune the thrust force pushing against the
cell body and the critical torque for buckling changes.
This results in a characteristic diagram critical force ver-
sus torque for the buckling transition (fig. 7(b)). We
note that fixing the direction of the motor torque and
the swimming direction does not hold for a freely swim-
ming bacterium. In future work we will therefore inves-
tigate the complex dynamics of the freely moving and
rotating cell body and the attached motor-driven fila-
ment.

We have developed a theory for the observed buck-
ling transition by approximating the helical filament by
a helical rod with an effective bending rigidity and the
characteristic rotation-translation coupling. The basic pic-
ture is that the filament buckles under the frictional forces
and torques that act along the filament when the fila-
ment rotates. For large friction of the load particle, when
its size is comparable to a bacterial cell body, buckling
is mostly due to the thrust force created along the fil-
ament and similar to a rod that buckles under its own
weight. In the limit of small friction of the load parti-
cle, the critical thrust force tends to zero and buckling
is mostly driven by the frictional torque acting along
the filament. However, our modeling reveals that sub-
tle details of the specific problem are important. One
has to take into account the precession of the buck-
led filament about the applied torque and, in particu-
lar, a perpendicular frictional force due to the motion of
the model bacterium that stabilizes the filament against
buckling. Finally, taking into account the small deforma-
tion of the rotating helical filament, we are able to ob-
tain a quantitative agreement with the simulated graph,
critical force versus torque, in the biologically relevant
regime.

To further illustrate the biological relevance of the ob-
served buckling transition, we first summarize a few exper-
imental values. Hotani gives the motor torque for observ-
ing a polymorphic transition of the flagellum at around
1.1 pNμm [14], whereas Darnton et al. mention a mean
torque acting on a flagellum of about 1.4 pNμm [5]. These
values agree with the torques where we observe buckling
for realistic cell body sizes (see fig. 7). Reference [5] also
mentions the relative stiffness of the helical filament so
that it hardly deforms under rotation which agrees with
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our simulations. Finally, thrust forces created by the bun-
dle are given as 0.41 ± 0.23 pN [5] or 0.5 pN [29]. This
agrees with an estimate F = 6πηav ≈ 0.6 pN where we
take the radius of the load particle as a = 1μm and use
the swimming velocity v = 30 μm/s. All these values are
close but below the simulated values Fc1 ≈ 1 pN for real
cell sizes. However, we note that Fc1 scales as Aeff/L2

0,
as our analytic model shows, and thereby depends on the
explicit choice of the bending (A) and torsional (C) rigidi-
ties. We have chosen particular values for them and also
set A = C in our simulations. So Fc1 will vary with the
actual parameters.

It is clear that swimming bacteria should avoid buck-
ling for efficient locomotion. However, they cannot sim-
ply increase bending rigidity A since a certain flexi-
bility is necessary during polymorphic transformations
or when a bundle forms. Reference [6] shows pictures
where single flagella are in a bent conformation simi-
lar to the buckled state in our simulations. This might
be a hint that flagella naturally buckle under their own
thrust. In peritrichous bacteria such as E. coli and
Salmonella, several flagella form a bundle which then has
larger bending stiffness and therefore buckling is not ob-
served.

Monotrichous bacteria only use a single flagellum.
Their conformation differs in pitch and radius from the
flagella of peritrichous bacteria [48]. A detailed analysis
shows that their swimming efficiency is reduced due to a
smaller pitch angle with sinα ≈ 0.75 [49]. This increases
the critical force Fcr ∝ 1/ sin α by about 10% compared
to peritrichous bacteria and might be an adaption of the
monotrichous bacteria to enhance the stability of their
single flagellum.

We also showed that a pulling flagellum is not sta-
bly aligned along the applied torque. So most bacteria
use their flagella to push themselves through the fluid.
Nevertheless, there are some marine bacteria that use
a back-and-forth rather than a run-and-tumble strategy
for chemotaxis. They live in a turbulent aqueous envi-
ronment in the ocean where they experience large shear
gradients on the micron scale [50]. Simulations in ref. [50]
show that in addition to the shear-driven reorientation
of the bacterium there must be further contributions to
the reorientation. Besides rotational diffusion this could
also be the unstable orientation of the rotating filament
when it pulls the cell body. Recent experiments on the
back-and-forth motion of marine bacteria Vibrio algi-
nolyticus directly show this reorientation of the flagel-
lum [51].

We close with this comment and hope that our work
initiates a more careful search for the buckling transition
in bacterial flagella.
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Appendix A. Summary of resistive force
theory for a helix

At low Reynolds number the force F and torque M acting
on a particle of arbitrary shape are linearly related to its
translational and rotational velocities [52],

(
F
M

)
=

(
A C
CT B

)(
v
ω

)
. (A.1)

The translational friction tensor A, the rotational friction
tensor B, and the coupling tensor C are determined by
the shape of the particle. Note that the rotational fric-
tion tensor B and the coupling tensor C depend on the
choice of the origin of the coordinate system whereas the
translational friction tensor A is unique.

In a moving helical filament, different parts interact via
hydrodynamic interactions. Nevertheless, using slender-
body theory, Lighthill demonstrated that one can describe
the hydrodynamic friction of the filament with the help of
resistive force theory [40,41]. In this theory one introduces
local friction coefficients per unit length parallel (γ‖) and
perpendicular (γ⊥) to the tangent vector of the filament.
Lighthill adjusted the coefficients for the helical filament
to [40]

γ‖ =
2πη

ln(2q/r)
and γ⊥ =

4πη

ln(2q/r) + 1/2
. (A.2)

Here η is the shear viscosity, r = 0.02μm the cross-
sectional radius of the bacterial flagellum, and q a char-
acteristic length, for which Lighthill derived q = 0.09Λ,
where Λ = 2πR/ cos α is the filament length of one helical
turn.

In a helical filament with translational velocity v and
angular frequency ω each segment moves with a velocity
v + ω × r, where r is the position vector from a point
on the helical axis to the segment. The force and torque
densities to initiate such a motion are

f =
(
γ‖P‖ + γ⊥P⊥

)
· (v + ω × r) (A.3)

m = r × f , (A.4)

where we use the projectors on the local tangent vector
e3 and the space perpendicular to it,

P‖ = e3 ⊗ e3, and P⊥ = 1 − e3 ⊗ e3. (A.5)

Integrating force and torque densities along the helical
filament with position vector

r(s) =
(
R cos

(cos α

R
s
)

, R sin
(cos α

R
s
)

, sin αs
)T

,

(A.6)

gives eq. (A.1). For comparing theory and simulation in
sect. 3, we calculated the integrals using the computa-
tional software program “Mathematica”. In particular, we
took into account that the helical filament in the simula-
tions does not consist of an integral number of helical turns
and that the rotational axis is shifted against the helical
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axis. In our analytical theory for the buckling transition
in sect. 4, we used friction coefficients calculated for a full
helical turn with L = 2πR/ cos α. The relevant coefficients
become

A⊥ = Lγ⊥

(
1 +

δ

2
cos2 α

)
, (A.7a)

A‖ = Lγ⊥
(
1 + δ sin2 α

)
, (A.7b)

B‖ = Lγ⊥R2
(
1 + δ(1 − sin2 α)

)
, (A.7c)

C‖ = Lγ⊥Rδ sinα cos α, (A.7d)

where we use δ = γ‖−γ⊥
γ⊥

to characterize the anisotropy
in the local friction coefficients. Note that A‖ also holds
for arbitrary filament lengths when L is not an integer
of a full helical turn. For all other coefficients one obtains
corrections of the form sin

(
cos α

R L
)

that vanish in the limit
L → ∞.

The effective friction coefficients for the helical rod
used in sect. 4 follow by dividing the friction coefficients
of eqs. (A.7) by the rod length L0 = L sin α:

a⊥ = A⊥/L0, a‖ = A‖/L0, (A.8a)

b‖ = B‖/L0, c‖ = C‖/L0. (A.8b)

Appendix B. Rotational motion of a rigid
helix

Starting from eq. (A.1) we set v = 0 and concentrate on
the rotational motion due to a constant external torque
M with the relevant equation

M = Bω. (B.1)

The rotational friction tensor B is symmetric. In the fol-
lowing we use its frame of eigenvectors {e1,e2,e3} and
the eigenvalues B1, B2, and B3. We differentiate eq. (B.1)
with respect to time t, use ∂tei = ω × ei, and obtain in
the eigenframe of B,

B1∂tω1 = (B2 − B3)ω2ω3, (B.2)
B2∂tω2 = (B3 − B1)ω1ω3, (B.3)
B3∂tω3 = (B1 − B2)ω1ω2. (B.4)

These equations are the same as the Euler equations for
a rigid body with an inertia tensor B and without fric-
tion. The external torque is zero so that angular momen-
tum is conserved. Following this analogy and according to
eq. (B.1), the constant external torque in our case corre-
sponds to the angular momentum of the rigid body, and
the dissipated energy P = M ·ω to the rotational kinetic
energy. Hence, besides the square of the applied torque
M2 =

∑
i B2

i ω2
i also the dissipated energy P =

∑
i Biω

2
i is

a conserved quantity and the trajectory of ω follows from
the intersection of two ellipsoids as illustrated in fig. 10(a).
In particular, if two of the friction coefficients Bi are equal,
the angular velocity ω precesses in real space on a cone
about the direction of the torque [42,43].

Fig. 10. (Color online) (a) The constant applied torque and
the dissipated energy define two ellipsoids (red and blue) in
the body fixed frame of a rigid helix. The intersection gives
the path of the angular velocity ω. For a long slender helix
two directions are degenerate and the trajectories are circles.
(b) In the lab frame the helix rotates about its axis which
precesses about the applied torque M .

We already calculated one component of the rotational
friction tensor B of a helix with filament length L in the
previous section. In general, for a long slender helix like
the normal form of the bacterial flagellum two eigenvalues
of B are equal to a good approximation, B1 ≈ B2 ∝ L3.
The third small friction coefficient B3 ∝ L belongs to the
principal axis, which is parallel to the helical axis, again to
a good approximation. Hence, a rigid helical filament pre-
cesses about the applied torque (fig. 10(b)) and does not
align parallel to the torque as observed in our simulations.

Appendix C. Effective bending rigidity of a
helix

We aim at replacing the helical filament by a rod with
an effective bending rigidity Aeff. Our strategy is to apply
a small constant torque perpendicular to the helical axis,
rewrite the total elastic energy as a function of the torque,
and compare this result with the case of a simple rod to
obtain Aeff. To bend a simple rod with a constant curva-
ture Ω, one needs the bending energy F = 1

2AeffΩ2L0.
Using the torque M = AeffΩ (see, for example, eq. (20)),
we obtain

F =
1
2

M2

Aeff
L0. (C.1)

Now we calculate the corresponding elastic energy for the
helical filament. We apply a constant torque M = Mex

perpendicular to the helical axis ez and replace in Kirch-
hoff’s energy density (4) the components of the angu-
lar strain vector Ω by the components of the torque
M = AΩ1e1 + A(Ω2 − κ)e2 + C(Ω3 − τ)e3:

fcl =
1
2

(
M2

1

A
+

M2
2

A
+

M2
3

C

)
. (C.2)
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Fig. 11. (Color online) Reorientation rate λ as a function of
motor torque M for different elastic constants, where A0 =
3.5 pN μm2 is the bending rigidity used in this article. Two
helical geometries of the flagellum are considered: (i) for per-
itrichous bacteria used in this article and (ii) for monotrichous
bacteria.

Note that the components of the applied torque, Mi =
Mex · ei, depend on the local material frame {e1,e2,e3}
of the helical filament. In leading order in M , we calculate
the components Mi for the undeformed helical filament of
eq. (A.6) using the Frenet frame and integrate eq. (C.2)
along the filament:

F =
M2L

4

[
1
A

+
sin2 α

A
+

cos2 α

C
+ O

(
sin 2kL

2kL

)]
,

(C.3)

where we used k = cos α/R. We compare this result with
eq. (C.1) and introduce the helix height L0 = L sin α in
order to identify the effective bending rigidity

1
Aeff

=
1
2

1
sin α

1
A

(
1 + sin2 α +

A

C
cos2 α

)
. (C.4)

To verify the applicability of the effective bending
rigidity, we study in detail the reorientation rate λ of
the fixed flagellum, when the thrust force pulls at it (see
sect. 3.1.2). Our claim is that the reorientation rate de-
pends on the bending of the helical filament as a whole
and thus Aeff should be the relevant parameter. We there-
fore determined λ as a function of the motor torque M
for different values of the bending rigidity A and the tor-
sional rigidity C (see fig. 11). In addition to the heli-
cal geometry of peritrichous bacteria used in this paper,
we also considered the flagellum of monotrichous bacte-
ria, which has different helical parameters: κ0 = 2.2/μm
and τ0 = 2.5/μm [48]. Dimensional analysis suggests to
rescale the torque M by the characteristic bending mo-
ment Aeff/L0 as in sect. 4 and the reorientation rate λ
by Aeff/(1

3L3
0A⊥), where A⊥ is the friction coefficient in-

troduced in eq. (A.7a). With such a rescaling all different
curves for the reorientation rate fall onto a common mas-
ter curve in fig. 11. The effective bending rigidity Aeff is
therefore the right parameter in an effective description of
the helical filament.
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