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1 Introduction

The most powerful results to come from the AdS/CFT correspondence, and thus arguably

from string theory, are those of a universal nature. Although we are some way from finding

the holographic dual of QCD, or indeed of any real-world condensed matter system, we

have found that there are certain quantities which are invariant in a wide class of theories.

It is clear that such universal quantities should not depend on the microscopic nature of

the theory at hand and thus those which are of a low-energy nature or at critical points in

the phase diagram are the most striking. Of these, one of the most celebrated is the ratio

of the shear viscosity to entropy density of large N gauge theories [1].

The ratio η/s = 1/4π was known well before the advent of the AdS/CFT correspon-

dence [2], and is a famed result of the black hole membrane paradigm which shall be
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discussed in the following section. The link to holographic gauge theories was shown in [1]

by considering fluctuations on top of a supergravity background described by a Maxwell

action. Using the prescription given in [3], it was possible to obtain the shear viscosity

from the hydrodynamic expansion of the retarded correlator.

The connection between the membrane paradigm result and holographic transport

coefficients was put on a solid footing in [4], where it was shown that at the level of

linear response theory, the holographic properties of a strongly coupled thermal field theory

are determined, in the low frequency and momentum limit, by the horizon geometry of

the gravitational dual. With this understanding, the universality of the ratio η/s has

been restricted to gravitational theories described by isotropic Einstein gravity (plus a

cosmological constant) [5, 6].

However, the results presented in [4] are not always applicable. The assumptions

considered in that work fail to capture the physics of probe branes with non-trivial field

strength components on their worldvolumes. Non-zero field strengths are frequently needed

to capture the phenomenology of the systems modelled by the AdS/CFT correspondence.

For example, it is essential to turn on the temporal component of an abelian gauge field to

describe, via the holographic dictionary [7, 8], a chemical potential. It is also interesting

to include the effects of external electromagnetic fields in the models describing both the

Quark-Gluon Plasma and lower-dimensional condensed matter systems.

In [9] some of us studied the generalization of the formula for the DC conductivity

provided in [4], applied to probe Dp-branes at finite baryon density. The main difference

between both results is that in [9] the rôle of the metric is played by the non-symmetric

quantity γmn = gmn + 2πα′Fmn, where gmn is the pullback of the 10-dimensional metric

onto the worldvolume of the probe branes, and Fmn is the field strength associated to the

U(1) gauge field living in the probe branes. The formula for the DC conductivity given

in [9] recovers previous results from the vanishing electric field limit of the result in [10],

where the DC conductivity is found by demanding reality of the action, and hence no

fluctuations are involved. We will refer to this last calculation as the macroscopic one,

whereas that in which fluctuations are studied will be referred to as the microscopic result.

The microscopic calculation in the case of an external electromagnetic field was studied

in [11]. It was shown that with the imposition of the appropriate boundary conditions

at a special position on the probe-brane worldvolume (the ‘singular shell’) was enough

to recover the macroscopic results for the conductivity via a Kubo relation. The Kubo

relation is understood to give the conductivity in linear response theory. In the case of

finite background fields, the response to an infinitesimal electric field must be interpreted

as an infinitesimal addition to a finite background value and thus the microscopic and

macroscopic calculations agree, even when one is beyond the linear response regime.

In the present work we show that the microscopic determination of the DC transport

coefficients performed in [4] can be extended to a new form of membrane, associated with

the interactions of open string states in an asymptotically AdS background. Through the

use of the open-string metric it is possible to show that the degrees of freedom on a probe

Dq-brane feel an induced horizon due to the introduction of certain background fields (in

particular those corresponding to turning on an external electric field in the gauge theory).
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We are able to rederive holographic results in the language of a new membrane paradigm.

We will also discuss the nature of the induced horizon and propose that its temperature

should be read as the temperature of the gauge theory felt by fundamental matter moving

in the electric field. Thus, the results of this paper in summary are:

• The geometrization of background gauge fields on probe branes leads to an effective

action for open string degrees of freedom via the open string metric which may include

both a Maxwell term and a topological term.

• Using open string degrees of freedom we find that an electric field on a probe brane

induces a horizon structure with an associated temperature which can be interpreted

in the dual gauge theory language. We extend this to the case which includes finite

baryon density and background temperature.

• The open string horizon can be interpreted in membrane paradigm language, leading

to the calculation of transport coefficients on the electric membrane.

• Quasinormal modes in the open string metric also see the horizon and we can thus

define retarded and advanced Green’s functions in the usual way via appropriate

boundary conditions on the induced horizon with purely incoming boundary condi-

tions.

The black hole membrane paradigm. Before studying the gravity dual of flavour

systems in the presence of background fields, let us summarize the classical membrane

paradigm following closely the exposition in [4]. Here we review the basic idea with only a

Maxwell term in the diagonal metric background. We will extend the method to a Maxwell

plus topological term in non-diagonal and non-static, stationary metrics in sections 3.2

and 4.5.

The membrane paradigm and its link to holography is a consequence of a few very

simple results. In defining the action for a spacetime with a horizon we are forced, by the

consistency of the variational principle, to include a surface term on the horizon itself. One

can ask what an observer sees when hovering just above this surface, by looking at how

terms in the bulk show up as surface terms on the horizon. One considers not the action on

the horizon itself as the surface term, but on a slice at radius r0 just outside the horizon,

the so called stretched horizon. For example, consider a Maxwell term in the bulk,

Sbulk = −
∫

r>r0

dr ddx
√−g fMNf

MN

4 g2d+1(r)
, (1.1)

whereM,N run over all spacetime directions in the bulk, gd+1(r) is an r dependent coupling

term and g is the determinant of the metric in the bulk. This action induces a surface term

Ssurf =

∫

Σ

√−γ
( J µ

√−γ

)

aµ , (1.2)

to cancel the boundary term arising from the variation of the bulk Maxwell action. γ is

the induced metric on the spatial slice at radius r0 and

J µ = −
√−g f rµ
gd+1(r0)2

. (1.3)
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Such a surface term looks to an observer hovering at the slice r0 to be a current, J µ(r0)√
−γ ,

induced by the source aµ. By demanding a regular field strength on the horizon (given

that for an infalling observer there is nothing special about this radius), the dependence

on the combination of r and t is constrained, and one can thus show that, for a static

spacetime, fri =
√

grr
gtt
fti, thus linking the current and electric field on the horizon. The

Maxwell equations, together with the Bianchi identities, lead to a current

jimb ≡
J i(r0)√−γ =

1

g2d+1

√

g

grrgtt
gii
∣

∣

∣

∣

r0

fit , (1.4)

where fit is the electric field strength measured by the observer at the horizon. Such a

response current to an electric field leads to the interpretation of the horizon as a conducting

membrane with conductivity

σmb ≡
1

g2d+1

√

g

grrgtt
gii
∣

∣

∣

∣

r0

. (1.5)

The key point to the link between the membrane paradigm and the AdS/CFT corre-

spondence was the fact that, in the hydrodynamic limit, the expression for the current on

the boundary of AdS is made up of terms which together are independent of the radial

coordinate. Thus, the expression can be taken from the boundary to the horizon, and is

found to match exactly with the conductivity of the membrane. The non-trivial evolution

in the radial direction takes into account effects beyond the hydrodynamic limit.

Outline of this paper. The discussion we are concerned with requires some intuition

on the behaviour of probe branes in the presence of external fields. In section 2 we review

the most important aspects of this setup, providing the references needed to study the

published work in further detail. We also provide some expectations from the field theory

in order to justify the validity of the probe approximation which we use throughout.

The reader familiar with such systems will not find anything new in section 2, and may

skip directly to section 3, where we discuss the main ideas contained in this paper. First

we write an effective action for the gauge field fluctuations on the probe brane, in terms

of a metric capturing the effects of the background electromagnetic fields in the bulk. We

then revisit the membrane paradigm assuming the effective metric is static and show in an

example how we can easily study DC transport coefficients.

When we have an electric field and finite baryon density in the background, the effective

metric felt by the vector fluctuations is not static but stationary (in the probe approxi-

mation). We study the properties of the horizon of this effective metric in section 4, and

extend the discussion on the membrane paradigm to non-static, stationary, non-diagonal

metrics, giving examples of the application of our results.

We conclude in section 5 by commenting again on the most important results in this

paper, together with some outlook for future work.

2 Metallic AdS/CFT

The study of gauge theories in the presence of electromagnetic fields in a holographic con-

text has, over the last few years, been under intense investigation [10–28]. As is frequently
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the case in the holographic correspondence, properties in the gauge theory are mapped

beautifully to geometric properties of the gravity picture. We shall first go through in de-

tail the physics of the gauge theory description before going through the parallel analysis

in the gravity picture.

2.1 Gauge theories in the presence of background electric fields

The construction of interest is given by applying an external electric field, Ex, in the x-

direction in M1,3 to Nf hypermultiplets of N = 2 charged fundamental matter interacting

with N = 4 super Yang-Mills with gauge group SU(Nc) at finite temperature. The ratio

Nf/Nc is taken to vanish such that, while we can consider processes involving the prop-

agation of fundamental matter, fundamental loops are suppressed. For low temperatures

and low electric field strengths (T/mq . 1,
√
Ex/mq . 1) quarks are bound into mesons

which are infinitely stable (in the ’t Hooft limit), with a discrete, and gapped spectrum. As

the temperature or electric field strength is increased, the mesons are destabilized as the

electric field pulls the charged particles apart. The thermal fluctuations destabilize them

further. The effect of the electric field will thus be to pair produce if its energy is high

enough with respect to the mass of the fundamental matter.

As one turns up the electric field to a value such that pair production initiates, the

charged quarks and antiquarks1 which are pulled out of the vacuum are accelerated in

opposite directions and quickly collide with the background of adjoint matter, whose energy

density is O(Nc/Nf ) higher than that of the fundamental matter. The adjoint matter thus

acts as a bath, which can absorb, in the quenched approximation, an infinite amount of

energy from dissociated mesons without heating up. On colliding with the adjoint matter,

some of the velocity is deposited in the background, thus heating it (infinitesimally) but

not adding overall momentum, because for every quark moving in one direction there will

be an antiquark moving in the other.

Clearly, this flow of charge corresponds to a current, which, on switching on an electric

field at time t0, will be time-dependent. In the quenched approximation this time depen-

dence will show up only at short times and asymptotically long times, parametrically of

order O(Nc/Nf ), while the charge is accelerated until it comes to a pseudo-equilibrium

with the adjoint matter, such that the energy flow from the electric field equals the energy

flow from the fundamental into the adjoint matter. In the present work we will take the

perspective that we have already come to this pseudo-equilibrium and thus a semi-steady

state has been established (see [29] for a time-dependent solution to such a process). We

can thus talk about the conductivity of the plasma, given by the ratio of the induced

current to the electric field strength, σ = Jx
Ex

.

As the fundamental matter moves through the background of adjoint matter at finite

temperature, it feels a hot wind from the oppositely charged fundamental matter coming

from the other direction which have also come from pair production process. This temper-

ature is hotter than the temperature of the bath and is a combination of the relativistic

effects of a velocity on the energy density of the background (see [30]) and also of the

1We will use the word quarks generally when talking about charged fundamental matter.
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thermal interactions with other fundamental matter. We denote the effective temperature

Teff = Teff(T,Ex,mq). Indeed, if the background is at zero temperature, the accelerated

fundamental matter will still feel an effective temperature — it will appear to be in a bath

of temperature Teff . If one includes the effect of fundamental loops, the adjoint matter

would heat up as more and more energy from the electric field was transferred to thermal

energy through collisions with the fundamental matter. There is no equilibrium in this

case as the plasma will heat up indefinitely and thus beyond the probe approximation the

conductivity is infinite — as expected for a translationally invariant system.

In the presence of a finite baryon density the situation is similar, but in this case one

does not need to reach a critical electric field value or temperature to set up a current.

The matter making up the quark density will be accelerated, adding to the current induced

by pair-production at any finite electric field value. In this case not only is there a finite

current, but also a finite momentum flow. The effective temperature will thus also be

a function of the baryon density. On going beyond the quenched approximation in this

case, not only will the system heat up indefinitely, but it will also accelerate in a direction

determined by the sign of the baryon density.

Thus we have a simple picture of this pseudo-equilibrium situation of charged funda-

mental matter interacting with a large number of N = 4 hypermultiplets at finite tem-

perature in the presence of an electric field with, or without finite baryon density. Such a

simple picture is perfectly mirrored in its holographic dual.

2.2 D-branes in the presence of background electric fields

The gravity dual of the above setup is very familiar and has been studied in detail in a

large number of papers (see previous references in this section). However, here we would

like to reexamine this picture and both reinterpret the known results and derive new ones

in the language of the membrane paradigm. We will focus in detail on the D3/D7 brane

intersection in the quenched approximation, though many of the ideas are paralleled in

similar intersecting models.

The supergravity geometry that we are interested in is the AdS5 × S5 background

generated by Nc ≫ 1 black D3-branes, that may be parametrized as

ds2 = GMNdx
MdxN (2.1)

≡ (πTL)2

u

(

− fdt2 + d~x2
)

+
L2

4fu2
du2 + L2

(

dθ2 + sin2 θdΩ2
3 + cos2 θdφ2

)

,

where L is the radius of the AdS5 and S5 spaces, d~x2 ≡ dx2 + dy2 + dz2, dΩ3 and dφ are

the metrics of unit radius 3 and 1-spheres respectively. The blackening factor is f ≡ 1−u2,
where u is dimensionless2 and goes from the boundary at 0 to the horizon at u = 1.

It is in this background that we will study the phenomenology of D7 probe branes.

The DBI action for Nf ≪ Nc D7-branes is written in terms of the pullback metric from

the bulk within which it lives, plus the scalar, fermionic and vector valued fields on its

2The dimensionless radial coordinate u is related to the standard AdS radial coordinate, r in ds2 =
r2

L2 (−fdt
2 + d~x2) + L2

r2
dr2

f
+ L2dΩ2

5 ,
(

f(r) = 1−
r4
H

r4

)

, by u ≡
r2
H

r2
≡

(πTL2)2

r2
.
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worldvolume. In the following we will turn off all fermionic terms

SDBI = −TD7Nf

∫

d8ξ e−φ
√

− det(γmn) , (2.2)

where TD7 = (2π)−7α′−4 and γ denote the pullback metric plus gauge field,3

γmn ≡ ∂mX
M∂nX

NGMN + 2πα′Fmn ≡ gmn + F̃mn . (2.3)

The S3 direction is trivial so it is convenient to integrate out and the action becomes 5

dimensional.

We chose the embedding with θ = θ(u) and φ = 0. The pullback metric of a D7-brane

onto the D3-brane background will thus be given by

ds27+1 = gttdt
2 + gxxd~x

2 + guudu
2 + g2ΩΩdΩ

2
3 (2.4)

≡ (πTL)2

u

(

− fdt2 + d~x2
)

+ L2

(

1

4fu2
+

ψ′2

1− ψ2

)

du2 + L2
(

1− ψ2
)

dΩ2
3 ,

where ψ(u) ≡ cos θ(u) is the field which defines the embedding of the D7-brane in the

black D3-brane geometry.

We will consider different choices for the specific gauge field on the D7-brane, but

the one-form gauge potential (A, such that in equation (2.3) F = dA) which captures all

phenomena discussed here is

2πα′A ≡ Ã+ 2πα′a

≡ Ãt(u)dt+
(

− Ẽxt+ Ãx(u)
)

dx+
(

B̃zx+ Ãy(u)
)

dy

+
(

B̃xy + Ãz(u)
)

dz + 2πα′a , (2.5)

where tilde variables include 2πα′ and correspond to the background field. At introduces

finite baryon density, E is a constant background electric field and B a magnetic field.

Ax, Ay and Az will encode the optical and Hall currents generated by the electric field

and magnetic fields in the presence of baryon density. On top of this, we will consider

fluctuations ax,y,z(t, u) in section 3.1.

In the presence of the electric field, if the field is large enough as compared to the mass

of the fundamental matter, there is a special position on a probe D7-brane’s worldvolume

at which its Lagrangian density develops a complex part in the absence of a current, and

vanishes in its presence. This radius defines a shell around the origin of AdS and shall

be termed the singular shell. The study of the singular shell and its interpretation as a

horizon will make up a large part of this paper.

2.3 The induced current and the singular shell

In this section we simplify to the case of zero magnetic field and show how the singular

shell appears naturally in the setup. In this case the DBI action at the classical level (i.e.,

3Our index conventions are the following: (1) background spacetime: MNPQ = 0, 1, · · · , 9; (2) worldvol-

ume spacetime: mnpq = 0, 1, · · · , 7; (3) 4D field theory spactime: µνρσ = 0, 1, 2, 3; (4) 3D field theory space:

i, j, k = 1, 2, 3. Also note that the gauge field with tilde includes the factor of 2πα′, i.e. ÃM = 2πα′AM .
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turning off fluctuations) is given by

S = −N
∫

dt d~x du gxxg
3/2
ΩΩ

√

−guu
(

gttgxx + Ẽ2
x

)

− gxxÃ′2
t − gttÃ′2

x , (2.6)

N ≡ NfTD7g
−1
s 2π2 =

λNfNc

(2π)4L8
, (2.7)

where 2π2 is a volume factor of S3 and L4α′−2 = 4πgsNc = g2YMNc = λ.

Since the gauge fields enter the action only through their field strengths there are

conserved charges

n̂q ≡
1

N
δS

δÃ′
t(u)

, Ĵx ≡ 1

N
δS

δÃ′
x(u)

, (2.8)

where n̂q is related to the quark density [31] and ĵx is related to the current in the x-

direction [10]. A normalization N is chosen to simplify the Legendre transformed action

and a further, physical normalization is shown later in equations (2.12) and (2.13). The

Legendre transformed action reads

SLT = S −
∫

dt d~x du

[

Ã′
t

δS

δÃ′
t

+ Ã′
x

δS

δÃ′
x

]

,

= −N
∫

dt d~x du
√

−
(

gttgxx + Ẽ2
x

)

g2xxguug
3
ΩΩ

√

1 +
gttn̂2b + gxxĴ2

x

gttg3xxg
3
ΩΩ

. (2.9)

Since gttgxx < 0, the first square root changes sign at a radius us (hereby called the singular

shell) such that

Ẽx =
√

−gtt(us)gxx(us) , us =
1

√

1 + ẽ2x
, (2.10)

where ẽx = Ẽx

(πTL)2
. In order to make the action always real this sign change should be

countered by a sign change in the second term, which implies the relation:

J̃x =

√

√

1 + ẽ2x
(

1− ψ2
s

)3
+

ñ2q
1 + ẽ2x

ẽx , (2.11)

where

ñq =
n̂q

(πTL2)3
, J̃x =

Ĵx
(πTL2)3

, ψs = ψ(us) . (2.12)

These are convenient dimensionless variables which will be used in the relevant computa-

tions. We will interpret the final results in terms of dimensionful physical quantities nq
(quark density), Jx (current density), Ex (electric field) which are related to their dimen-

sionless counterparts as [10, 31]

ñq =
8

NfNc

√
λT 3

nq , J̃x =
8

NfNc

√
λT 3

Jx , ẽx =
2

π
√
λT 2

Ex . (2.13)

A useful expression in terms of physical variables is

Jx = σxxEx =
NfNcT

4π

√

√

1 + ẽ2x
(

1− ψ2
s

)3
+

ñ2q
1 + ẽ2x

Ex , (2.14)

=

√

N2
fN

2
c T

2

16π2

√

1 + ẽ2x
(

1− ψ2
s

)3
+

d2q
1 + ẽ2x

Ex

– 8 –
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1 2 3 4
Ρ

1

2

3

4
L

Figure 1. D7-brane embeddings in a the black D3-brane background with worldvolume electric

field. The L and ρ coordinates, which are easier for visualising the embeddings, label a cartesian

version of the u and psi coordinates used throughout this paper. The black disk shows the black

hole, while the circular dashed line labels the singular shell. Those embeddings which pass through

the singular shell are in the conducting phase while those which do not are in the insulating phase.

The dashed embedding exhibits a conical singularity on the L-axis.

where σxx is a conductivity. Note that dq ≡ NfNcT ñq

4π =
nq

(π/2)
√
λT 2

has dimension one, while

ẽx = Ex

(π/2)
√
λT 2

is dimensionless. The latter agrees with (3.7) in [10], where D → nq and

B → Jx.

Thus, given a value for the embedding position, ψs, at the singular shell (or, by inte-

grating the embedding to the boundary, the value of the mass of the fundamental matter),

the baryon density and the electric field strength, we find a fixed current, as expected from

the physics of the problem. As discussed in section 2.2, for zero baryon density and large

mass fundamental matter (ψs = 1) there is no current as the electric field is not large

enough to pair produce.4

In figure 1 we show several representative embedding profiles, corresponding to different

masses of the fundamental mass, at fixed electric field and zero baryon density. The black

disk corresponds to the black hole, while the dashed circle defines the singular shell. Those

embeddings which pierce the singular shell correspond to conducting fundamental matter,

while those which do not have fundamental matter in the insulating phase. The dashed

embedding which pierces the singular shell and then hits the L-axis has a conical singularity.

However, as we will show, from the point of view of the fluctuations of open strings, the

physics inside the singular shell is hidden from them and thus the conical singularity is not

a problem. According to [32], the conical singularity is a signature that the probe brane

approximation needs a sink for the energy from the electric field to flow to.

4We are abusing notation here, with ψs = 1 we refer to the maximum value of ψ taken as the brane

approaches the D3-branes (though it may never pierce the singular shell). For Minkowski embeddings the

brane solution reaches ψ = 1, which is the boundary point from which the numerical integration is taken.

The important point to note is that for very massive embeddings, the pair-creation term vanishes.
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This analysis have been done for a general case including a magnetic field (2.5) in [16]

and we present the final conductivity results.5

σxx =
NfNcT

4π

√

(

1− ψ2
s

)3
+

ñ2q√
F
(

F + b̃2x + b̃2z
)

F + b̃2x
√√

F
(

F + b̃2x + b̃2z
)

, (2.15a)

σyx = −NfNcT

4π

ñq b̃z

F + b̃2x + b̃2z
, σzx =

b̃xb̃z

F + b̃2x
σxx , (2.15b)

where

b̃x,z ≡ Bx,z

(π/2)
√
λT 2

, (2.16)

F ≡ 1

2

(

1 + ẽ2x − b̃2x − b̃2z +

√

(

ẽ2x − b̃2z
)2

+
(

1 + b̃2x
)(

1 + b̃2x + 2(ẽ2x + b̃2z)
)

)

, (2.17)

and ρ in (3.7) of [16] is the same as our dq =
NfNcT ñq

4π =
nq

(π/2)
√
λT 2

defined below (2.14).

Note that the limit ẽx → 0 implies F → 1.

2.4 Thermodynamics of the probe-brane system

The evidence in this paper will suggest that the fluctuations on the probe-brane world-

volume feel the singular shell as a horizon. In order to study the thermodynamics of the

system one needs to integrate over the worldvolume of the probe-brane. It appears that

in order to calculate the free energy one should include the region inside the singular shell

and thus thermodynamic quantities are concerned with the behaviour inside this region.

However, the DBI action itself breaks down between the singular shell and the background

horizon.

The DBI action is an approximation in the slow-varying limit of F on the brane

worldvolume (slow such that it doesn’t vary on the string scale). In the presence of a

finite electric field, when a current is set up, this limit is no longer valid. While Ax(u) is

well-behaved in and around the singular shell, it is singular at the background horizon

Ax(u) ∼ Ex log(u− uh) , (2.18)

and thus the DBI action is not a good approximation in this region. In fact it appears

that this may be a relic of the conical solutions, seen for embeddings which do not hit the

background horizon but are Minkowski embeddings with conical singularities.

The breakdown appears to come from the lack of back-reaction in these systems. We

are pumping energy into the brane through the electric field and in the probe approximation

there is no sink for this energy. While the solutions outside the singular shell are well

behaved and thus the transport coefficients can be trusted as these only depend on the

behaviour outside this region, those inside the singular shell and close to the background

horizon should not be trusted. Therefore, to perform a free energy calculation one has to

understand better how to treat the action in this approximation.

5The results are valid for any black hole embedding. However, there may be more than one embedding

for a given set of parameters and the embedding of the lowest free energy will be the ground state. To

identify the ground state, we need to study the phase diagram [33] following, for example, [31, 34–36].
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3 The open string metric and fluctuations in external fields

When background Kalb-Ramond fields or world-volume gauge fields on a probe D-brane

are turned on, the fluctuations of open strings on the probe-brane do not feel simply the

background geometry that they are probing [37, 38]. The open string metric describes

precisely the effective geometry felt by open strings in the presence of external fields.

Following [37], we define the (inverse of) the open string metric, smn, and an antisymmetric

tensor θmn through the simple relation

γmn = (γmn)
−1 = smn + θmn . (3.1)

smn is defined such that smns
np = δpm, then

smn = gmn − (F̃ g−1F̃ )mn . (3.2)

We will refer hereafter to smn as the open string metric (OSM). This object determines

the equations of motion and thus solutions of the excitations of the probe brane.6

To see this let us recall the blackfold dynamics of [39]. The profile of a brane embedded

in a higher-dimensional manifold via some relations fa = 0, a = 1, · · · , N , is described by7

Ka
mnT

mn = 0 , DmT
mn = 0 , (3.3)

where Ka
mn is the extrinsic curvature with m,n along the Dq-brane worldvolume, Dm is a

covariant derivative with respect to the induced metric and Tmn the stress-energy tensor

of the membrane. The first relation in (3.3) is a generalization of the geodesic equation

which makes it clear that the embedded D7-branes have an extremal volume. The fact

that Tmn, and not the metric, enters into equation (3.3) is a manifestation of the brane’s

profile being determined not only by gravitational interactions in the 10-dimensional bulk,

but also by the field strength on the brane’s worldvolume.

In the case at hand, the probe branes are described by the DBI action (2.2), and the

stress energy tensor is found to be [40]

Tmn =
2√−g

δSDBI

δgmn
= −TD7Nfg

2
d+1s

mn , (3.4)

where we have defined a function g2d+1 ≡ √−γ/√−g =
√−s/√−γ, which induces a con-

formal transformation in smn. The equations of motion derived from (3.3) coincide with

the ones obtained via the Euler-Lagrange equations from the action (2.2), showing that

smn and g2d+1 are all we need to determine the profile of the fields on the brane.

A similar relation allows one to express θmn as the variation of the DBI action with

respect to the field strength Fmn. This means that s and θ are conjugate variables to g and

F , and therefore we can make a Legendre transformation of the action to express it in terms

of the new variables. Such a procedure will give rise to a topological term coming from

δSDBI

δFmn
Fmn = NfT7

∫

d8ξ
√−γ θmnFmn , (3.5)

6The fields living in the brane correspond to open strings degrees of freedom, hence the name OSM.
7We refer to [39, 40] for details.
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which can be written as a total derivative and therefore contributes only with a boundary

term. In this paper we will not pursue this direction further, though the further study of

this term may be necessary to understand the thermodynamics of some brane-intersection

scenarios.

3.1 The effective action for fluctuations of gauge fields on probe branes

Consider now the fluctuations of the abelian gauge field living on a probe brane.8 We will

not consider the fluctuations along the S3 wrapped by the D7-branes (thus by expanding

the DBI action to second order in gauge field fluctuations we can integrate over this S3).

Considering the quadratic fluctuation terms we are left with an effective action which can

be written in terms of sab as

Seff = −N ′
∫

d5x

[√−s
4 g25

smpsnqfmnfpq +
1

8
ǫmnpqrfmnfpqQr

]

, (3.6a)

N ′ ≡ N (2πα′)2 =
NfNc

4π2L4
, Qr = −

√−γ
8

ǫmnpqrθ
mnθpq , (3.6b)

where g25 =
√−s/√−γ and the indices do not run along the S3 directions (notice however

that
√−s knows about the components of the metric along these directions). The Levi-

Civita symbol is defined as ǫtxyzu = −ǫtxyzu = 1. fmn = ∂man − ∂nam corresponds to the

field strength of the fluctuations of the gauge field (2.5).

The action (3.6a) consists of a Maxwell term plus a topological term.9 The second

term may have some formal relation to a higher derivative correction [44]. The OSM smn
naturally raises indices and the density

√−s is compensated by the running gauge coupling

g25. Qm and smn encode the background gauge field effect such as of a finite density or

background electromagnetic field. The topological term appears only when there are two

or more non-vanishing θmn elements with all different indices, (3.6b). Although the use of

the OSM and θ has appeared previously in the literature [19], this is the first time, to our

knowledge, that the effective action (3.6a) is written explicitly, emphasising the topological

nature of the second term (in [38] the effective actions for scalars, spinors and gravitons

were discussed and in [41] the importance of the effective metric in the absence of probe

branes was stressed).

Note that this effective action is not complete since there are also coupling terms

between gauge and scalar fields (fluctuations transverse to the D7-brane) in general. For

a fully general discussion of gauge fluctuations, we have to consider scalar fields dynamics

and their coupling to gauge fields together. However, in order to highlight our proposal

of using the OSM in the simplest setup, we choose to work using examples that can be

described effectively only by (3.6a) in the following sections. For this purpose we will

8Note that in the following we do not consider the Wess-Zumino term which will not be important for

the modes discussed here and in general will not alter the qualitative form of the effective action derived.
9Note that by studying the topological term we may be able to find instabilities in probe brane systems

which exhibit a spatially modulated phase. According to [42] the addition of a topological term to the

Maxwell action may induce such an instability and using this notation we can tune the coupling as an

external parameter. See also [43] for this type of instability in the context of the chiral magnetic spiral of

the Sakai-Sugimonto model.
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restrict ourselves to the spatial component of the gauge field, ai (i = 1, 2, 3), at zero spatial

momentum in the background of θui = 0. See the appendix for details.10

3.2 The membrane paradigm in the presence of background fields (I)

(A generalization to non-diagonal spatial metrics)

We shall now derive the membrane paradigm for our action (3.6a) in the case in which

smn is static, and therefore there are no off-diagonal temporal components. The canonical

momentum to ai (i = x, y, z) at fixed radial variable u yields

J i(u) = −N ′

g25

√
−s fui − N ′

2
ǫmnpuifmnQp . (3.7)

The expectation value (jµ) of the conserved current in the boundary field theory is identified

with −J i(u→ 0) and the conductivity tensor (σij) can be written as11

ji(kµ) = −J i(u→ 0)(kµ) ≡ σij(kµ)fjt(u→ 0) . (3.8)

Let us consider perturbing the system with an infinitesimal constant electric field in

the x-direction, fxt = Ex, and compare the linear response expression with the holographic

current. Although the holographic expression is taken at the AdS boundary, in the hy-

drodynamic limit (corresponding to the DC response), the current can be shown to be

invariant under holographic flow for abelian fields

∂uJ i(u)|ω→0 = 0 , (3.9)

and thus the current can be calculated at any position in the radial direction. Just as

discussed for the original membrane paradigm, if the OSM exhibits a horizon we can

use the fact that the gauge field strength should depend only on the ingoing Eddington-

Finkelstein coordinate to make a constraint between the fui and fti components of the field

strength f

fui = −
√

suu
−stt

fti . (3.10)

We can thus use this to write fui in terms of the electric field fluctuations as fui =
six√

−suustt
Ex. This leads to the holographic expression for the conductivity

J i = −N ′

g25

√

s

sttsuu
sixEx +N ′ǫtxijuExQj

∣

∣

∣

∣

u→1

. (3.11)

Comparing this with the QFT expression from linear response theory for the conduc-

tivity, we arrive at the following expressions for the direct and Hall conductivities in the

10We thank the referee for drawing our attention to this subtlety.
11Note that there is a minus sign in the second term, which is due to a coordinate inversion u ∼ 1/r2.

This sign will be compensated by a minus sign in (3.10). Thus the final result does not depend on the

coordinate choice.
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presence of background fields written in terms of the open string degrees of freedom

σxx =
N ′

g25

√

s

suustt
sxx
∣

∣

∣

∣

u→1

, (3.12a)

σyx =
N ′

g25

√

s

suustt
syx −N ′Qz

∣

∣

∣

∣

u→1

, (3.12b)

σzx =
N ′

g25

√

s

suustt
szx +N ′Qy

∣

∣

∣

∣

u→1

. (3.12c)

3.3 Conductivity with an external magnetic field at finite baryon density

As an example, we now show how this result recovers the known results for conductivities

in the presence of finite magnetic field and baryon density on the probe brane. In this case

we turn on a gauge potential of the form

Ã = Ãt(u) dt+ B̃zx dy + B̃xy dz , (3.13)

where we could have set either B̃x = 0 or B̃z = 0 using O(3) symmetry, but here we keep

both components to show how the result in the previous section gives the right answer

straightforwardly, even when we do not take the simpler ansatz. This background gauge

field leads to an open string metric with non-diagonal terms in the x and z directions.

ds2 = smndx
mdxn (3.14)

= gttG2dt2 +
(B̃xdz − B̃zdx)

2

gxx
+ gxx(dx

2 + κdy2 + dz2) + guuG2du2 + gΩΩdΩ
2
3 ,

where

G2 ≡ κ g3ΩΩg
3
xx

n̂2q + κ g3ΩΩg
3
xx

, κ ≡ 1 +
B̃2
x

g2xx
+
B̃2
z

g2xx
. (3.15)

The running coupling is given by g25 = κ1/2G, and the topological term receives contribu-

tions from

Q =
n̂q(B̃xdx+ B̃zdz)

g2xxκ
. (3.16)

Thus, by (3.12a)–(3.12c) we obtain

σxx =
NfNcT

4π

√

(

1− ψ2
s

)3
+

ñ2q

1 + b̃2x + b̃2z

1 + b̃2x
√

1 + b̃2x + b̃2z

, (3.17a)

σyx = −NfNcT

4π

ñq b̃z

1 + b̃2x + b̃2z
, σzx =

b̃xb̃z

1 + b̃2x
σxx . (3.17b)

This agrees with the macroscopic conductivity, (2.15a) and (2.15b) in the limit Ex → 0.

The conductivity (3.17a) reduces to (2.14) for small electric field and zero magnetic field.

Notice that this is a non-trivial result. By using the open-string membrane paradigm

we have trivially obtained the DC limit of the retarded current-current correlator without

having to explicitly study the u dependence of the fluctuations. The full calculation which
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would otherwise have to be undertaken and was performed explicitly in [45] is summarized

in the following steps: (1) study the behaviour of the (coupled) equations of motion for

the gauge field fluctuations at singular points (horizon and boundary), imposing ingoing-

wave boundary condition at the horizon and normalizing the value of the fluctuation at the

boundary [3]. (2) Decouple the equations of motion by performing a change of basis, from

cartesian to circular polarization (around the axis defined by the magnetic field). (3) Solve

the differential equations in the hydrodynamic approximation and find the ratio between

the normalizable and non-normalizable modes at the boundary to obtain the retarded

Green’s function, changing the basis back to the cartesian polarisation. (4) The linear-

in-frequency, antihermitian part of the retarded Green’s function corresponds to the DC

conductivity tensor. Clearly using the membrane paradigm recipe we have a much simpler

algorithm for finding these transport coefficients.

4 The singular shell as a horizon and the electric membrane paradigm

The phenomenon of emergent horizons in probe brane physics is not a new one. Indeed

the simplest example is that of the rotating D1-brane or fundamental string (see [32] for

examples). Taking the brane to lie in the radial direction of AdS and spinning it in one of

the angular directions of the S5 leads to two interesting properties. The first is that the

induced metric on the brane reduces to an AdS2 black hole with a temperature proportional

to the brane’s angular velocity — a world-volume horizon emerges on the open string. The

second important point is that there is a singularity at the centre of the AdS space. This

is expected due to the probe approximation. An external force is adding energy to the

string to accelerate it. The string interacts with the background geometry only through

the induced metric and does not backreact. The signal that the energy being pumped into

the string has nowhere to go is that a singularity emerges inside the horizon. Precisely the

same thing happens in the case of an electric field on a Dq-brane as we will see below. In

fact, the rotating brane and the brane in a background electric field are simply related by

a T-duality, but whereas the T-dual picture has been discussed in [20, 25] , we would like

to show here how the horizon emerges naturally in the open-string picture.

Having recovered all previous results for conductivities from linear response theory,

we would like to examine the more interesting cases in which the open string metric has a

horizon which does not coincide with the horizon of the background spacetime. Generically

this happens when there is a background electric field turned on on the probe brane. In

this section we will first discuss the interesting properties of this horizon in a variety

of situations before returning to the calculation of the conductivity in the presence of a

macroscopic electric field, defined on what will be termed the electric membrane.

The open string metric, defined in equation (3.2) in the case of finite electric field,

current and baryon density is

ds2 = smndx
mdxn =

(

Ẽ2
x + gttgxx

)

(

dt̄2

gxx
+

dx̄2

gtt

)

+
1

guu

(

Ã′
tdt̄+ Ã′

xdx̄
)2

(4.1)

+

(

guu +
gxxÃ

′2
t + gttÃ

′2
x

Ẽ2
x + gttgxx

)

du2 + gxxdy
2 + gxxdz

2 + gΩ3Ω3dΩ
2
3 ,
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where the first and second components of the metric are the t̄ and x̄ directions defined by

dt̄ = dt+
Ẽx Ã

′
x

Ẽ2
x + gttgxx

du , dx̄ = dx− Ẽx Ã
′
t

Ẽ2
x + gttgxx

du , (4.2)

and the metric components gµν are those of the closed string metric. From now on we will

work with the barred quantities, dropping the bar for simplicity. The directions in this

metric are the four Minkowski directions, the radial direction of the AdS space, u, and the

S3 which is wrapped by the D7-brane.

We can now rewrite the effective metric (4.1) with the conserved charges and the

position of the singular shell using the equations of motion for the gauge fields. More

explicitly the metric components in (4.1) are given by12

stt = −∆+
π2

u

P1

P2
, suu =

1

∆−

1 + ẽ2x
4u2

1

P2
, (4.3a)

sxx =
π2
(

1 + ẽ2x
)(

1 + u3ñ2q
)

u

P1

P2
, (4.3b)

stx = −π2u2ñq ẽx
√

(

1 + ẽ2x
)(

ñ2q + (1 + ẽ2x)
3/2
) P1

P2
, (4.3c)

where

∆+ =
(

1− u2
)(

1 + ẽ2x
)

− u3ẽ2x
(

ñ2q + (1 + ẽ2x)
3/2
)

, (4.4a)

∆− = 1−
√

1 + ẽ2x u , (4.4b)

P1 = 1 +
√

1 + ẽ2x u , (4.4c)

P2 =
(

1 +
√

1 + ẽ2x + ẽ2xu
2
)(

1 + ẽ2x
)

+ ñ2qu
3
(

1 +
√

1 + ẽ2x u
)

. (4.4d)

Note that P1 > 0 and P2 > 0 while ∆− and ∆+ change sign. Therefore sxx > 0 and stx < 0

do not change sign, while stt < 0 and suu > 0 for small u and change sign at some larger

value of the radial variable (see figure 3 for an example).

The structure of the effective metric (4.1) has similarities to the Kerr black hole. Since

the metric is stationary we have an event horizon at suu = 0 (equivalent to ∆− = 0).

That is

suu(us) = 0 (event horizon) where us =
1

√

1 + ẽ2x
(singular shell) , (4.5)

where now the singular shell plays the role of an event horizon. Furthermore the hyper-

surface at u = ust such that stt(ust) = 0 (or equivalently ∆+(ust) = 0) plays the role of a

stationary shell. In figure 2 we present a plot of the location of the stationary shell as a

function of the electric field strength and baryon density. At nq = 0 the stationary shell

and singular shell are degenerate.

Between the event horizon and the stationary shell there will be an ergoregion similar

to the Kerr black hole’s ergosphere. In the case of zero density, At = 0, the metric is

12These are for ψs = 0. For ψs 6= 0 the expressions are more complicated, but the main physical structure

of the metric is the same as the ψs = 0 case.
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Figure 2. The location of the stationary shell (ust). For a given Ex the stationary shell moves

away from the horizon as nq increase.

completely diagonalized and the event horizon and the stationary shell coincide. Having

found the structure of the open string metric we can now define an open string membrane

paradigm on our open string horizon.

4.1 The open string black hole temperature at zero baryon density

We restrict for now to the case of zero baryon density, in which the metric (4.1) is diagonal

and therefore the calculations are simpler. We will reobtain the results of this section in

the nq → 0 limit case of the most general treatment given in the next section. For the case

at hand, the near-horizon metric is given by:

ds2|u→us

π2L2
= −2T 2

(

1 + ẽ2x
)

u dt2 + T 2
√

1 + ẽ2x
(

dy2 + dz2
)

+

(

1 + ẽ2x
)

3
2

(

2 + 3ẽ2x
)

(

2T 2dx2

H +
L2du2

2
(

1 + uH
)

)

+ L2
(

1− ψ2
s

)

dΩ2
3 , (4.6)

with

H =

√

√

√

√

1
(

1− ψ2
s

)

(

1−
(

4 + 3ẽ2x
)

(

2 + 3ẽ2x
)2ψ

2
s

)

. (4.7)

It is clear that, after scaling x, this is a Rindler space times R3×S3. We can calculate the

associated temperature

Teff =
T
√

2 + 3ẽ2x

2
(

1 + ẽ2x
)

1
4

√
1 +H . (4.8)

The final result is a measure of the effective temperature felt by the fundamental matter

in the presence of a bath of finite temperature adjoint matter and a finite electric field.

Essentially, the fundamental degrees of freedom feel not only the adjoint matter, but also
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the newly pair created fundamental particles of opposite charge moving in the opposite

direction.

The dependence on the mass is captured through ψs = ψs(T,Ex,mq). It is worth

noting that this effective temperature depends on the mass of the fundamental matter, the

external electric field we have turned on and the temperature associated to the original

black hole in our D3-brane background. The open string degrees of freedom effectively feel

a larger temperature than the one given by the background black hole. Such effects have

been discussed in [30] in the presence of the trailing string. For ẽx(∼ Ex/T
2) ≫ 1, the

effective temperature is

Teff →
√

3

2π
√
λ
(

1− ψ2
s

) Ex , (4.9)

while, for ẽx ≪ 1, Teff → T .

There is also an interesting divergence which occurs in equation (4.8) at the threshold

electric field needed for pair creation. At this value of the electric field, ψs = 1 and we

can see that the temperature diverges. There are several notable factors here. The first is

that this is not a stable solution. There is a phase transition for some ψs . 1, after which

the system is described by embeddings that do not reach the singular shell. The second

is that this is at a quantum critical point. One might expect that at the quantum critical

point, as correlation lengths diverge, that thermal fluctuations will become increasingly

important and thus the effective temperature should diverge in this region. One way to

see this divergence may also be that it is due to the enthalpy of dissociation as we move

from a bound phase to a dissociated phase of mesons.

4.2 Finite baryon density and the drift of the electric membrane

In the previous section we set the baryon density to zero which simplified the analysis of

the effective metric. In this section we turn the baryon density back on in order to study

the new phenomena which arise in this case.

The position of the singular shell, us, is defined by the position at which the DBI action

has to be regularized by the introduction of a current. However, looking at the effective

metric (4.1), it is clear that at finite baryon density the component stt does not vanish at

this position (in contrast to the zero baryon density case). In figure 3 we plot the radial

dependence of the induced metric components stt, sxx, s
uu and stx showing that there are

now two radii of interest, as discussed in the previous section.

In this figure we observe the presence of two relevant surfaces. One of them is the

singular shell discussed before (at us = 1/
√

1 + ẽ2x, independent of baryon density) which

represents the position of the event horizon of the induced metric. At the singular shell

suu goes to zero linearly as (us − u).

The second relevant surface is given by the stationary shell, ust, at which stt changes

sign. Due to this change in the behaviour of stt, objects between the stationary shell

and the singular shell are dragged along in the x-direction. This can be understood as

the dragging produced by the charged particles (since we are working with finite baryon

density) when accelerated by the electric field in the x-direction. This effect is very similar
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Figure 3. Radial dependence of the induced metric components stt (blue line), sxx (yellow line)

suu (red line, scaled to fit on the same plot) and stx (green line) for T = 1/(πL), ẽx = 1.5, ñq = 2

and ψs = 0 (corresponding to massless fundamental matter). The metric components asymptote

to the AdS values in the u→ 0 limit.

to the rotational frame-dragging which occurs in Kerr black holes, thus the name ergoregion

(nb. not the ergosphere as the black hole is planar. The relation between this geometry

and the Kerr black hole is thus a local one and not a global one).

The radius at which the stationary shell sits relative to the singular shell is dependent

on the baryon density and the mass of the fundamental matter. When the baryon density

vanishes the stationary shell merges with the singular shell and effectively disappears. The

curvature invariants for both the original induced metric and the open string metric are

everywhere finite. We can find the rate of frame dragging by studying the Killing vectors

of the open string metric.

Consider the vector

ξ = cosh η ∂t + sinh η ∂x , (4.10)

where

sinh η =
ñq ẽx

√

ñ2q +
(

1 + ẽ2x
)

5
2
(

1− ψ2
s

)3
. (4.11)

This is a Killing vector such that the norm squared, ξ · ξ, vanishes at the singular shell and
coincides with the behaviour of the AdS metric component gtt at the boundary, giving the

most natural normalization for the timelike Killing vector in the AdS/CFT context. It can

be shown that this norm is always negative, such that this is timelike. Notice that when

ẽx → 0 or ñq → 0 then ξ = ∂t, recovering the Killing vector of Schwarzschild-AdS. With

this definition of ξ we can find the speed at which the singular shell moves, on a similar

footing to the determination of the angular speed of a rotating black hole. This speed is

given by

v2s = tanh2 η =
ñ2q ẽ

2
x

(

1 + ẽ2x
)

(

ñ2q +
(

1 + ẽ2x
)3/2(

1− ψ2
s

)3
) ≤ 1 , (4.12)
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with the velocity approaching 1 in the ñq → ∞ limit or in the simultaneous one ẽx → ∞
and ψs → 1. Rewriting ẽx and ñq in term of the E and nq variables we can take the

extremal limit, and the speed takes the form

v2s =
n2q

n2q +
N2

f
N2

c

8π3
√
λ
E3
x

(

1− ψ2
s

)3
. (4.13)

Equation (4.12) describes a net velocity of the charged fundamental matter carriers

driven by the electric field, and its product with the electric density of the quarks, nq, can

be understood as a current

Jnq ≡ nqvs =
NfNcT

4π

ñ2q
1 + ẽ2x

1
√

√

1 + ẽ2x
(

1− ψ2
s

)3
+

ñ2
q

1+ẽ2x

Ex , (4.14)

which is the contribution to the current due to the existence of charged matter dragged by

the external electric field. This description becomes more accurate in the limit where the

pair creation contribution is negligible and a good quasi-particle description is expected

(for example, large mass and/or high density limit). In this limit

Jnq → NfNcT

4π

√

ñ2q
1 + ẽ2x

Ex , (4.15)

which agrees with (2.14). We see how the OSM description naturally incorporates this by

describing a membrane moving at precisely vs at the horizon.

There is a second contribution to the current due to thermal pair creation. As explained

in section 2, this contribution will not contribute to the net momentum flow, since particles

and antiparticles will be moving in opposite directions, but due to the charge inversion a net

current will be present. We will use the membrane paradigm to find the total conductivity

of the system, including the effects of pair creation as well as the net flux of charges from

the finite background density.

4.3 The open string black hole temperature at finite baryon density

As the singular shell is a Killing horizon, this allows us to calculate the surface gravity κ by

κ2 = −1

2
(Dµξν)(D

µξν) , (4.16)

from here we can read the temperature of the associated black hole as

T 2
eff =

κ2

4π2
=
T 2

4

(

W1 +
√

W 2
1 +W 2

2

)

ñ2q +
(

1 + ẽ2x
)5/2(

1− ψ2
s

)3
, (4.17)

where

W1 ≡ 2ñ2q
√

1 + ẽ2x +
(

1 + ẽ2x
)2(

2 + 3ẽ2x
)(

1− ψ2
s

)3
, (4.18a)

W2 ≡ 3ẽxψs
(

1 + ẽ2x
)5/2(

1− ψ2
s

)5/2
. (4.18b)
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In the zero density limit this result agrees with the previous calculation of the induced

temperature given by the behaviour of the Rindler horizon (4.8) and in the infinite density

limit Teff → T (1 + ẽ2x)
1/4. Notice that finite density can regulate the divergence at zero

density and ψs = 1. As T → ∞ or E → 0, Teff → T , while as T → 0 or E → ∞,

Teff →
√

3E
2π

√
λ

(

1 + 1√
1−ψ2

s

)

.

There are some interesting things to note about this effective temperature. Such

effective temperatures have been discussed previously (e.g., [30]) in the context of trailing

strings [46, 47], where a quark moving at equilibrium in a background plasma feels an

effective temperature caused by a boost of the stress energy tensor in its frame. This

leads to an effective temperature of the form Teff = (1− v2)−
1
4T therefore diverging as the

velocity approaches the speed of light. In the current case it is harder to see the velocity

because although we have a steady current, the charge carriers are constantly being pair

created, accelerated and then annihilated. As discussed in the previous section the velocity

can be seen in the case of finite baryon density, due to the net momentum flow of surplus

charge carriers. This velocity only goes to one as the electric field strength diverges, and

indeed in that case the temperature can also be seen to diverge.

4.4 A new electric membrane paradigm

Now we will return to the membrane paradigm calculations that were discussed in sec-

tion 3.2 showing how, with the electric membrane as a true horizon on the D7-brane from

the open string point of view, we can recover the electric conductivity in the presence of a

macroscopic electric field.

As a warmup let us consider the zero density case, in which the open string metric is

static and we can use the result (3.12a) with a horizon determined by the singular shell at

us = 1/
√

1 + ẽ2x. We have

σxx =
N ′

g25

√

s

suustt
sxx
∣

∣

∣

∣

u=1/
√

1+ẽ2x

=
NfNcT

4π

(

2 + 3ẽ2x
)

√

√

1 + ẽ2x
(

1− ψ2
s

)3

2
(

1 + ẽ2x
) . (4.19)

But this expression can be written as the derivative with respect to the electric field of a

simpler quantity, given by:

σxx =
NfNcT

4π
∂ẽx

[

√

√

1 + ẽ2x
(

1− ψ2
s

)3
ẽx

]

, (4.20)

which is simply:

σxx =
NfNcT

4π
∂ẽx
[

J̃x(ẽx)
]

. (4.21)

This J̃x is that obtained in (2.11). This result is understood as follows. The membrane

paradigm is based on linear response theory, so a small source, δEx(≡ Ex), should be

assumed. However we already have a large background Ex and corresponding Jx, which
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are encoded in the metric. Thus, the linear response will describe the response to a small

Ex on top of the background Ex, i.e.

Jx(Ex + Ex)− Jx(Ex) ∼ ∂E
(

Jx(E)
)

Ex

=
NfNcT

2

4π
∂ẽ
(

J̃x(ẽ)
)

Ex
= σxxEx , (4.22)

which is thus confirmed in (4.21). This result was obtained with the evaluation at the OSM

horizon us = 1/
√

1 + ẽ2x and thus confirms the expectation that we can define a membrane

paradigm at this position.

Recall that an explicit microscopic calculation in terms of the original variables gmn and

Fmn was performed in [11]. In this paper a small electric field in the y-direction was added

to the background Ex, and the conductivity was found in linear response theory following

the philosophy of equation (4.22). In this work it was found that the fluctuations had to

satisfy a (regularity) boundary condition at the singular shell to recover the result (4.19),

which was found macroscopically in [14]. The possible boundary conditions at the (closed

string) horizon appeared strange for a regular black hole, since the modes at the horizon did

not split into ingoing and outcoming waves, but were both ingoing waves, one of them with

an extra damping factor. With the membrane paradigm based on the OSM we present in

this paper, regularity is imposed at the singular shell, at which the modes decompose again

as ingoing/outcoming waves (see section 4.6 where the strange nature of these boundary

conditions will become clear).

Note that we are using a rescaled time. Since our t is indeed t̄, we have to be careful

about interpreting the result, in principle. However, there is no problem in our case, since

at the boundary u → 0, t̄ → t. So our field theory interpretation will be the same for t̄

and t.

4.5 The membrane paradigm in the presence of background fields (II)

(A generalization to non-static, stationary metrics)

Here we will consider the new membrane paradigm not only for static metrics, but fornon-

static, stationary ones. There are thus off-diagonal components in the t-direction. Consider

for simplicity a metric of the form

ds2 = sttdt
2 + sxxdx

2 + 2stxdtdx+ suudu
2 + syydy

2 + szzdz
2 + sΩΩdΩ

2
3 . (4.23)

By applying a generalized membrane paradigm to the finite density and electric field

case (4.1) we will confirm the conductivity obtained macroscopically, showing the use-

fulness of the OSM and a generalized membrane paradigm.

In order to calculate the conductivity (σij) we must relate the current ji (conjugate

momentum of the gauge field ai, thus ∼ fui) to the electric field strength (fjt = Ej) on the

AdS boundary. In this example we set up the electric field in the x-direction. The current
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is given by13

J i(u) = −N ′
√−s
g25(u)

fui(u) . (4.24)

Because of the anisotropy in the spatial directions there are three currents we can write

down (though in our case two will be identical)

J y ∼ fuy = suusyyfuy , (4.25a)

J z ∼ fuz = suuszzfuz , (4.25b)

J x ∼ fux = suusxxfux + suustxfut , (4.25c)

where, in the last terms, we simply lowered the indices with the open string metric.

As before, in the hydrodynamic limit the current is independent of the radial direction,

(∂uJ i(u) = 0), and the relations (4.25a)–(4.25c) hold at any radial position — in particular,

on the AdS boundary where the field theory is defined and on the open string horizon,

where the membrane paradigm will be used to relate the current to the electric field. The

calculation boils down to relating fui to fjt(= Ej) at the horizon. Following the membrane

paradigm, this relation can be made through the constraint of the regularity of the field

strength at the open string horizon which is equivalent to imposing incoming boundary

conditions at this point. In order to do this we must generalize the Eddington-Finkelstein

coordinates to a the non-static metric of equation (4.23).14

By symmetry we can consider null geodesics at constant y, z and Ω3, described by

pµ ≡ {ẋ, ṫ, u̇}, where the dots denote derivatives with respect to an affine parameter.

Geodesic equations can be written down as three first integrals from two Killing vectors

(∂t, ∂x) and the null condition (ds2 = 0):

pt = sttṫ+ stxẋ , px = stxṫ+ sxxẋ , (4.26a)

ds2 = sttṫ
2 + sxxẋ

2 + 2stxṫẋ+ suuu̇
2 = 0 , (4.26b)

whose solutions

u̇ = ∓
√

p2xstt − 2ptpxstx + p2t sxx
suu(s2tx − sttsxx)

, ṫ =
pxstx − ptsxx
s2tx − sttsxx

, ẋ =
ptstx − pxstt
s2tx − sttsxx

, (4.27)

yield two principal null congruences corresponding to the two signs of

dt = ±
√
suu(sxx − αstx)

√

s2tx − sttsxx
√
sxx − 2αstx + α2stt

du ≡ ±Λ(u)du , (4.28a)

dx = ±
√
suu(αstt − stx)

√

s2tx − sttsxx
√
sxx − 2αstx + α2stt

du ≡ ±Λ̂(u)du , (4.28b)

13We will omit the contribution from the topological term in (3.7), since the present discussion does not

affect that part of the current.
14This is similar to the Kerr black hole case, where there are no radial null geodesics due to frame drag

and one can define instead the principal null congruences to define the Eddington-Finkelsetin coordinates.
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where α = px/pt and the ingoing (outgoing) congruence corresponds to the plus (minus)

sign. The sign can be identified by looking at the limit stx → 0. We define an (ingoing)

Eddington-Finkelstein coordinate system {v, x̂, u} by

dv = dt− Λ(u)du , dx̂ = dx− Λ̂(u)du . (4.29)

Now that we have defined our regular Eddington-Finkelstein directions, we can con-

strain the gauge fields to depend on x, t and u only through these combinations at the

horizon, which gives a condition

(∂u + Λ∂t + Λ̂∂x)aµ = 0 . (4.30)

Since we are interested in a homogeneous DC conductivity we assume that am = am(t, u)

so (4.30) yields

fui = −Λfti . (4.31)

This relation can be shown to be gauge invariant as follows. The regularity condition (4.30)

of fti and the Bianchi identity read

Λ∂tfti = −∂ufti − Λ̂∂ifti , (4.32)

∂ufti = ∂tfui + ∂iftu , (4.33)

which imply that Λfti + fui = c, where c is a gauge-independent constant, if fµν is homo-

geneous. From (4.31) c = 0.

With (4.31), the currents (4.25a)–(4.25c) read

ji = N ′
√−s
g2YM (u)

suusiiΛEi , (i = x, y, z (no summation)) , (4.34)

where we have dropped the term suustxfut in (4.25c), since suu → 0 at the horizon (the

event horizon is defined by the hypersurface for suu = 0), and assumed that fut is not

singular at the horizon. For a metric like (4.23) with a Killing vector field given by (4.10),

with vanishing norm at the horizon, it is immediate to check that, at the horizon −stt =
2vsstx + v2ssxx, where vs = ξx/ξt. Furthermore, as sttsxx − s2tx = 0 at this surface too [48],

the components of the metric are related by

stt
∣

∣

us
= v2ssxx

∣

∣

us
, stx

∣

∣

us
= −vssxx

∣

∣

us
⇒ Λ

∣

∣

us
=

√
suusxx

√

s2tx − sttsxx
, (4.35)

where the α-dependence of Λ cancels at the horizon. Therefore the conductivity reads

σii =
N ′

g2YM

√−s
√
suu
√

−sttsxx + s2tx

√
sxx
sii

∣

∣

∣

∣

u→us

, (i = x, y, z (no summation)) . (4.36)

Now let us apply this formula to the finite density and electric field case. In this

case there is no topological term, but as we have seen the OSM is non-static, stationary

with a non trivial stx component. Plugging the metric components in the conductivity
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formulae we recover the macroscopic result in [14], solving for both the longitudinal and

the transverse fluctuations of the gauge field along the direction of the electric field

σxx =
NfNcT

4π
∂ẽx

[

√

√

1 + ẽ2x
(

1− ψ2
s

)3
+

ñ2q
1 + ẽ2x

ẽx

]

, (4.37a)

σyy = σzz =
NfNcT

4π

√

√

1 + ẽ2x
(

1− ψ2
s

)3
+

ñ2q
1 + ẽ2x

. (4.37b)

The microscopic calculation leading to (4.37b) was performed explicitly in [11], but the

one leading to (4.37a) is presented here for the first time. This result shows the power of

the membrane paradigm, since the equations of motion governing the fluctuation along the

x-direction are rather cumbersome.

4.6 Microscopic excitations and the electric membrane

Having shown in the previous sections that we can recover the results for transport coeffi-

cients using the new membrane paradigm we can compare these results with the microscopic

setup whereby the Kubo relation is explicitly used to calculate the conductivity.15 This

will be another check that the open string fluctuations really do see the membrane as a

horizon. In [11] two of the authors of this paper performed this microscopic calculation

in the closed string metric language and found that there was a unique set of boundary

conditions for the fluctuations about the singular shell which recovered the known conduc-

tivity expression. However, we show here that in the open string language this calculation

is much more transparent.

In order to calculate the conductivity we must use the Kubo relation

σzz = − lim
ω→0

ImΠ⊥

ω
, (4.38)

where Π⊥ is the transverse two point Green’s function which in this case will correspond

to the two point function of vector modes transverse to the direction of the electric field in

the x-direction. Thus, using the usual holographic recipe we must calculate the equation

of motion for the gauge field components ay,z(u, t) and look at the boundary behaviour in

the UV (since these two modes decouple and are described by the same equations we will

focus only on az). The two point function is then found by looking at

Π⊥ = lim
u→0

az
′(u)

az(u)
, (4.39)

where, because we are linearising in fluctuations, az(u, t) = eiωtaz(u) and where the field

is normalised such that az(u → ub) → 1 (see for example [49] for an extensive treatment

of such a calculation).

15Note that the membrane paradigm method also uses the Kubo relation, but here it is an explicit

numerical calculation whereas for the membrane paradigm it is implicit and analytic.
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In the case of the original metric we can study the fluctuations and write the quadratic

Lagrangian in the form

L ∼ √−γ
(

Tr(γ−1fγ−1f)− 1

2

(

Tr(γ−1f)
)2
)

, (4.40)

where here f is the fluctuation of the gauge field about the background embedding. In the

case of a finite electric field in the x-direction we can study the fluctuations of gauge fields

in the transverse direction and get the following lagrangian (the functions S,T and U can

be found in [11])

L ∼ √−γ
(

S(u,E)∂taz(t, u)
2 + T(u,E)∂uaz(t, u)

2 + U(u,E)∂taz(t, u)∂uaz(t, u)
)

. (4.41)

We see that there are cross terms between the different derivatives on az(t, u). From this

Lagrangian the indices at the singular points can be calculated via the equations of motion.

The singular shell being a singular point gives two indices which leads to two solutions to

the gauge potential close to the singular shell, given by

az(t, u ∼ us) = eiωt(u− us)
η1,2 ,

η1 = 0 , η2 = − i
(

1 + ẽ2x
)

1
4ω√

2
√

2 + 3ẽ2xπT
. (4.42)

These two indices don’t look like the usual incoming wave boundary conditions that we

are used to when studying quasinormal modes of black holes. By studying the ẽx → 0

limit and the hydrodynamic limit of the two point correlator of the vector current on the

boundary, in [11] it was found that the zero index η1 is the correct choice to recover the

macroscopically calculated transport coefficients. In fact, this is precisely the incoming

Eddington-Finkelstein boundary condition, but this fact is not clear in this coordinate

system. We will show here that using the open string metric we are able to find the

correct frame in which the incoming and outgoing Eddington-Finkelstein coordinates are

transparent.

We can make the substitution γmn = smn+θmn in the above set of equations and would

find precisely the same result as above, but now with γ replaced by s in the effective action

(up to an the overall prefactor of γ). The cross term is seen to come from the non-diagonal

form of s. We are free now to diagonalise the metric s by a coordinate transformation

(in the case of finite baryon density we can only remove the du dt cross-terms and not the

dt dx ones). Now, writing the action with diagonalised metric we find a simpler form of

the action for az given by

− 4Seff
N ′ =

∫

d5x
√−γ sacsbdfabfcd ,

=

∫

d5x2
√−γ

(

szz
(

∂taz(u, t)
)2

+ suu
(

∂uaz(u, t)
)2
)

. (4.43)

Calculating the equation of motion for az(u, t) = e−iωtaz(u) and performing a Frobenius

expansion around the open string horizon we find that the indices are

az(u)u→us → (u− us)
±i ω

4πTeff , (4.44)
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where Teff is the effective temperature calculated in (4.17). By combining the plane wave

part of the ansatz, the boundary condition for az at the singular shell is seen to be

az(u, t)u→us = e
−iω

(

t− 1
4πTeff

log(u−us)
)

. (4.45)

It is clear that using the open string metric in the diagonal coordinates we have found the

natural Eddington-Finklestein ingoing coordinates. This analysis is a lot more opaque in

the original formulation.

Using these boundary conditions, the equation of motion coming from (4.43) can be

integrated to the AdS boundary. Reading off the solution at the boundary and applying

the Kubo relation a perfect fit with the macroscopic result for σzz is found. This confirms

the macroscopic calculation and also shows that the retarded Green’s function is given by

purely ingoing boundary conditions at the open string horizon.

The same calculation can be performed for the conductivity in the direction of the

applied electric field and again there is a perfect fit between the microscopic and macro-

scopic solutions. Note that the transparency of this calculation will make the calculation

of quasinormal modes for this system much simpler. We leave for future work.

5 Conclusions

In this work we have studied the effects of background electromagnetic fields on open

string degrees of freedom on probe Dq-branes. Using the open string metric we have

shown that the black hole membrane paradigm can be extended to complex cases involv-

ing non-diagonal metrics, non-static metrics and actions including topological terms for

the fluctuating degrees of freedom. Moreover, the singular shell, discussed previously in

many papers, has been shown to act as a true horizon for the open strings and allows

for a membrane paradigm to be defined even when there is no horizon in the background

spacetime.

From the field theory perspective we have been able to define the effective temperature

felt by the fundamental matter in the presence of an electric field. It would be fascinating

to compare this result with any similar field theory calculations. As noted, the effective

temperature itself has some rather strange properties in the unstable regime and the effec-

tive temperature close to a quantum critical point is certainly worth investigating in more

detail.

We noted in the introduction that the reason we obtain a finite conductivity in this

work is because we are in the probe approximation. There would be no steady state in the

back-reacted solution, but such a time-dependent solution may be tractable (see [29]) and

would certainly be extremely interesting to study.

The number of examples where gauge field configurations will induce a non-diagonal

open string metric is huge, so the procedure presented in this paper has a huge potential to

treat these. Some obvious directions for future work include the study of the entire fluctu-

ation spectra (vectors, scalars and fermions) in terms of s and θ and thus an investigation

into the effects of the topological term on the gauge theory phenomenology, the exten-

sion of the current results to the case of the non-Abelian DBI action (where spontaneous
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condensation of vector fields can occur) or the inclusion of the Wess-Zumino term and its

contribution to the topological term discussed in this paper. In particular the instabili-

ties which may be driven by the topological term could be very important in a range of

scenarios and although the methods described here will not give new solutions, they may

highlight the areas that such phenomenology is likely to appear.

It is interesting to note that in the case of a large enough background field in an

extremal background, because of the open string horizon, we have a theory which appears

at first sight to be at zero temperature, and thus doesn’t fall into the universality class

of [4] but through the dynamical generation of temperature will have the same universal

value of ηs = 1
4π .

The power and importance of the membrane paradigm in holography may yet pro-

vide more tools for studying universal properties of gauge theories and condensed matter

systems. The extension of the membrane paradigm to more diverse situations is thus, we

believe, an important topic for further investigation.
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A Coupling to scalar

In general the coupling term to a scalar (which we denote by χ) should be added to the

action (3.6a). Schematically it reads

L = −N ′
√−s
4 g25

smpsnqfmnfpq −N ′ 1

8
ǫmnpqrfmnfpqQr

+(G1θ
mn +G2∂uθ

mn)fmnχ , (A.1)

where G1 and G2 are functions of the background metrics and embedding profile, so are

functions of u only. We are interested in the case that spatial momentum vanishes, so the

equations of motion for the ai(t, u) fields are

∂uΠ
ui + ∂tΠ

ti = 0 , (A.2)

where the conjugate momentum Πmn is defined as

Πmn =
∂L

∂(∂man)
. (A.3)
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Inserting a fourier mode decomposition and taking the zero frequency limit,we see that Πui

is conserved along u. If θui = 0, as is the case in the examples we have considered, the

conjugate momentum of interest to us reads

Πui = −N ′

g25

√
−s fui − N ′

2
ǫmnpuifmnQp ≡ J i(u) , (A.4)

which is our equation (3.7). Thus, for this special case, we need not worry about scalar

couplings and can safely ignore them in (3.6a) for simplicity. However, we emphasize that

in general the coupling to the scalar should be taken into account.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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